• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4633588)   Today's Articles (3660)   Subscriber (49964)
For: Filatov M, Cremer D. Representation of the exact relativistic electronic Hamiltonian within the regular approximation. J Chem Phys 2003. [DOI: 10.1063/1.1623473] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Rusakova IL, Rusakov YY. On the Utmost Importance of the Basis Set Choice for the Calculations of the Relativistic Corrections to NMR Shielding Constants. Int J Mol Sci 2023;24:6231. [PMID: 37047204 PMCID: PMC10094374 DOI: 10.3390/ijms24076231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]  Open
2
Rusakova IL, Rusakov YY, Krivdin LB. Computational 199 Hg NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022;60:929-953. [PMID: 35737297 DOI: 10.1002/mrc.5296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
3
Quantum Chemical Approaches to the Calculation of NMR Parameters: From Fundamentals to Recent Advances. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8050050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
4
Rusakova IL, Rusakov YY. Quantum chemical calculations of 77 Se and 125 Te nuclear magnetic resonance spectral parameters and their structural applications. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021;59:359-407. [PMID: 33095923 DOI: 10.1002/mrc.5111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
5
Liu W. Erratum: “Essentials of relativistic quantum chemistry” [J. Chem. Phys. 152, 180901 (2020)]. J Chem Phys 2020;152:249901. [DOI: 10.1063/5.0015698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
6
Zhang T, Kasper JM, Li X. Localized relativistic two-component methods for ground and excited state calculations. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/bs.arcc.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
7
Mühlbach AH, Reiher M. Quantum system partitioning at the single-particle level. J Chem Phys 2018;149:184104. [DOI: 10.1063/1.5055942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
8
Yoshizawa T, Zou W, Cremer D. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method. J Chem Phys 2017;146:134109. [DOI: 10.1063/1.4979499] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
9
Autschbach J. Relativistic calculations of magnetic resonance parameters: background and some recent developments. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014;372:20120489. [PMID: 24516182 DOI: 10.1098/rsta.2012.0489] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
10
Cremer D, Zou W, Filatov M. Dirac‐exact relativistic methods: the normalized elimination of the small component method. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1181] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
11
Peng D, Middendorf N, Weigend F, Reiher M. An efficient implementation of two-component relativistic exact-decoupling methods for large molecules. J Chem Phys 2013;138:184105. [PMID: 23676027 DOI: 10.1063/1.4803693] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
12
Malček M, Bučinský L, Biskupič S, Jayatilaka D. The quasirelativistic contact interaction and effective electron and spin densities at the nucleus: A model based on weighting the electron density with the finite Gaussian nucleus model. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
13
Autschbach J, Peng D, Reiher M. Two-Component Relativistic Calculations of Electric-Field Gradients Using Exact Decoupling Methods: Spin–orbit and Picture-Change Effects. J Chem Theory Comput 2012;8:4239-48. [DOI: 10.1021/ct300623j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
14
Peng D, Reiher M. Local relativistic exact decoupling. J Chem Phys 2012;136:244108. [DOI: 10.1063/1.4729788] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]  Open
15
Peng D, Reiher M. Exact decoupling of the relativistic Fock operator. Theor Chem Acc 2012. [DOI: 10.1007/s00214-011-1081-y] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
16
Zou W, Filatov M, Cremer D. An improved algorithm for the normalized elimination of the small-component method. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-1007-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
17
Reiher M. Relativistic Douglas–Kroll–Hess theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.67] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
18
Nataraj HS, Kállay M, Visscher L. General implementation of the relativistic coupled-cluster method. J Chem Phys 2010;133:234109. [DOI: 10.1063/1.3518712] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
19
Sikkema J, Visscher L, Saue T, Iliaš M. The molecular mean-field approach for correlated relativistic calculations. J Chem Phys 2009;131:124116. [DOI: 10.1063/1.3239505] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
20
Kutzelnigg W, Liu W. Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation. J Chem Phys 2009;131:044129. [DOI: 10.1063/1.3185400] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]  Open
21
Liu W, Kutzelnigg W. Quasirelativistic theory. II. Theory at matrix level. J Chem Phys 2007;126:114107. [PMID: 17381196 DOI: 10.1063/1.2710258] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
22
Liu W, Peng D. Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory. J Chem Phys 2006;125:44102. [PMID: 16942129 DOI: 10.1063/1.2222365] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
23
Kutzelnigg W, Liu* W. Quasirelativistic theory I. Theory in terms of a quasi-relativistic operator. Mol Phys 2006. [DOI: 10.1080/00268970600662481] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
24
Hu XQ, Wang F, Li LM. An approach to study the relativistic effects of large systems with some parts containing heavy elements. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
25
Peralta JE, Uddin J, Scuseria GE. Scalar relativistic all-electron density functional calculations on periodic systems. J Chem Phys 2005;122:84108. [PMID: 15836021 DOI: 10.1063/1.1851973] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
26
Filatov M, Cremer D. Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory. J Chem Phys 2005;122:064104. [PMID: 15740364 DOI: 10.1063/1.1844298] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
27
Filatov M, Cremer D. A gauge-independent zeroth-order regular approximation to the exact relativistic Hamiltonian—Formulation and applications. J Chem Phys 2005;122:44104. [PMID: 15740232 DOI: 10.1063/1.1839856] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA