1
|
Grzybowski A, Koperwas K, Paluch M. Role of anisotropy in understanding the molecular grounds for density scaling in dynamics of glass-forming liquids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:084501. [PMID: 38861964 DOI: 10.1088/1361-6633/ad569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Molecular Dynamics (MD) simulations of glass-forming liquids play a pivotal role in uncovering the molecular nature of the liquid vitrification process. In particular, much focus was given to elucidating the interplay between the character of intermolecular potential and molecular dynamics behaviour. This has been tried to achieve by simulating the spherical particles interacting via isotropic potential. However, when simulation and experimental data are analysed in the same way by using the density scaling approaches, serious inconsistency is revealed between them. Similar scaling exponent values are determined by analysing the relaxation times and pVT data obtained from computer simulations. In contrast, these values differ significantly when the same analysis is carried out in the case of experimental data. As discussed thoroughly herein, the coherence between results of simulation and experiment can be achieved if anisotropy of intermolecular interactions is introduced to MD simulations. In practice, it has been realized in two different ways: (1) by using the anisotropic potential of the Gay-Berne type or (2) by replacing the spherical particles with quasi-real polyatomic anisotropic molecules interacting through isotropic Lenard-Jones potential. In particular, the last strategy has the potential to be used to explore the relationship between molecular architecture and molecular dynamics behaviour. Finally, we hope that the results presented in this review will also encourage others to explore how 'anisotropy' affects remaining aspects related to liquid-glass transition, like heterogeneity, glass transition temperature, glass forming ability, etc.
Collapse
Affiliation(s)
- A Grzybowski
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - K Koperwas
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | - M Paluch
- Institute of Physics, University of Silesia in Katowice, 41-500 Chorzów, Poland
| |
Collapse
|
2
|
Danilov I, Gromnitskaya E, Brazhkin V. Thermobaric history as a tool to govern properties of glasses: case of dipropylene glycol. Phys Chem Chem Phys 2023; 25:26813-26819. [PMID: 37782054 DOI: 10.1039/d3cp03306f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The elastic properties of high- and low-pressure glasses of dipropylene glycol were determined for the first time under conditions of isothermal compression up to 1 GPa at 77 K and isobaric heating of 77-300 K at 0.05 GPa and 1 GPa. A strong dependence of the elastic properties of glasses on their thermobaric history has been revealed: glasses obtained at high pressure have not only higher densities (3.9%), but also noticeably higher elastic moduli. This effect is especially pronounced in the shear modulus: high-pressure glass has a 30% higher shear modulus than low-pressure glass. The behavior of elastic moduli during the glass-to-liquid transition also depends on the thermobaric history. Glass produced at low pressure but heated at high pressure has anomalous temperature dependences of the elastic moduli. Heating dipropylene glycol glasses at different pressures allowed us to refine the Tg(P) dependence.
Collapse
Affiliation(s)
- Igor Danilov
- Institute for High Pressure Physics, Russian Academy of Sciences, 14, Kaluzhskoe shosse, 108840, Troitsk, Moscow, Russia.
| | - Elena Gromnitskaya
- Institute for High Pressure Physics, Russian Academy of Sciences, 14, Kaluzhskoe shosse, 108840, Troitsk, Moscow, Russia.
| | - Vadim Brazhkin
- Institute for High Pressure Physics, Russian Academy of Sciences, 14, Kaluzhskoe shosse, 108840, Troitsk, Moscow, Russia.
| |
Collapse
|
3
|
Moch K, Münzner P, Gainaru C, Böhmer R. Nongeneric structural-relaxation shape of supercooled liquids: Insights from linear and nonlinear experiments on propylene glycol. J Chem Phys 2022; 157:231101. [PMID: 36550030 DOI: 10.1063/5.0131568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Currently, there is a debate whether the structural relaxation of polar liquids is more faithfully reflected (i) by the generically shaped response detected by dynamic light scattering or rather (ii) by the slower, more stretched, system-dependent susceptibility response recorded by dielectric spectroscopy. In this work, nonlinearly induced transients probing structural relaxation reveal that near the glass transition, alternative (ii) is appropriate for propylene glycol. Results from shear rheology and from calorimetry corroborate this finding, underscoring the previously advanced notion (Moch et al., Phys. Rev. Lett. 128, 228001, 2022) that the reorientationally probed structural susceptibility of viscous liquids displays a nongeneric spectral shape.
Collapse
Affiliation(s)
- Kevin Moch
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Philipp Münzner
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Catalin Gainaru
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
4
|
Speck T. Modeling non-linear dielectric susceptibilities of supercooled molecular liquids. J Chem Phys 2021; 155:014506. [PMID: 34241396 DOI: 10.1063/5.0056657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Advances in high-precision dielectric spectroscopy have enabled access to non-linear susceptibilities of polar molecular liquids. The observed non-monotonic behavior has been claimed to provide strong support for theories of dynamic arrest based on the thermodynamic amorphous order. Here, we approach this question from the perspective of dynamic facilitation, an alternative view focusing on emergent kinetic constraints underlying the dynamic arrest of a liquid approaching its glass transition. We derive explicit expressions for the frequency-dependent higher-order dielectric susceptibilities exhibiting a non-monotonic shape, the height of which increases as temperature is lowered. We demonstrate excellent agreement with the experimental data for glycerol, challenging the idea that non-linear response functions reveal correlated relaxation in supercooled liquids.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
5
|
Interplay between structural static and dynamical parameters as a key factor to understand peculiar behaviour of associated liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Kamińska E, Minecka A, Tarnacka M, Kamiński K, Paluch M. Breakdown of the isochronal structural (α) and secondary (JG β) exact superpositioning in probucol - A low molecular weight pharmaceutical. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Casalini R, Ransom TC. On the experimental determination of the repulsive component of the potential from high pressure measurements: What is special about twelve? J Chem Phys 2019; 151:194504. [PMID: 31757149 DOI: 10.1063/1.5123614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this paper, we present an overview of results in the literature regarding the thermodynamical scaling of the dynamics of liquids and polymers as measured from high-pressure measurements. Specifically, we look at the scaling exponent γ and argue that it exhibits the limiting behavior γ → 4 in regimes for which molecular interactions are dominated by the repulsive part of the intermolecular potential. For repulsive potentials of the form U(r) ∝ r-n, γ has been found to be related to the exponent n via the relation γ = n/3. Therefore, this limiting behavior for γ would suggest that a large number of molecular systems may be described by a common repulsive potential U(r) ∝ r-n with n ≈ 12.
Collapse
Affiliation(s)
- R Casalini
- Naval Research Laboratory, Chemistry Division, Washington, DC 20375-5342, USA
| | - T C Ransom
- Naval Research Laboratory, Chemistry Division, Washington, DC 20375-5342, USA
| |
Collapse
|
8
|
Chat K, Szklarz G, Adrjanowicz K. Testing density scaling in nanopore-confinement for hydrogen-bonded liquid dipropylene glycol. RSC Adv 2019; 9:20954-20962. [PMID: 35515549 PMCID: PMC9065994 DOI: 10.1039/c9ra02289a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/28/2019] [Indexed: 12/30/2022] Open
Abstract
Recently, it has been demonstrated that the glassy dynamics of the molecular liquids and polymers confined at the nanoscale level might satisfy the density scaling law (ρ γ /T) with the same value of the scaling exponent, γ, as that determined from the high-pressure studies of the bulk material. In this work, we have tested the validity of this interesting experimental finding for strongly hydrogen-bonded molecular liquid, dipropylene glycol (DPG), which is known to violate the ρ γ /T scaling rule in the supercooled liquid bulk state. The results of the independent dielectric relaxation studies carried out on increased pressure and in nanopores, have led to an important finding that when the density change induced by geometrical confinement is not very large, DPG can still obey the density scaling law with the same value of the scaling exponent as that found for the bulk sample. In this way, we confirm that the information obtained from the universal density scaling approach applied to nanoscale confined systems is somehow consistent with the macroscopic ones and that in both cases the same fundamental rules governs the glass-transition dynamics.
Collapse
Affiliation(s)
- Katarzyna Chat
- Institute of Physics, University of Silesia 75 Pulku Piechoty 1 41-500 Chorzow Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI) 75 Pulku Piechoty 1a 41-500 Chorzow Poland
| | - Grzegorz Szklarz
- Institute of Physics, University of Silesia 75 Pulku Piechoty 1 41-500 Chorzow Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI) 75 Pulku Piechoty 1a 41-500 Chorzow Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia 75 Pulku Piechoty 1 41-500 Chorzow Poland
- Silesian Center for Education and Interdisciplinary Research (SMCEBI) 75 Pulku Piechoty 1a 41-500 Chorzow Poland
| |
Collapse
|
9
|
Minecka A, Kamińska E, Heczko D, Jurkiewicz K, Wolnica K, Dulski M, Hachuła B, Pisarski W, Tarnacka M, Talik A, Kamiński K, Paluch M. Studying structural and local dynamics in model H-bonded active ingredient - Curcumin in the supercooled and glassy states at various thermodynamic conditions. Eur J Pharm Sci 2019; 135:38-50. [PMID: 31082486 DOI: 10.1016/j.ejps.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Different experimental techniques were applied to study thermal and structural properties, strength of H-bonds, possible keto-enol tautomerism and molecular dynamics at various thermodynamic conditions in the H-bonded active substance, curcumin (CRM). Dielectric measurements revealed dynamical features of examined compound that are uncharacteristic for the associated systems. This includes enormously large pressure coefficient of the glass transition temperature and prominent drop of the fragility with compression. Simultaneously, the shape of α-process slightly broadened at elevated pressures. Infrared investigations demonstrated that this effect is related to the variation in the population of H-bonds. Moreover, we studied the changes in the structural and dynamical properties of the glasses prepared upon cooling of the melt (ordinary glass, OG) and the one obtained after compression of CRM in the liquid phase and decompression at T = 293 K (dense glass, DG). Interestingly, during the aging of the latter sample, a clear shift of the β-relaxation towards higher frequencies was noted. This unexpected result indicated that the density of DG is probably getting smaller with time. Complementary X-ray diffraction experiments confirmed this supposition. Additionally, they showed that in DG there are traces of polymorph II of CRM that has a higher density than initial crystals (polymorph I). Finally, infrared studies demonstrated that H-bond pattern in DG is slightly different with respect to OG. Furthermore, Raman investigations suggested that probably keto-enol tautomerism might be shifted towards diketo form in the glass obtained at high compression. Our investigations are very interesting in the context of better understanding of the behavior of associated systems at high compression as well as provide a better insight into dynamics of higher density glasses produced at elevated pressures.
Collapse
Affiliation(s)
- Aldona Minecka
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland.
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland.
| | - Dawid Heczko
- Department of Pharmacognosy and Phytochemistry, Medical University of Silesia in Katowice, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzów, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Kamila Wolnica
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzów, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Mateusz Dulski
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland; Institute of Material Science, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Barbara Hachuła
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Wojciech Pisarski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Magdalena Tarnacka
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzów, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Agnieszka Talik
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzów, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Kamil Kamiński
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzów, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzów, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
10
|
Kondrin MV, Pronin AA, Brazhkin VV. Secondary Relaxation in Supercooled Liquid Propylene Glycol under Ultrahigh Pressures Revealed by Dielectric Spectroscopy Measurements. J Phys Chem B 2018; 122:9032-9037. [PMID: 30179499 DOI: 10.1021/acs.jpcb.8b07328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,2-Propanediol (propylene glycol) is a well-known glassformer, which easily vitrifies under wide range of cooling rates. An interesting feature of propylene glycol is that, similar to glycerol, it retains one-mode primary relaxation (slow α process) under a wide range of external P- T conditions. It was demonstrated that the emergence of secondary (β) relaxation requires the application of very high pressures P > 4.5 GPa. In this pressure range, the observation of secondary relaxation is partially obfuscated by the presence of strong decoupling of the static (ionic) conductivity and primary relaxation (the fractional Debye-Stokes-Einstein effect). However, secondary relaxation can be unambiguously extracted from experimental data by the correlation procedure of the imaginary and real parts of the dielectric response by means of Cole-Cole plots. This is the second (after glycerol) example of observation of Johari-Goldstein relaxation under ultrahigh pressures P > 2 GPa.
Collapse
Affiliation(s)
- M V Kondrin
- Institute for High Pressure Physics, Russian Academy of Sciences , Troitsk , Moscow 108840 , Russia
| | - A A Pronin
- General Physics Institute , Russian Academy of Sciences , Moscow 117942 , Russia
| | - V V Brazhkin
- Institute for High Pressure Physics, Russian Academy of Sciences , Troitsk , Moscow 108840 , Russia
| |
Collapse
|
11
|
Heczko D, Kamińska E, Minecka A, Dzienia A, Jurkiewicz K, Tarnacka M, Talik A, Kamiński K, Paluch M. High-pressure dielectric studies on 1,6-anhydro-β-D-mannopyranose (plastic crystal) and 2,3,4-tri-O-acetyl-1,6-anhydro-β-D-glucopyranose (canonical glass). J Chem Phys 2018; 148:204510. [PMID: 29865811 DOI: 10.1063/1.5032209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Broadband Dielectric Spectroscopy was applied to investigate molecular dynamics of two anhydrosaccharides, i.e., 1,6-anhydro-β-D-mannopyranose, anhMAN (hydrogen-bonded system) and 2,3,4-tri-O-acetyl-1,6-anhydro-β-D-glucopyranose, ac-anhGLU (van der Waals material), at different thermodynamic conditions. Moreover, the reported data were compared with those recently published for two other H-bonded systems, i.e., 1,6-anhydro-β-D-glucopyranose (anhGLU) and D-glucose (D-GLU). A direct comparison of the dynamical behavior of the materials with a similar chemical structure but significantly differing by the degrees of freedom, complexity, and intermolecular interactions made it possible to probe the impact of compression on the fragility, Temperature-Pressure Superpositioning and pressure coefficient of the glassy crystal/glass transition temperatures (dTgc/dp ; dTg/dp). Moreover, the correlation between dTgc/dp determined experimentally from the high-pressure dielectric data and the Ehrenfest equation has been tested for the plastic crystals (anhGLU and anhMAN) for the first time. Interestingly, a satisfactory agreement was found between both approaches. It is a quite intriguing finding which can be rationalized by the fact that the studied materials are characterized by the low complexity (lower degrees of freedom with respect to the molecular mobility) as well as ordered internal structure. Therefore, one can speculate that in contrast to the ordinary glasses the dynamics of the plastic crystals might be described with the use of a single order parameter. However, to confirm this thesis further, pressure-volume-temperature (PVT) experiments enabling calculations of the Prigogine Defay ratio are required.
Collapse
Affiliation(s)
- Dawid Heczko
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Aldona Minecka
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - Andrzej Dzienia
- Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice, Poland
| | - Karolina Jurkiewicz
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - Magdalena Tarnacka
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - Agnieszka Talik
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - Kamil Kamiński
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| | - Marian Paluch
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzów, Poland
| |
Collapse
|
12
|
Sanz A, Hansen HW, Jakobsen B, Pedersen IH, Capaccioli S, Adrjanowicz K, Paluch M, Gonthier J, Frick B, Lelièvre-Berna E, Peters J, Niss K. High-pressure cell for simultaneous dielectric and neutron spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:023904. [PMID: 29495850 DOI: 10.1063/1.5007021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this article, we report on the design, manufacture, and testing of a high-pressure cell for simultaneous dielectric and neutron spectroscopy. This cell is a unique tool for studying dynamics on different time scales, from kilo- to picoseconds, covering universal features such as the α relaxation and fast vibrations at the same time. The cell, constructed in cylindrical geometry, is made of a high-strength aluminum alloy and operates up to 500 MPa in a temperature range between roughly 2 and 320 K. In order to measure the scattered neutron intensity and the sample capacitance simultaneously, a cylindrical capacitor is positioned within the bore of the high-pressure container. The capacitor consists of two concentric electrodes separated by insulating spacers. The performance of this setup has been successfully verified by collecting simultaneous dielectric and neutron spectroscopy data on dipropylene glycol, using both backscattering and time-of-flight instruments. We have carried out the experiments at different combinations of temperature and pressure in both the supercooled liquid and glassy state.
Collapse
Affiliation(s)
- Alejandro Sanz
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Henriette Wase Hansen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Bo Jakobsen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Ib H Pedersen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | | | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - Julien Gonthier
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - Bernhard Frick
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | | | - Judith Peters
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
13
|
|
14
|
Kaminska E, Tarnacka M, Jurkiewicz K, Kaminski K, Paluch M. High pressure dielectric studies on the structural and orientational glass. J Chem Phys 2016; 144:054503. [PMID: 26851927 DOI: 10.1063/1.4940776] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High pressure dielectric studies on the H-bonded liquid D-glucose and Orientationally Disordered Crystal (ODIC) 1,6-anhydro-D-glucose (levoglucosan) were carried out. It was shown that in both compounds, the structural relaxation is weakly sensitive to compression. It is well reflected in the low pressure coefficient of the glass transition and orientational glass transition temperatures which is equal to 60 K/GPa for both D-glucose and 1,6-anhydro-D-glucose. Although it should be noted that ∂Tg(0)/∂p evaluated for the latter compound seems to be enormously high with respect to other systems forming ODIC phase. We also found that the shape of the α-loss peak stays constant for the given relaxation time independently on the thermodynamic condition. Consequently, the Time Temperature Pressure (TTP) rule is satisfied. This experimental finding seems to be quite intriguing since the TTP rule was shown to work well in the van der Waals liquids, while in the strongly associating compounds, it is very often violated. We have also demonstrated that the sensitivity of the structural relaxation process to the temperature change measured by the steepness index (mp) drops with pressure. Interestingly, this change is much more significant in the case of D-glucose with respect to levoglucosan, where the fragility changes only slightly with compression. Finally, kinetics of ODIC-crystal phase transition was studied at high compression. It is worth mentioning that in the recent paper, Tombari and Johari [J. Chem. Phys. 142, 104501 (2015)] have shown that ODIC phase in 1,6-anhydro-D-glucose is stable in the wide range of temperatures and there is no tendency to form more ordered phase at ambient pressure. On the other hand, our isochronal measurements performed at varying thermodynamic conditions indicated unquestionably that the application of pressure favors solid (ODIC)-solid (crystal) transition in 1,6-anhydro-D-glucose. This result mimics the impact of pressure on the crystallization of fully disordered supercooled van der Waals liquids.
Collapse
Affiliation(s)
- E Kaminska
- Department of Pharmacognosy and Phytochemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellonska 4, 41-200 Sosnowiec, Poland
| | - M Tarnacka
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - K Jurkiewicz
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - K Kaminski
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | - M Paluch
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| |
Collapse
|
15
|
Casalini R, Fragiadakis D, Roland CM. Dynamic correlation length scales under isochronal conditions. J Chem Phys 2015; 142:064504. [DOI: 10.1063/1.4907371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- R. Casalini
- Naval Research Laboratory, Chemistry Division, Code 6120, Washington DC 20375-5342, USA
| | - D. Fragiadakis
- Naval Research Laboratory, Chemistry Division, Code 6120, Washington DC 20375-5342, USA
| | - C. M. Roland
- Naval Research Laboratory, Chemistry Division, Code 6120, Washington DC 20375-5342, USA
| |
Collapse
|
16
|
|
17
|
Kaminski K, Kipnusu WK, Adrjanowicz K, Mapesa EU, Iacob C, Jasiurkowska M, Wlodarczyk P, Grzybowska K, Paluch M, Kremer F. Comparative Study on the Molecular Dynamics of a Series of Polypropylene Glycols. Macromolecules 2013. [DOI: 10.1021/ma302611x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. Kaminski
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007
Katowice, Poland
- Institute
of Experimental Physics, University of Leipzig, Linnestrasse 5, 04103 Leipzig,
Germany
| | - W. K. Kipnusu
- Institute
of Experimental Physics, University of Leipzig, Linnestrasse 5, 04103 Leipzig,
Germany
| | - K. Adrjanowicz
- NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan,
Poland
| | - E. U. Mapesa
- Institute
of Experimental Physics, University of Leipzig, Linnestrasse 5, 04103 Leipzig,
Germany
| | - C. Iacob
- Institute
of Experimental Physics, University of Leipzig, Linnestrasse 5, 04103 Leipzig,
Germany
| | - M. Jasiurkowska
