1
|
Parashar S, Neimark AV. Understanding the origins of reversible and hysteretic pathways of adsorption phase transitions in metal-organic frameworks. J Colloid Interface Sci 2024; 673:700-710. [PMID: 38901360 DOI: 10.1016/j.jcis.2024.06.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
Phase behavior of nanoconfined fluids adsorbed in metal-organic frameworks is of paramount importance for the design of advanced materials for energy and gas storage, separations, electrochemical devices, sensors, and drug delivery, as well as for the pore structure characterization. Phase transformations in adsorbed fluids often involve long-lasting metastable states and hysteresis that has been well-documented in gas adsorption-desorption and nonwetting fluid intrusion-extrusion experiments. However, theoretical prediction of the observed nanophase behavior remains a challenging problem. The mesoscopic canonical, or mesocanonical, ensemble (MCE) is devised to study the nanophase behavior under conditions of controlled fluctuations to stabilize metastable and labile states. Here, we implement and apply the MCE Monte Carlo (MCEMC) simulation scheme to predict the origins of reversible and hysteric adsorption phase transitions in a series of practical MOF materials, including IRMOF-1, ZIF-412, UiO-66, Cu-BTC, IRMOF-74-V, VII, and IX. The MCEMC method, called the gauge cell method, allows to produce Van der Waals type isotherms with distinctive swings around the phase transition regions. The constructed isotherms determine the positions of phase equilibrium and spinodals, as well as the nucleation barriers separating metastable states. We demonstrate the unique capabilities of the MCEMC method in quantitative predictions of experimental observations compared with the conventional grand canonical and canonical ensemble simulations. The MCEMC method is implemented in the open-source RASPA and LAMMPS software packages and recommended for studies of adsorption behavior and pore structure characterization of MOFs and other nanoporous materials.
Collapse
Affiliation(s)
- Shivam Parashar
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Alexander V Neimark
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| |
Collapse
|
2
|
Fleck M, Darouich S, Hansen N, Gross J. TAMie Force Field for Alkanethiols: Multifidelity Gaussian Processes for Dealing with Scarce Experimental Data. J Phys Chem B 2024; 128:9544-9552. [PMID: 39292815 DOI: 10.1021/acs.jpcb.4c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
This study extends the transferable anisotropic Mie potential (TAMie) to alkanethiols. The force field parameters are optimized by using an analytic equation of state as a surrogate model. Given the lack of experimental density data at elevated temperatures where Monte Carlo simulations have high statistical precision, the equation of state is supplemented by a linear multifidelity Gaussian process approach to bridge the temperature gap. Force field parameters are adjusted by minimizing squared deviations of calculated vapor pressures and liquid densities from experimental data of 1-propanethiol, 1-butanethiol and 1-pentanethiol leading to small mean absolute relative deviations in liquid densities and vapor pressures. The force field is transferable to higher 1-thiols, as shown for 1-hexanethiol and 1-octanethiol. Individual parameter sets are provided for methanethiol and ethanethiol. The shear viscosity of pure substances is predicted in fair agreement with experimental data, considering that it is not included in the parametrization. Further, the phase behavior of binary mixtures of alkanethiols with alkanes is studied, and predictions of the TAMie model are found in excellent agreement with experimental data.
Collapse
Affiliation(s)
- Maximilian Fleck
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
| | - Samir Darouich
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
| |
Collapse
|
3
|
Desgranges C, Delhommelle J. Accelerated convergence via adiabatic sampling for adsorption and desorption processes. J Chem Phys 2024; 161:104104. [PMID: 39248234 DOI: 10.1063/5.0223486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Under isothermal conditions, phase transitions occur through a nucleation event when conditions are sufficiently close to coexistence. The formation of a nucleus of the new phase requires the system to overcome a free energy barrier of formation, whose height rapidly rises as supersaturation decreases. This phenomenon occurs both in the bulk and under confinement and leads to a very slow kinetics for the transition, ultimately resulting in hysteresis, where the system can remain in a metastable state for a long time. This has broad implications, for instance, when using simulations to predict phase diagrams or screen porous materials for gas storage applications. Here, we leverage simulations in an adiabatic statistical ensemble, known as adiabatic grand-isochoric ensemble (μ, V, L) ensemble, to reach equilibrium states with a greater efficiency than its isothermal counterpart, i.e., simulations in the grand-canonical ensemble. For the bulk, we show that at low supersaturation, isothermal simulations converge slowly, while adiabatic simulations exhibit a fast convergence over a wide range of supersaturation. We then focus on adsorption and desorption processes in nanoporous materials, assess the reliability of (μ, V, L) simulations on the adsorption of argon in IRMOF-1, and demonstrate the efficiency of adiabatic simulations to predict efficiently the equilibrium loading during the adsorption and desorption of argon in MCM-41, a system that exhibits significant hysteresis. We provide quantitative measures of the increased rate of convergence when using adiabatic simulations. Adiabatic simulations explore a wide temperature range, leading to a more efficient exploration of the configuration space.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Physics and Applied Physics, University of Massachusetts, Lowell, Massachusetts 01854, USA
| | - Jerome Delhommelle
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, USA
| |
Collapse
|
4
|
Siderius DW, Hatch HW, Shen VK. Flat-Histogram Monte Carlo Simulation of Water Adsorption in Metal-Organic Frameworks. J Phys Chem B 2024; 128:4830-4845. [PMID: 38676704 PMCID: PMC11175621 DOI: 10.1021/acs.jpcb.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Molecular simulations of water adsorption in porous materials often converge slowly due to sampling bottlenecks that follow from hydrogen bonding and, in many cases, the formation of water clusters. These effects may be exacerbated in metal-organic framework (MOF) adsorbents, due to the presence of pore spaces (cages) that promote the formation of discrete-size clusters and hydrophobic effects (if present), among other reasons. In Grand Canonical Monte Carlo (MC) simulations, these sampling challenges are typically manifested by low MC acceptance ratios, a tendency for the simulation to become stuck in a particular loading state (i.e., macrostates), and the persistence of specific clusters for long periods of the simulation. We present simulation strategies to address these sampling challenges, by applying flat-histogram MC (FHMC) methods and specialized MC move types to simulations of water adsorption. FHMC, in both Transition-matrix and Wang-Landau forms, drives the simulation to sample relevant macrostates by incorporating weights that are self-consistently adjusted throughout the simulation and generate the macrostate probability distribution (MPD). Specialized MC moves, based on aggregation-volume bias and configurational bias methods, separately address low acceptance ratios for basic MC trial moves and specifically target water molecules in clusters; in turn, the specialized MC moves improve the efficiency of generating new configurations which is ultimately reflected in improved statistics collected by FHMC. The combined strategies are applied to study the adsorption of water in CuBTC and ZIF-8 at 300 K, through examination of the MPD and the adsorption isotherm generated by histogram reweighting. A key result is the appearance of nontrivial oscillations in the MPD, which we show to be associated with water clusters in the adsorption system. Additionally, we show that the probabilities of certain clusters become similar in value near the boundaries of the isotherm hysteresis loop, indicating a strong connection between cluster formation/destruction and the thermodynamic limits of stability. For a hydrophobic MOF, the FHMC results show that the phase transition from low density to high density is suppressed to water pressure far above the bulk-fluid saturation pressure; this is consistent with results presented elsewhere. We also compare our FHMC simulation isotherm to one measured by a different technique but with ostensibly the same molecular interactions and comment on observed differences and the need for follow-up work. The simulation strategies presented here can be applied to the simulation of water in other MOFs using heuristic guidelines laid out in our text, which should facilitate the more consistent and efficient simulation of water adsorption in porous materials in future applications.
