3
|
Ravon U, Chaplais G, Chizallet C, Seyyedi B, Bonino F, Bordiga S, Bats N, Farrusseng D. Investigation of Acid Centers in MIL-53(Al, Ga) for Brønsted-Type Catalysis: In Situ FTIR and Ab Initio Molecular Modeling. ChemCatChem 2010. [DOI: 10.1002/cctc.201000055] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Corno M, Busco C, Bolis V, Tosoni S, Ugliengo P. Water adsorption on the stoichiometric (001) and (010) surfaces of hydroxyapatite: a periodic B3LYP study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:2188-2198. [PMID: 19161264 DOI: 10.1021/la803253k] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
H2O adsorption on hexagonal hydroxyapatite (001) and (010) stoichiometric surfaces has been studied at B3LYP level with a localized Gaussian basis set of polarized double-zeta quality using the periodic CRYSTAL06 code. Because four Ca2+ cations are available at both surfaces, the considered H2O coverages span the 1/4<or=theta<or=5/4 range. The affinity of both HA surfaces for H2O is large: on the (001) surface, H2O adsorbs molecularly (binding energies BE approximately 80 kJ mol(-1) per adsorbed molecule), whereas it dissociates on the (010) surface, giving rise to new surface terminations (CaOwHw and POHw). The highly negative reaction energy for H2O dissociation (between -250 and -320 kJ mol(-1) per adsorbed H2O molecule) strongly suggests that the pristine (010) surface "as cut" from the hydroxyapatite bulk cannot survive in aqueous environment. Conversely, on the reacted surface, H2O adsorbs molecularly with BE similar to those computed for the (001) surface. The B3LYP BEs have been contrasted to the experimental water adsorption enthalpies measured by microcalorimetry on polycrystalline hydroxyapatite samples, showing a fairly good agreement and supporting the suggestion that H2O vapor adsorbs on the already reacted (010) crystalline faces. Harmonic B3LYP vibrational features of adsorbed H2O show, when compared to modes of the gas-phase H2O, a hypsochromic shift of the HOH bending mode (Deltadelta(HOH)=49 cm(-1)) and a bathochromic shift of the OH stretching modes larger than 1700 cm(-1) (Deltanu(OH)=427 cm(-1)), which are both in good agreement with literature experimental data.
Collapse
Affiliation(s)
- Marta Corno
- Dipartimento di Chimica IFM, Facoltà di Scienze MFN, Università degli Studi di Torino and NIS-Nanostructured Interfaces and Surfaces-Centre of Excellence, Via P. Giuria 7, 10125 Torino, Italy
| | | | | | | | | |
Collapse
|
6
|
Chizallet C, Costentin G, Che M, Delbecq F, Sautet P. Infrared Characterization of Hydroxyl Groups on MgO: A Periodic and Cluster Density Functional Theory Study. J Am Chem Soc 2007; 129:6442-52. [PMID: 17465545 DOI: 10.1021/ja068720e] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The infrared OH stretching frequencies of the various types of hydroxyl groups on MgO surfaces have been calculated by periodic (VASP) and cluster (Gaussian) DFT simulations. Surface irregularities (mono and diatomic steps, corners, step divacancies, and kinks) have been considered to model the IR spectra of hydroxylated MgO powders. A good correspondence between calculated and experimental frequencies is obtained with the B3LYP functional. Hydrogen-bonding is the parameter which influences most the IR frequency of OH groups, followed by location of OH groups in concave or convex areas of the surface and then oxygen coordination. The evolution of experimental IR spectra upon evacuation at increasing temperature can be rationalized on the basis of calculated thermal stabilities of each kind of OH groups. A new model is finally proposed to help assign the experimental bands, in terms of hydrogen-bonding, local topology of the hydroxylated sites, and coordination of oxygen.
Collapse
Affiliation(s)
- Céline Chizallet
- Laboratoire de Réactivité de Surface, Université Pierre et Marie Curie-Paris 6, CNRS 4 place Jussieu, 75252 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
8
|
Corno M, Busco C, Civalleri B, Ugliengo P. Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2. Phys Chem Chem Phys 2006; 8:2464-72. [PMID: 16721430 DOI: 10.1039/b602419j] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural and vibrational features of hexagonal hydroxyapatite HA [Ca(10)(PO(4))(6)(OH)(2), space group P6(3)] are computed ab initio within a periodic approach using the CRYSTAL03 program and the B3LYP hybrid functional with a Gaussian-type basis set of polarized double zeta quality. Experimental lattice parameters and internal coordinates have been fully optimized and the final structure characterized by means of its band structure, density of states and Mulliken analysis. The full B3LYP harmonic vibrational spectrum of HA at Gamma point has also been computed and compares well with the available experimental IR and Raman data. Nevertheless, the presence of one negative frequency in the computed spectrum shows that, within the hexagonal symmetry imposed by the P6(3) group, the structure is a saddle point. This is at variance with the monoclinic structure (under P2(1)/b space group), which has been computed, with the same approach, to be a minimum of 17 kJ mol(-1) (per unit cell) more stable than the corresponding hexagonal HA structure.