Collapse
Affiliation(s)
- Daniel W. Siderius
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| | - Harold W. Hatch
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| | - Vincent K. Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, United States
| |
Collapse
|
5
|
Mazur B, Firlej L, Kuchta B. Efficient Modeling of Water Adsorption in MOFs Using Interpolated Transition Matrix Monte Carlo. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25559-25567. [PMID: 38710042 PMCID: PMC11103664 DOI: 10.1021/acsami.4c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
With the specter of accelerating climate change, securing access to potable water has become a critical global challenge. Atmospheric water harvesting (AWH) through metal-organic frameworks (MOFs) emerges as one of the promising solutions. The standard numerical methods applied for rapid and efficient screening for optimal sorbents face significant limitations in the case of water adsorption (slow convergence and inability to overcome high energy barriers). To address these challenges, we employed grand canonical transition matrix Monte Carlo (GC-TMMC) methodology and proposed an efficient interpolation scheme that significantly reduces the number of required simulations while maintaining accuracy of the results. Through the example of water adsorption in three MOFs: MOF-303, MOF-LA2-1, and NU-1000, we show that the extrapolation of the free energy landscape allows for prediction of the adsorption properties over a continuous range of pressure and temperature. This innovative and versatile method provides rich thermodynamic information, enabling rapid, large-scale computational screening of sorbents for adsorption, applicable for a variety of sorbents and gases. As the presented methodology holds strong applicative potential, we provide alongside this paper a modified version of the RASPA2 code with a ghost swap move implementation and a Python library designed to minimize the user's input for analyzing data derived from the TMMC simulations.
Collapse
Affiliation(s)
- Bartosz Mazur
- Department
of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Lucyna Firlej
- Department
of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
- Laboratoire
Charles Coulomb (L2C), Universite de Montpellier
- CNRS, Montpellier 34095, France
| | - Bogdan Kuchta
- Department
of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
- MADIREL,
CNRS, Aix-Marseille University, Marseille 13013, France
| |
Collapse
|
6
|
Formalik F, Chen H, Snurr RQ. Avoiding pitfalls in molecular simulation of vapor sorption: Example of propane and isobutane in metal-organic frameworks for adsorption cooling applications. J Chem Phys 2024; 160:184118. [PMID: 38738606 DOI: 10.1063/5.0202748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
This study introduces recommendations for conducting molecular simulations of vapor adsorption, with an emphasis on enhancing the accuracy, reproducibility, and comparability of results. The first aspect we address is consistency in the implementation of some details of typical molecular models, including tail corrections and cutoff distances, due to their significant influence on generated data. We highlight the importance of explicitly calculating the saturation pressures at relevant temperatures using methods such as Gibbs ensemble Monte Carlo simulations and illustrate some pitfalls in extrapolating saturation pressures using this method. For grand canonical Monte Carlo (GCMC) simulations, the input fugacity is usually calculated using an equation of state, which often requires the critical parameters of the fluid. We show the importance of using critical parameters derived from the simulation with the same model to ensure internal consistency between the simulated explicit adsorbate phase and the implicit bulk phase in GCMC. We show the advantages of presenting isotherms on a relative pressure scale to facilitate easier comparison among models and with experiment. Extending these guidelines to a practical case study, we evaluate the performance of various isoreticular metal-organic frameworks (MOFs) in adsorption cooling applications. This includes examining the advantages of using propane and isobutane as working fluids and identifying MOFs with a superior performance.
Collapse
Affiliation(s)
- Filip Formalik
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Micro, Nano and Biomedical Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Haoyuan Chen
- Department of Chemistry, Department of Physics and Astronomy, The University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
7
|
Fleck M, Darouich S, Hansen N, Gross J. Transferable Anisotropic Mie Potential Force Field for Alkanediols. J Phys Chem B 2024. [PMID: 38709669 DOI: 10.1021/acs.jpcb.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The development of force fields for polyfunctional molecules, such as alkanediols, requires a careful account of different average intramolecular conformations for gas states compared to dense liquid states, where intra- and intermolecular hydrogen bonds compete. In the present work, the transferable anisotropic Mie (TAMie) potential is extended to 1,n-alkanediols. Using the convention that intramolecular nonbonded interactions up to and including the third neighbor are excluded, all force field parameters developed previously for 1-alcohols were transferred to 1,5-pentanediol and beyond, with good agreement with experimental phase equilibrium data. To obtain trans-gauche ratios of 1,2-ethanediol and 1,3-propanediol that are consistent with experimental results, the propensities for intra- and intermolecular hydrogen bonds had to be balanced. This was achieved by parameterizing the intramolecular dihedral energy functions governing the O-C-C-O and O-C-C-C angles while intramolecular charge-charge interactions were active. All partial charges belonging to a functional group are collected in a charge group and all interactions among two charge groups are evaluated even if they are separated by less than three bonds. With this approach, it is possible to apply the nonbonded parameters from 1-alcohols to alkanediols without further refinement. The agreement with experimental phase equilibrium and shear viscosity data is of similar quality as for the 1-alcohols and the trans-gauche ratio agrees with literature results from spectroscopic measurements and ab initio calculations.
Collapse
Affiliation(s)
- Maximilian Fleck
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Samir Darouich
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| |
Collapse
|
8
|
Ströker P, Meier K. Vapor-liquid equilibrium and thermodynamic properties of saturated argon and krypton from Monte Carlo simulations using ab initio potentials. J Chem Phys 2024; 160:094503. [PMID: 38426525 DOI: 10.1063/5.0196466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Vapor-liquid equilibria and thermodynamic properties of saturated argon and krypton were calculated by semi-classical Monte Carlo simulations with the NpT + test particle method using ab initio potentials for the two-body and nonadditive three-body interactions. The NpT + test particle method was extended to the calculation of second-order thermodynamic properties, such as the isochoric and isobaric heat capacities or the speed of sound, of the saturated liquid and vapor by using our recently developed approach for the systematic calculation of arbitrary thermodynamic properties in the isothermal-isobaric ensemble. Generally, the results for all simulated properties agree well with experimental data and the current reference equations of state for argon and krypton. In particular, the results for the vapor pressure and for the density and speed of sound of the saturated liquid and vapor agree with the most accurate experimental data for both noble gases almost within the uncertainty of these data, a level of agreement unprecedented for many-particle simulations. This study demonstrates that the vapor-liquid equilibrium and thermodynamic properties at saturation of a pure fluid can be predicted by Monte Carlo simulations with high accuracy when the intermolecular interactions are described by state-of-the-art ab initio pair and nonadditive three-body potentials and quantum effects are accounted for.
Collapse
Affiliation(s)
- Philipp Ströker
- Institut für Thermodynamik, Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Karsten Meier
- Institut für Thermodynamik, Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany
| |
Collapse
|
9
|
Moinuddin M, Rane K. Effect of shape anisotropy on the precipitation of dimeric nanoparticles. SOFT MATTER 2023; 19:8604-8616. [PMID: 37909104 DOI: 10.1039/d3sm00827d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We use grand canonical transition matrix Monte Carlo simulations to study the precipitation of dimeric nanoparticles. The dimers are composed of two particles having different chemical features and separated by a fixed distance. The non-attractive and attractive parts of the dimer are modeled using hard-sphere and square-well potentials, respectively. The shape anisotropy is altered by changing the relative sizes of the two particles. We observe that the stability of the nanosuspension increases with the increase in the size of the non-attractive part of the dimer. The precipitates of dimers having larger non-attractive parts have lower packing densities, contain large cavities, and show evidence of self-assembly in the bulk and on the surface. We also use the results from our simulations and the classical nucleation theory to study the kinetics of precipitation. At a given temperature and relative supersaturation, the rate of homogeneous nucleation increases with the increase in the size of the non-attractive parts. Finally, we use an example to show how our results can guide the design of nanosuspensions containing chemically anisotropic dimers that are stable under particular conditions.
Collapse
Affiliation(s)
- Md Moinuddin
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India.
| | - Kaustubh Rane
- Discipline of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
10
|
Xu ZX, Wang YM, Lin LC. Connectivity Analysis of Adsorption Sites in Metal-Organic Frameworks for Facilitated Water Adsorption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47081-47093. [PMID: 37754846 DOI: 10.1021/acsami.3c10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Metal-organic frameworks (MOFs) have recently drawn considerable attention as promising adsorbents to harvest atmospheric water. To achieve an efficient harvesting process, seeking MOFs that demonstrate sharp condensation behavior is the key. Given that the clustering of water molecules in MOFs should be driven by not only MOF-water interactions but also water-water interactions, the spatial arrangement of water adsorption sites in a MOF is therefore crucial. Specifically, this study demonstrates the critical role of continuous adsorption channels (CACs) in MOFs. Such CACs will enable water molecules to stay in proximity and in a continuous manner, thus promoting the formation of hydrogen bonds and, consequently, the clustering of water molecules. We have developed an automatic algorithm to detect CACs based on the energy grid of host-guest interactions and applied the algorithm to more than 2000 diverse structures. The results show that more than 80% of the studied MOFs displaying water condensation at 298 K and 20% relative humidity predicted by Monte Carlo simulations indeed have CACs. The developments herein are anticipated to largely facilitate the future discovery of optimal adsorbents for water harvesting or water-adsorption-related applications in general. A Python-based code for detecting CACs in porous materials is also provided along with this article to employ this approach.
Collapse
Affiliation(s)
- Zhi-Xun Xu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Ming Wang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Kournopoulos S, Santos MS, Ravipati S, Haslam AJ, Jackson G, Economou IG, Galindo A. The Contribution of the Ion-Ion and Ion-Solvent Interactions in a Molecular Thermodynamic Treatment of Electrolyte Solutions. J Phys Chem B 2022; 126:9821-9839. [PMID: 36395498 PMCID: PMC9720728 DOI: 10.1021/acs.jpcb.2c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/12/2022] [Indexed: 11/19/2022]
Abstract
Developing molecular equations of state to treat electrolyte solutions is challenging due to the long-range nature of the Coulombic interactions. Seminal approaches commonly used are the mean spherical approximation (MSA) and the Debye-Hückel (DH) theory to account for ion-ion interactions and, often, the Born theory of solvation for ion-solvent interactions. We investigate the accuracy of the MSA and DH approaches using each to calculate the contribution of the ion-ion interactions to the chemical potential of NaCl in water, comparing these with newly computer-generated simulation data; the ion-ion contribution is isolated by selecting an appropriate primitive model with a Lennard-Jones force field to describe the solvent. A study of mixtures with different concentrations and ionic strengths reveals that the calculations from both MSA and DH theories are of similar accuracy, with the MSA approach resulting in marginally better agreement with the simulation data. We also demonstrate that the Born theory provides a good qualitative description of the contribution of the ion-solvent interactions; we employ an explicitly polar water model in these simulations. Quantitative agreement up to moderate salt concentrations and across the relevant range of temperature is achieved by adjusting the Born radius using simulation data of the free energy of solvation. We compute the radial and orientational distribution functions of the systems, thereby providing further insight on the differences observed between the theory and simulation. We thus provide rigorous benchmarks for use of the MSA, DH, and Born theories as perturbation approaches, which will be of value for improving existing models of electrolyte solutions, especially in the context of equations of state.
Collapse
Affiliation(s)
- Spiros Kournopoulos
- Department
of Chemical Engineering, Sargent Centre for Process Systems Engineering,
and Institute for Molecular Science and Engineering, Imperial College, London, London SW7 2AZ, United Kingdom
| | - Mirella Simões Santos
- Laboratoire
de Chimie, École Normale Supérieure
de Lyon, 46 Allée d’Italie, 69364 Lyon, France
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Srikanth Ravipati
- Department
of Chemical Engineering, Sargent Centre for Process Systems Engineering,
and Institute for Molecular Science and Engineering, Imperial College, London, London SW7 2AZ, United Kingdom
| | - Andrew J. Haslam
- Department
of Chemical Engineering, Sargent Centre for Process Systems Engineering,
and Institute for Molecular Science and Engineering, Imperial College, London, London SW7 2AZ, United Kingdom
| | - George Jackson
- Department
of Chemical Engineering, Sargent Centre for Process Systems Engineering,
and Institute for Molecular Science and Engineering, Imperial College, London, London SW7 2AZ, United Kingdom
| | - Ioannis G. Economou
- Chemical
Engineering Program, Texas A&M University
at Qatar, Doha 23874, Qatar
| | - Amparo Galindo
- Department
of Chemical Engineering, Sargent Centre for Process Systems Engineering,
and Institute for Molecular Science and Engineering, Imperial College, London, London SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Wang Z, Han R, Guo K, Wang C, Zhang D, Tian W, Qiu S, Su G. Molecular dynamics simulation of the evaporation of liquid sodium film in the presence of non-condensable gas. ANN NUCL ENERGY 2022. [DOI: 10.1016/j.anucene.2022.109005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
van Westen T, Hammer M, Hafskjold B, Aasen A, Gross J, Wilhelmsen Ø. Perturbation theories for fluids with short-ranged attractive forces: A case study of the Lennard-Jones spline fluid. J Chem Phys 2022; 156:104504. [DOI: 10.1063/5.0082690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is generally not straightforward to apply molecular-thermodynamic theories to fluids with short-ranged attractive forces between their constituent molecules (or particles). This especially applies to perturbation theories, which, for short-ranged attractive fluids, typically must be extended to high order or may not converge at all. Here, we show that a recent first-order perturbation theory, the uv-theory, holds promise for describing such fluids. As a case study, we apply the uv-theory to a fluid with pair interactions defined by the Lennard-Jones spline potential, which is a short-ranged version of the LJ potential that is known to provide a challenge for equation-of-state development. The results of the uv-theory are compared to those of third-order Barker–Henderson and fourth-order Weeks–Chandler–Andersen perturbation theories, which are implemented using Monte Carlo simulation results for the respective perturbation terms. Theoretical predictions are compared to an extensive dataset of molecular simulation results from this (and previous) work, including vapor–liquid equilibria, first- and second-order derivative properties, the critical region, and metastable states. The uv-theory proves superior for all properties examined. An especially accurate description of metastable vapor and liquid states is obtained, which might prove valuable for future applications of the equation-of-state model to inhomogeneous phases or nucleation processes. Although the uv-theory is analytic, it accurately describes molecular simulation results for both the critical point and the binodal up to at least 99% of the critical temperature. This suggests that the difficulties typically encountered in describing the vapor–liquid critical region are only to a small extent caused by non-analyticity.
Collapse
Affiliation(s)
- Thijs van Westen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| | - Morten Hammer
- Department of Gas Technology, SINTEF Energy Research, NO-7465 Trondheim, Norway
| | - Bjørn Hafskjold
- Porelab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Ailo Aasen
- Department of Gas Technology, SINTEF Energy Research, NO-7465 Trondheim, Norway
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| | - Øivind Wilhelmsen
- Porelab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
14
|
Siderius DW, Hatch HW, Errington JR, Shen VK. Comments on “Monte Carlo Simulations for Water Adsorption in Porous Materials: Best Practices and New Insights” †. AIChE J 2022. [DOI: 10.1002/aic.17686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel W. Siderius
- Chemical Sciences Division National Institute of Standards and Technology Gaithersburg Maryland USA
| | - Harold W. Hatch
- Chemical Sciences Division National Institute of Standards and Technology Gaithersburg Maryland USA
| | - Jeffrey R. Errington
- Department of Chemical and Biological Engineering University at Buffalo Buffalo New York USA
| | - Vincent K. Shen
- Chemical Sciences Division National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|
15
|
Wang Z, Guo K, Wang C, Zhang D, Tian W, Qiu S, Su G. Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
van Westen T, Gross J. Accurate thermodynamics of simple fluids and chain fluids based on first-order perturbation theory and second virial coefficients: uv-theory. J Chem Phys 2021; 155:244501. [PMID: 34972377 DOI: 10.1063/5.0073572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop a simplification of our recently proposed uf-theory for describing the thermodynamics of simple fluids and fluids comprising short chain molecules. In its original form, the uf-theory interpolates the Helmholtz energy between a first-order f-expansion and first-order u-expansion as (effective) lower and upper bounds. We here replace the f-bound by a new, tighter (effective) lower bound. The resulting equation of state interpolates between a first-order u-expansion at high densities and another first-order u-expansion that is modified to recover the exact second virial coefficient at low densities. The theory merely requires the Helmholtz energy of the reference fluid, the first-order u-perturbation term, and the total perturbation contribution to the second virial coefficient as input. The revised theory-referred to as uv-theory-is thus simpler than the uf-theory but leads to similar accuracy, as we show for fluids with intermolecular pair interactions governed by a Mie potential. The uv-theory is thereby easier to extend to fluid mixtures and provides more flexibility in extending the model to non-spherical or chain-like molecules. The usefulness of the uv-theory for developing equation-of-state models of non-spherical molecules is here exemplified by developing an equation of state for Lennard-Jones dimers.
Collapse
Affiliation(s)
- Thijs van Westen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
| |
Collapse
|
17
|
Datar A, Witman M, Lin L. Monte Carlo simulations for water adsorption in porous materials: Best practices and new insights. AIChE J 2021. [DOI: 10.1002/aic.17447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Archit Datar
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University Columbus Ohio USA
| | | | - Li‐Chiang Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering The Ohio State University Columbus Ohio USA
- Department of Chemical Engineering National Taiwan University Taipei Taiwan
| |
Collapse
|
18
|
Escobedo FA. On the calculation of free energies over Hamiltonian and order parameters via perturbation and thermodynamic integration. J Chem Phys 2021; 155:114112. [PMID: 34551542 DOI: 10.1063/5.0061541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, complementary formulas are presented to compute free-energy differences via perturbation (FEP) methods and thermodynamic integration (TI). These formulas are derived by selecting only the most statistically significant data from the information extractable from the simulated points involved. On the one hand, commonly used FEP techniques based on overlap sampling leverage the full information contained in the overlapping macrostate probability distributions. On the other hand, conventional TI methods only use information on the first moments of those distributions, as embodied by the first derivatives of the free energy. Since the accuracy of simulation data degrades considerably for high-order moments (for FEP) or free-energy derivatives (for TI), it is proposed to consider, consistently for both methods, data up to second-order moments/derivatives. This provides a compromise between the limiting strategies embodied by common FEP and TI and leads to simple, optimized expressions to evaluate free-energy differences. The proposed formulas are validated with an analytically solvable harmonic Hamiltonian (for assessing systematic errors), an atomistic system (for computing the potential of mean force with coordinate-dependent order parameters), and a binary-component coarse-grained model (for tracing a solid-liquid phase diagram in an ensemble sampled through alchemical transformations). It is shown that the proposed FEP and TI formulas are straightforward to implement, perform similarly well, and allow robust estimation of free-energy differences even when the spacing of successive points does not guarantee them to have proper overlapping in phase space.
Collapse
Affiliation(s)
- Fernando A Escobedo
- Robert Frederick Smith School of Chemistry and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
19
|
Ströker P, Meier K. Classical statistical mechanics in the grand canonical ensemble. Phys Rev E 2021; 104:014117. [PMID: 34412323 DOI: 10.1103/physreve.104.014117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/16/2021] [Indexed: 11/07/2022]
Abstract
The methodology developed by Lustig for calculating thermodynamic properties in the microcanonical and canonical ensembles [J. Chem. Phys. 100, 3048 (1994)JCPSA60021-960610.1063/1.466446; Mol. Phys. 110, 3041 (2012)MOPHAM0026-897610.1080/00268976.2012.695032] is applied to derive rigorous expressions for thermodynamic properties of fluids in the grand canonical ensemble. All properties are expressed by phase-space functions, which are related to derivatives of the grand canonical potential with respect to the three independent variables of the ensemble: temperature, volume, and chemical potential. The phase-space functions contain ensemble averages of combinations of the number of particles, potential energy, and derivatives of the potential energy with respect to volume. In addition, expressions for the phase-space functions for temperature-dependent potentials are provided, which are required to account for quantum corrections semiclassically in classical simulations. Using the Lennard-Jones model fluid as a test case, the derived expressions are validated by Monte Carlo simulations. In contrast to expressions for the thermal expansion coefficient, the isothermal compressibility, and the thermal pressure coefficient from the literature, our expressions yield more reliable results for these properties, which agree well with a recent accurate equation of state for the Lennard-Jones model fluid. Moreover, they become equivalent to the corresponding expressions in the canonical ensemble in the thermodynamic limit.
Collapse
Affiliation(s)
- Philipp Ströker
- Institut für Thermodynamik, Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Karsten Meier
- Institut für Thermodynamik, Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany
| |
Collapse
|
20
|
Naincy Attri, Sudhir K. Singh. Estimation of Pore Critical Temperature of Nanoconfined Alkanes Using Vapour-Liquid Interfacial Free Energy. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s1990793121090037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Chen Y, Schultz AJ, Errington JR. Coupled Monte Carlo and Molecular Dynamics Simulations on Interfacial Properties of Antifouling Polymer Membranes. J Phys Chem B 2021; 125:8193-8204. [PMID: 34259529 DOI: 10.1021/acs.jpcb.1c01966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We use molecular simulation to study the wetting behavior of antifouling polymer-tethered membranes. We obtain the interfacial properties (e.g., contact angle) of water at various temperatures for five polymer membranes, including a base polysulfone (PSF) membrane and four other PSF membranes grafted with antifouling polymers (two poly(ethylene glycol) (PEG) tethers and two zwitterionic tethers). We implement a coupled Monte Carlo (MC)/molecular dynamics (MD) approach to determine the interface potentials of water on the membrane surfaces in an efficient manner. Within this method, short MC and MD simulations are performed in cycles to collect the surface excess free energy of a thin water film on polymer membrane surfaces. Simulation results show that the grafting of zwitterionic tethers provides a more significant enhancement in the hydrophilicity of the PSF membrane than that of the PEG tethers. Water completely wets the surface of zwitterionic polymer membranes.
Collapse
Affiliation(s)
- Yiqi Chen
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, United States
| | - Andrew J Schultz
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, United States
| | - Jeffrey R Errington
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, United States
| |
Collapse
|
22
|
Desgranges C, Delhommelle J. The central role of entropy in adiabatic ensembles and its application to phase transitions in the grand-isobaric adiabatic ensemble. J Chem Phys 2020; 153:094114. [PMID: 32891099 DOI: 10.1063/5.0021488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Entropy has become increasingly central to characterize, understand, and even guide assembly, self-organization, and phase transition processes. In this work, we build on the analogous role of partition functions (or free energies) in isothermal ensembles and that of entropy in adiabatic ensembles. In particular, we show that the grand-isobaric adiabatic (μ, P, R) ensemble, or Ray ensemble, provides a direct route to determine the entropy. This allows us to follow the variations of entropy with the thermodynamic conditions and thus explore phase transitions. We test this approach by carrying out Monte Carlo simulations on argon and copper in bulk phases and at phase boundaries. We assess the reliability and accuracy of the method through comparisons with the results from flat-histogram simulations in isothermal ensembles and with the experimental data. Advantages of the approach are multifold and include the direct determination of the μ-P relation, without any evaluation of pressure via the virial expression, the precise control of the system size (number of atoms) via the input value of R, and the straightforward computation of enthalpy differences for isentropic processes, which are key quantities to determine the efficiency of thermodynamic cycles. A new insight brought by these simulations is the highly symmetric pattern exhibited by both systems along the transition, as shown by scaled temperature-entropy and pressure-entropy plots.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, New York University, New York, New York 10003, USA and Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| | - Jerome Delhommelle
- Department of Chemistry, New York University, New York, New York 10003, USA and Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, USA
| |
Collapse
|
23
|
Mahynski NA, Hatch HW, Witman M, Sheen DA, Errington JR, Shen VK. Flat-histogram extrapolation as a useful tool in the age of big data. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1747617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Nathan A. Mahynski
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Harold W. Hatch
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | - David A. Sheen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Jeffrey R. Errington
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Vincent K. Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| |
Collapse
|
24
|
Pommerenck JK, Simpson TT, Perlin MA, Roundy D. Stochastic approximation Monte Carlo with a dynamic update factor. Phys Rev E 2020; 101:013301. [PMID: 32069670 DOI: 10.1103/physreve.101.013301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 06/10/2023]
Abstract
We present a Monte Carlo algorithm based on the stochastic approximation Monte Carlo (SAMC) algorithm for directly calculating the density of states. The proposed method is stochastic approximation with a dynamic update factor (SAD), which dynamically adjusts the update factor γ_{t} during the course of the simulation. We test this method on a square-well fluid and a 31-atom Lennard-Jones cluster and compare the convergence behavior of several related Monte Carlo methods. We find that both the SAD and 1/t-Wang-Landau (1/t-WL) methods rapidly converge to the correct density of states without the need for the user to specify an arbitrary tunable parameter t_{0} as in the case of SAMC. SAD requires as input the temperature range of interest, in contrast with 1/t-WL, which requires that the user identify the interesting range of energies. The convergence of the 1/t-WL method is very sensitive to the energy range chosen for the low-temperature heat capacity of the Lennard-Jones cluster. Thus, SAD is more powerful in the common case in which the range of energies is not known in advance.
Collapse
Affiliation(s)
- Jordan K Pommerenck
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Tanner T Simpson
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Michael A Perlin
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - David Roundy
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
25
|
Baz J, Hansen N, Gross J. Transferable Anisotropic Mie-Potential Force Field for n-Alcohols: Static and Dynamic Fluid Properties of Pure Substances and Binary Mixtures. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jörg Baz
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
26
|
Montero de Hijes P, Espinosa JR, Sanz E, Vega C. Interfacial free energy of a liquid-solid interface: Its change with curvature. J Chem Phys 2019; 151:144501. [PMID: 31615240 DOI: 10.1063/1.5121026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We analyze the changes in the interfacial free energy between a spherical solid cluster and a fluid due to the change of the radius of the solid. Interfacial free energies from nucleation studies using the seeding technique for four different systems, being hard spheres, Lennard-Jones, and two models of water (mW and TIP4P/ICE), were plotted as a function of the inverse of the radius of the solid cluster. In all cases, the interfacial free energy was a linear function of the inverse of the radius of the solid cluster and this is consistent with Tolman's equation. This linear behavior is shown not only in isotherms but also along isobars. The effect of curvature on the interfacial free energy is more pronounced in water, followed by hard spheres, and smaller for Lennard-Jones particles. We show that it is possible to estimate nucleation rates of Lennard-Jones particles at different pressures by using information from simple NpT simulations and taking into account the variation of the interfacial free energy with the radius of the solid cluster. Neglecting the effects of the radius on the interfacial free energy (capillarity approximation) leads to incorrect values of the nucleation rate. For the Lennard-Jones system, the homogeneous nucleation curve is not parallel to the melting curve as was found for water in previous work. This is due to the increase in the interfacial free energy along the coexistence curve as the pressure increases. This work presents a simple and relatively straightforward way to approximately estimate nucleation rates.