Collapse
Affiliation(s)
- Marta Corno
- Dipartimento di Chimica IFM, NIS Centre of Excellence and INSTM (Materials Science and Technology) National Consortium, UdR Torino, Italy
| | | | | | | |
Collapse
|
9
|
Bucko T, Hafner J, Benco L. Adsorption and Vibrational Spectroscopy of CO on Mordenite: Ab initio Density-Functional Study. J Phys Chem B 2005; 109:7345-57. [PMID: 16851841 DOI: 10.1021/jp050151u] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a periodic density-functional investigation of the adsorption and the vibrational spectroscopy of CO in mordenite. Our results highlight a pronounced sensitivity of the strength of the hydrogen bond between the acidic hydroxyl groups and the adsorbed molecule, and hence of the induced red shift of the OH, and the blue shift of the CO stretching mode on the choice of the exchange-correlation functional. The popular Perdew-Wang (PW) gradient-corrected functional strongly overestimates the frequency shifts and the interaction energies. We demonstrate that the revised Perdew-Burke-Ernzerhof (RPBE) functional leads to an improved description of hydrogen bonding. For bridging OH groups, terminal silanol groups and for Lewis sites formed by tricoordinated Al atoms, we predict adsorption energies and frequency shifts in good agreement with experiment. The calculated difference in the binding energies of CO in purely siliceous mordenite and at Brønsted acid sites in the main channel agrees very well with microcalorimetry data. We find that Brønsted acid sites in the small channels (the side-pockets) of mordenite do not adsorb CO, which is adsorbed only in the main channel via the C atom. For these adsorption complexes we find reasonable (though not perfect) agreement of the predicted blue shift of the CO-mode and of the red shift of the OH-mode with experiment. Our prediction that the side-pockets are inaccessible to CO correlates well with the microcalorimetric studies and with experimental observation of the adsorption of O(2), N(2) and H(2) molecules but contradicts the current interpretation of experimental adsorption studies for CO.
Collapse
Affiliation(s)
- T Bucko
- Institut für Materialphysik and Center for Computational Material Science, Universität Wien, Sensengasse, A-1090 Wien, Austria.
| | | | | |
Collapse
|
10
|
Pascale F, Tosoni S, Zicovich-Wilson C, Ugliengo P, Orlando R, Dovesi R. Vibrational spectrum of brucite, Mg(OH)2: a periodic ab initio quantum mechanical calculation including OH anharmonicity. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.08.047] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Ugliengo P, Pascale F, Mérawa M, Labéguerie P, Tosoni S, Dovesi R. Infrared Spectra of Hydrogen-Bonded Ionic Crystals: Ab Initio Study of Mg(OH)2 and β-Be(OH)2. J Phys Chem B 2004. [DOI: 10.1021/jp047514v] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Piero Ugliengo
- Dipartimento di Chimica IFM, Università di Torino, Via P. Giuria, 7. 10125 Torino, Italy, Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques (LCM3B) UMR−CNRS 7036, Université Henri Poincaré Nancy I BP 239, Boulevard des Aiguillettes F54506 Vandoeuvre-les-Nancy Cedex, France, and Laboratoire de Chimie Théorique et de Physico-Chimie Moléculaire, UMR 5624, FR ‘IPREM' 2606, IFR−rue Jules Ferry, F-64000 Pau, France
| | - Fabien Pascale
- Dipartimento di Chimica IFM, Università di Torino, Via P. Giuria, 7. 10125 Torino, Italy, Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques (LCM3B) UMR−CNRS 7036, Université Henri Poincaré Nancy I BP 239, Boulevard des Aiguillettes F54506 Vandoeuvre-les-Nancy Cedex, France, and Laboratoire de Chimie Théorique et de Physico-Chimie Moléculaire, UMR 5624, FR ‘IPREM' 2606, IFR−rue Jules Ferry, F-64000 Pau, France
| | - Mohammadou Mérawa
- Dipartimento di Chimica IFM, Università di Torino, Via P. Giuria, 7. 10125 Torino, Italy, Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques (LCM3B) UMR−CNRS 7036, Université Henri Poincaré Nancy I BP 239, Boulevard des Aiguillettes F54506 Vandoeuvre-les-Nancy Cedex, France, and Laboratoire de Chimie Théorique et de Physico-Chimie Moléculaire, UMR 5624, FR ‘IPREM' 2606, IFR−rue Jules Ferry, F-64000 Pau, France
| | - Pierre Labéguerie
- Dipartimento di Chimica IFM, Università di Torino, Via P. Giuria, 7. 10125 Torino, Italy, Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques (LCM3B) UMR−CNRS 7036, Université Henri Poincaré Nancy I BP 239, Boulevard des Aiguillettes F54506 Vandoeuvre-les-Nancy Cedex, France, and Laboratoire de Chimie Théorique et de Physico-Chimie Moléculaire, UMR 5624, FR ‘IPREM' 2606, IFR−rue Jules Ferry, F-64000 Pau, France
| | - Sergio Tosoni
- Dipartimento di Chimica IFM, Università di Torino, Via P. Giuria, 7. 10125 Torino, Italy, Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques (LCM3B) UMR−CNRS 7036, Université Henri Poincaré Nancy I BP 239, Boulevard des Aiguillettes F54506 Vandoeuvre-les-Nancy Cedex, France, and Laboratoire de Chimie Théorique et de Physico-Chimie Moléculaire, UMR 5624, FR ‘IPREM' 2606, IFR−rue Jules Ferry, F-64000 Pau, France
| | - Roberto Dovesi
- Dipartimento di Chimica IFM, Università di Torino, Via P. Giuria, 7. 10125 Torino, Italy, Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques (LCM3B) UMR−CNRS 7036, Université Henri Poincaré Nancy I BP 239, Boulevard des Aiguillettes F54506 Vandoeuvre-les-Nancy Cedex, France, and Laboratoire de Chimie Théorique et de Physico-Chimie Moléculaire, UMR 5624, FR ‘IPREM' 2606, IFR−rue Jules Ferry, F-64000 Pau, France
| |
Collapse
|