Collapse
Affiliation(s)
- P Montero de Hijes
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0H3, United Kingdom
| | - Eduardo Sanz
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Carlos Vega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
27
|
Stephan S, Thol M, Vrabec J, Hasse H. Thermophysical Properties of the Lennard-Jones Fluid: Database and Data Assessment. J Chem Inf Model 2019; 59:4248-4265. [DOI: 10.1021/acs.jcim.9b00620] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simon Stephan
- Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Monika Thol
- Thermodynamics, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jadran Vrabec
- Thermodynamics and Process Engineering, TU Berlin, 10587 Berlin, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), TU Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
28
|
Hatch HW, Hall SW, Errington JR, Shen VK. Improving the efficiency of Monte Carlo simulations of ions using expanded grand canonical ensembles. J Chem Phys 2019; 151:144109. [PMID: 31615250 PMCID: PMC7254863 DOI: 10.1063/1.5123683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
While ionic liquids have promising applications as industrial solvents, predicting their fluid phase properties and coexistence remains a challenge. Grand canonical Monte Carlo simulation is an effective method for such predictions, but equilibration is hampered by the apparent requirement to insert and delete neutral sets of ions simultaneously in order to maintain charge neutrality. For relatively high densities and low temperatures, previously developed methods have been shown to be essential in improving equilibration by gradual insertion and deletion of these neutral sets of ions. We introduce an expanded ensemble approach which may be used in conjunction with these existing methods to further improve efficiency. Individual ions are inserted or deleted in one Monte Carlo trial rather than simultaneous insertion/deletion of neutral sets. We show how charge neutrality is maintained and show rigorous quantitative agreement between the conventional and the proposed expanded ensemble approaches, but with up to an order of magnitude increase in efficiency at high densities. The expanded ensemble approach is also more straightforward to implement than simultaneous insertion/deletion of neutral sets, and its implementation is demonstrated within open source software.
Collapse
Affiliation(s)
- Harold W. Hatch
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| | - Steven W. Hall
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Jeffrey R. Errington
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Vincent K. Shen
- Chemical Informatics Research Group, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8380, USA
| |
Collapse
|
29
|
Witman M, Wright B, Smit B. Simulating Enhanced Methane Deliverable Capacity of Guest Responsive Pores in Intrinsically Flexible MOFs. J Phys Chem Lett 2019; 10:5929-5934. [PMID: 31532681 DOI: 10.1021/acs.jpclett.9b02449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel computational procedure, based on the principles of flat-histogram Monte Carlo, is developed for facile prediction of the adsorption thermodynamics of intrinsically flexible adsorbents. We then demonstrate how an accurate prediction of methane deliverable capacity in a metal-organic framework (MOF) with significant intrinsic flexibility requires use of such a method. Dynamic side chains in the framework respond to methane adsorbates and reorganize to exhibit a more conducive pore space at high adsorbate densities while simultaneously providing a less conducive pore space at low adsorbate densities. This "responsive pore" MOF achieves ∼20% higher deliverable capacity than if the framework were rigid and elucidates a strategy for designing high deliverable capacity MOFs in the future.
Collapse
Affiliation(s)
- Matthew Witman
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley 94720 , United States
| | - Bradley Wright
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley 94720 , United States
| | - Berend Smit
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley 94720 , United States
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais , Ecole Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17 , CH-1951 Sion , Switzerland
| |
Collapse
|
30
|
Sauer E, Gross J. Prediction of Adsorption Isotherms and Selectivities: Comparison between Classical Density Functional Theory Based on the Perturbed-Chain Statistical Associating Fluid Theory Equation of State and Ideal Adsorbed Solution Theory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11690-11701. [PMID: 31403314 DOI: 10.1021/acs.langmuir.9b02378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study gives an assessment of the predictive capability of classical density functional theory (DFT) for adsorption processes of pure substances and mixtures of spherical and nonspherical molecular species. A Helmholtz energy functional based on the perturbed-chain statistical associating fluid theory (PC-SAFT) is applied to calculate isotherms and selectivities of multicomponent adsorption. In order to unambiguously assess the accuracy of the DFT model, we conduct molecular simulations. Monte Carlo (MC) simulations are performed in the grand canonical ensemble using the transition matrix. Two types of systems are studied: a model system, where fluid-fluid and solid-fluid interactions are defined as (single-site) Lennard-Jones interactions, and a more realistic methane-n-butane mixture in a graphite-like pore. Differences between a slit-shaped and a cylindrical pore geometry are examined for the model system. Adsorption isotherms and selectivities obtained from DFT calculations and MC simulations are found in very good agreement, particularly at high pressures. Capillary condensation observed along adsorption isotherms containing n-butane was accurately predicted, both, in equilibrium pressure and in density-increase. Comparisons with results from the ideal adsorbed solution theory are presented, confirming powerful predictions of the DFT approach.
Collapse
Affiliation(s)
- Elmar Sauer
- Institute of Thermodynamics and Thermal Process Engineering , University of Stuttgart , Pfaffenwaldring 9 , 70569 Stuttgart , Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering , University of Stuttgart , Pfaffenwaldring 9 , 70569 Stuttgart , Germany
| |
Collapse
|
31
|
Singh SK, Mehta A. Corresponding state behaviour of capillary condensation of confined alkanes. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1628228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sudhir K. Singh
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Patiala, India
| | - Anjali Mehta
- Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
32
|
Jain K, Schultz AJ, Errington JR. Construction of the interface potential from a series of canonical ensemble simulations. J Chem Phys 2019; 151:044103. [DOI: 10.1063/1.5110922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Karnesh Jain
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, USA
| | - Andrew J. Schultz
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, USA
| | - Jeffrey R. Errington
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, USA
| |
Collapse
|
33
|
Calero-Rubio C, Saluja A, Sahin E, Roberts CJ. Predicting High-Concentration Interactions of Monoclonal Antibody Solutions: Comparison of Theoretical Approaches for Strongly Attractive Versus Repulsive Conditions. J Phys Chem B 2019; 123:5709-5720. [PMID: 31241333 DOI: 10.1021/acs.jpcb.9b03779] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonspecific protein-protein interactions of a monoclonal antibody were quantified experimentally using light scattering from low to high protein concentrations (c2) and compared with prior work for a different antibody that yielded qualitatively different behavior. The c2 dependence of the excess Rayleigh ratio (Rex) provided the osmotic second virial coefficient (B22) at low c2 and the static structure factor (Sq=0) at high c2, as a function of solution pH, total ionic strength (TIS), and sucrose concentration. Net repulsive interactions were observed at pH 5, with weaker repulsions at higher TIS. Conversely, attractive electrostatic interactions were observed at pH 6.5, with weaker attractions at higher TIS. Refined coarse-grained models were used to fit model parameters using experimental B22 versus TIS data. The parameters were used to predict high-c2 Rex values via Monte Carlo simulations and separately with Mayer-sampling calculations of higher-order virial coefficients. For both methods, predictions for repulsive to mildly attractive conditions were quantitatively accurate. However, only qualitatively accurate predictions were practical for strongly attractive conditions. An alternative, higher resolution model was used to show semiquantitatively and quantitatively accurate predictions of strong electrostatic attractions at low c2 and low ionic strength.
Collapse
Affiliation(s)
- Cesar Calero-Rubio
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Atul Saluja
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | - Erinc Sahin
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | - Christopher J Roberts
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
34
|
Bauer G, Gross J. Phase Equilibria of Solid and Fluid Phases from Molecular Dynamics Simulations with Equilibrium and Nonequilibrium Free Energy Methods. J Chem Theory Comput 2019; 15:3778-3792. [DOI: 10.1021/acs.jctc.8b01023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gernot Bauer
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany,
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany,
| |
Collapse
|
35
|
Waibel C, Gross J. Polarizable Transferable Anisotropic United-Atom Force Field Based on the Mie Potential for Phase Equilibria: Ethers, n-Alkanes, and Nitrogen. J Chem Theory Comput 2019; 15:2561-2573. [DOI: 10.1021/acs.jctc.8b01238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christian Waibel
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| |
Collapse
|
36
|
Recent advances in estimating contact angles using molecular simulations and enhanced sampling methods. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
37
|
|
38
|
Waibel C, Feinler MS, Gross J. A Modified Shifted Force Approach to the Wolf Summation. J Chem Theory Comput 2018; 15:572-583. [PMID: 30418767 DOI: 10.1021/acs.jctc.8b00343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Wolf method for calculation of electrostatic interactions in molecular simulations is known to describe the energy well, whereas the forces have discontinuities. For a more reliable description of the forces this method can be extended with a shifted force approach. This leads to a good description of the forces and precise molecular dynamics simulation, but the description of the energy becomes poorer. In this study we propose a modification of a shifted force extension to describe the energy as well as the forces in better agreement to reference data as determined from the Ewald summation. We show that vapor-liquid phase equilibria (VLE) calculated with Monte Carlo simulations in the grand canonical ensemble and dynamic properties calculated with molecular dynamics simulations can be calculated reliably using this modification to describe the electrostatic interactions.
Collapse
Affiliation(s)
- Christian Waibel
- Institute of Thermodynamics and Thermal Process Engineering , University of Stuttgart , Pfaffenwaldring 9 , 70569 Stuttgart , Germany
| | - Mathias Simon Feinler
- Institute of Thermodynamics and Thermal Process Engineering , University of Stuttgart , Pfaffenwaldring 9 , 70569 Stuttgart , Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering , University of Stuttgart , Pfaffenwaldring 9 , 70569 Stuttgart , Germany
| |
Collapse
|
39
|
Witman M, Mahynski NA, Smit B. Flat-Histogram Monte Carlo as an Efficient Tool To Evaluate Adsorption Processes Involving Rigid and Deformable Molecules. J Chem Theory Comput 2018; 14:6149-6158. [PMID: 30296088 DOI: 10.1021/acs.jctc.8b00534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monte Carlo simulations are the foundational technique for predicting thermodynamic properties of open systems where the process of interest involves the exchange of particles. Thus, they have been used extensively to computationally evaluate the adsorption properties of nanoporous materials and are critical for the in silico identification of promising materials for a variety of gas storage and chemical separation applications. In this work we demonstrate that a well-known biasing technique, known as "flat-histogram" sampling, can be combined with temperature extrapolation of the free energy landscape to efficiently provide significantly more useful thermodynamic information than standard open ensemble MC simulations. Namely, we can accurately compute the isosteric heat of adsorption and number of particles adsorbed for various adsorbates over an extremely wide range of temperatures and pressures from a set of simulations at just one temperature. We extend this derivation of the temperature extrapolation to adsorbates with intramolecular degrees of freedom when Rosenbluth sampling is employed. Consequently, the working capacity and isosteric heat can be computed for any given combined temperature/pressure swing adsorption process for a large range of operating conditions with both rigid and deformable adsorbates. Continuous thermodynamic properties can be computed with this technique at very moderate computational cost, thereby providing a strong case for its application to the in silico identification of promising nanoporous adsorbents.
Collapse
Affiliation(s)
- Matthew Witman
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley 94720 , United States.,Laboratory of Molecular Simulation (LSMO) , Institut des Sciences et Ingénierie Chimiques, Valais, École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17 , CH-1951 Sion , Switzerland
| | - Nathan A Mahynski
- Chemical Sciences Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899-8320 , United States
| | - Berend Smit
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley 94720 , United States.,Laboratory of Molecular Simulation (LSMO) , Institut des Sciences et Ingénierie Chimiques, Valais, École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17 , CH-1951 Sion , Switzerland
| |
Collapse
|
40
|
Jadrich RB, Lindquist BA, Truskett TM. Unsupervised machine learning for detection of phase transitions in off-lattice systems. I. Foundations. J Chem Phys 2018; 149:194109. [DOI: 10.1063/1.5049849] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- R. B. Jadrich
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - B. A. Lindquist
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - T. M. Truskett
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
41
|
Baz J, Gebhardt J, Kraus H, Markthaler D, Hansen N. Insights into Noncovalent Binding Obtained from Molecular Dynamics Simulations. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201800050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jörg Baz
- University of Stuttgart; Institute of Thermodynamics and Thermal Process Engineering; Pfaffenwaldring 9 70569 Stuttgart Germany
| | - Julia Gebhardt
- University of Stuttgart; Institute of Thermodynamics and Thermal Process Engineering; Pfaffenwaldring 9 70569 Stuttgart Germany
| | - Hamzeh Kraus
- University of Stuttgart; Institute of Thermodynamics and Thermal Process Engineering; Pfaffenwaldring 9 70569 Stuttgart Germany
| | - Daniel Markthaler
- University of Stuttgart; Institute of Thermodynamics and Thermal Process Engineering; Pfaffenwaldring 9 70569 Stuttgart Germany
| | - Niels Hansen
- University of Stuttgart; Institute of Thermodynamics and Thermal Process Engineering; Pfaffenwaldring 9 70569 Stuttgart Germany
| |
Collapse
|
42
|
Addington CK, Long Y, Gubbins KE. The pressure in interfaces having cylindrical geometry. J Chem Phys 2018; 149:084109. [DOI: 10.1063/1.5037054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Cody K. Addington
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| | - Yun Long
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Keith E. Gubbins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, USA
| |
Collapse
|
43
|
Chakraborti T, Adhikari J. Vapor–Liquid Equilibria of Mixtures of Molecular Fluids Using the Activity Fraction Expanded Ensemble Simulation Method. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tamaghna Chakraborti
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai−400076, India
| | - Jhumpa Adhikari
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai−400076, India
| |
Collapse
|
44
|
Oyarzún B, Mognetti BM. Programming configurational changes in systems of functionalised polymers using reversible intramolecular linkages. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1503745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bernardo Oyarzún
- Université Libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Brussels, Belgium
| | - Bortolo Matteo Mognetti
- Université Libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Brussels, Belgium
| |
Collapse
|
45
|
Desgranges C, Delhommelle J. A new approach for the prediction of partition functions using machine learning techniques. J Chem Phys 2018; 149:044118. [DOI: 10.1063/1.5037098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, USA
| | - Jerome Delhommelle
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, USA
| |
Collapse
|
46
|
Zerón IM, Vega C, Benavides AL. Continuous version of a square-well potential of variable range and its application in molecular dynamics simulations. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1481232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- I. M. Zerón
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Guanajuato, México
| | - C. Vega
- Depto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - A. L. Benavides
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Guanajuato, México
| |
Collapse
|
47
|
Mahynski NA, Errington JR, Shen VK. Temperature extrapolation of multicomponent grand canonical free energy landscapes. J Chem Phys 2018; 147:054105. [PMID: 28789543 DOI: 10.1063/1.4996759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a method for extrapolating the grand canonical free energy landscape of a multicomponent fluid system from one temperature to another. Previously, we introduced this statistical mechanical framework for the case where kinetic energy contributions to the classical partition function were neglected for simplicity [N. A. Mahynski et al., J. Chem. Phys. 146, 074101 (2017)]. Here, we generalize the derivation to admit these contributions in order to explicitly illustrate the differences that result. Specifically, we show how factoring out kinetic energy effects a priori, in order to consider only the configurational partition function, leads to simpler mathematical expressions that tend to produce more accurate extrapolations than when these effects are included. We demonstrate this by comparing and contrasting these two approaches for the simple cases of an ideal gas and a non-ideal, square-well fluid.
Collapse
Affiliation(s)
- Nathan A Mahynski
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA
| | - Jeffrey R Errington
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, USA
| | - Vincent K Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA
| |
Collapse
|
48
|
Mahynski NA, Errington JR, Shen VK. Multivariable extrapolation of grand canonical free energy landscapes. J Chem Phys 2018; 147:234111. [PMID: 29272947 DOI: 10.1063/1.5006906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive an approach for extrapolating the free energy landscape of multicomponent systems in the grand canonical ensemble, obtained from flat-histogram Monte Carlo simulations, from one set of temperature and chemical potentials to another. This is accomplished by expanding the landscape in a Taylor series at each value of the order parameter which defines its macrostate phase space. The coefficients in each Taylor polynomial are known exactly from fluctuation formulas, which may be computed by measuring the appropriate moments of extensive variables that fluctuate in this ensemble. Here we derive the expressions necessary to define these coefficients up to arbitrary order. In principle, this enables a single flat-histogram simulation to provide complete thermodynamic information over a broad range of temperatures and chemical potentials. Using this, we also show how to combine a small number of simulations, each performed at different conditions, in a thermodynamically consistent fashion to accurately compute properties at arbitrary temperatures and chemical potentials. This method may significantly increase the computational efficiency of biased grand canonical Monte Carlo simulations, especially for multicomponent mixtures. Although approximate, this approach is amenable to high-throughput and data-intensive investigations where it is preferable to have a large quantity of reasonably accurate simulation data, rather than a smaller amount with a higher accuracy.
Collapse
Affiliation(s)
- Nathan A Mahynski
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA
| | - Jeffrey R Errington
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260-4200, USA
| | - Vincent K Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA
| |
Collapse
|
49
|
Mahynski NA, Jiao S, Hatch HW, Blanco MA, Shen VK. Predicting structural properties of fluids by thermodynamic extrapolation. J Chem Phys 2018; 148:194105. [PMID: 30307179 PMCID: PMC6183068 DOI: 10.1063/1.5026493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe a methodology for extrapolating the structural properties of multicomponent fluids from one thermodynamic state to another. These properties generally include features of a system that may be computed from an individual configuration such as radial distribution functions, cluster size distributions, or a polymer's radius of gyration. This approach is based on the principle of using fluctuations in a system's extensive thermodynamic variables, such as energy, to construct an appropriate Taylor series expansion for these structural properties in terms of intensive conjugate variables, such as temperature. Thus, one may extrapolate these properties from one state to another when the series is truncated to some finite order. We demonstrate this extrapolation for simple and coarse-grained fluids in both the canonical and grand canonical ensembles, in terms of both temperatures and the chemical potentials of different components. The results show that this method is able to reasonably approximate structural properties of such fluids over a broad range of conditions. Consequently, this methodology may be employed to increase the computational efficiency of molecular simulations used to measure the structural properties of certain fluid systems, especially those used in high-throughput or data-driven investigations.
Collapse
Affiliation(s)
- Nathan A. Mahynski
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA
| | - Sally Jiao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Harold W. Hatch
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA
| | - Marco A. Blanco
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, USA
| | - Vincent K. Shen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8320, USA
| |
Collapse
|
50
|
Sanyal T, Shell MS. Transferable Coarse-Grained Models of Liquid-Liquid Equilibrium Using Local Density Potentials Optimized with the Relative Entropy. J Phys Chem B 2018; 122:5678-5693. [PMID: 29466859 DOI: 10.1021/acs.jpcb.7b12446] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bottom-up coarse-grained (CG) models are now regularly pursued to enable large length and time scale molecular simulations of complex, often macromolecular systems. However, predicting fluid phase equilibria using such models remains fundamentally challenging. A major problem stems from the typically low transferability of CG models beyond the densities and/or compositions at which they are parametrized, which is necessary if they are to describe distinct structural and thermodynamic properties unique to each phase. CG model transferability is compounded by the representation of the inherently multibody coarse interactions using pair potentials that neglect higher order effects. Here, we propose to construct transferable single site CG models of liquid mixtures by supplementing traditional CG pair interactions with local density potentials, which constitute a computationally inexpensive mean-field approach to describe many-body effects, in that site energies are modulated by the local solution environment. To illustrate the approach, we use intra- and interspecies local density potentials to develop CG models of benzene-water solutions that show impressive transferability in structural metrics (pair correlation functions, density profiles) throughout composition space, in contrast to pair-only CG representations. While further refinement may be necessary to represent more complex thermodynamic properties, like the liquid-liquid interfacial tension, the generality and improvement offered by the local density approach are highly encouraging for enabling complex phase equilibrium modeling using CG models.
Collapse
Affiliation(s)
- Tanmoy Sanyal
- Department of Chemical Engineering , University of California, Santa Barbara , Santa Barbara , California , United States
| | - M Scott Shell
- Department of Chemical Engineering , University of California, Santa Barbara , Santa Barbara , California , United States
| |
Collapse
|