- Institute
of Experimental Physics, University of Leipzig, Linnestrasse 5, 04103 Leipzig,
Germany
| | - P. Wlodarczyk
- Institute of Non-Ferrous Metals, ul. Sowinskiego 5, 44-100 Gliwice, Poland
| | - K. Grzybowska
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007
Katowice, Poland
| | - M. Paluch
- Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007
Katowice, Poland
| | - F. Kremer
- Institute
of Experimental Physics, University of Leipzig, Linnestrasse 5, 04103 Leipzig,
Germany
| |
Collapse
|
18
|
Bonetti M, Roger M. Translational diffusion of probe molecules under high pressure: a study by fluorescence recovery after photobleaching technique. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:023904. [PMID: 23464224 DOI: 10.1063/1.4790567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present fluorescence recovery measurements after photobleaching performed under high pressure in liquids that fill square-section fused silica micro-capillaries. These micro-capillaries withstand pressure up to 2500 bar for a wall thickness of about 140 μm and fit easily on the microscope stage. This technique allows the translational diffusion coefficient of fluorescent molecules in liquids to be measured as a function of pressure. When the liquid sample is far from its glass transition the translational diffusive coefficient is in agreement with the Stokes-Einstein equation. As the glass transition is approached by further increasing the pressure, decoupling of the measured diffusion coefficient from the Stokes-Einstein relation is observed. These are the first measurements that combine the fluorescence recovery technique and high hydrostatic pressures. This experimental setup can also be used either with diamond or sapphire anvil cells in order to span a larger pressure range.
Collapse
Affiliation(s)
- Marco Bonetti
- Service de Physique de l'Etat Condensé, CEA-IRAMIS-SPEC, CEA-Saclay, F-91191 Gif sur Yvette, France
| | | |
Collapse
|
19
|
Wojnarowska Z, Roland CM, Swiety-Pospiech A, Grzybowska K, Paluch M. Anomalous electrical conductivity behavior at elevated pressure in the protic ionic liquid procainamide hydrochloride. PHYSICAL REVIEW LETTERS 2012; 108:015701. [PMID: 22304270 DOI: 10.1103/physrevlett.108.015701] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Indexed: 05/31/2023]
Abstract
Using broadband dielectric spectroscopy, we investigated the effect of hydrostatic pressure on the conductivity relaxation time τ{σ} of the supercooled protic ionic liquid, procainamide hydrochloride, a common pharmaceutical. The pressure dependence of τ{σ} exhibited anomalous behavior in the vicinity of the glass transition T{g}, manifested by abrupt changes in activation volume. This peculiar behavior, paralleling the change in temperature dependence of τ{σ} near T{g}, is a manifestation of the decoupling between electrical conductivity and structural relaxation. Although the latter effectively ceases in the glassy state, free ions retain their mobility but with a reduced sensitivity to thermodynamic changes. This is the first observation of decoupling of ion migration from structural relaxation in a glassy conductor by isothermal densification.
Collapse
Affiliation(s)
- Z Wojnarowska
- Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice, Poland
| | | | | | | | | |
Collapse
|
20
|
Pawlus S, Paluch M, Dzida M. Molecular dynamics changes induced by solvent in 2-ethyl-1-hexanol. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031503. [PMID: 22060375 DOI: 10.1103/physreve.84.031503] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Indexed: 05/31/2023]
Abstract
Apart from other classes of materials, supramolecular structures may exist in H-bonded liquids due to the existence of hydrogen bonding. The dynamics of these structures remains one of the most exciting topics of interest of modern science because of its crucial meaning for the behavior of water and its participation in biological processes. A special group of these liquids form monohydroxy alcohols due to their similarity to water, their ability to vitrification, and the existence of the Debye relaxation process in dielectric loss spectra reflecting the dynamics of H-bond structures. Dynamics of these structures can be studied by changes of thermodynamic conditions, by immersion of the liquid into the constraint geometry, and by dilution in a nonassociated solvent. Herein we studied the behavior of relaxation dynamics of mixtures of 2-ethyl-1-hexanol with bromobutane using broadband dielectric spectroscopy. Analysis of the results exhibits the existence of crossover in temperature dependence of static permittivity of the Debye process at some particular temperature T(c). This temperature shifts to lower values with increasing concentration of bromobutane. Moreover, below some "critical" concentration of alcohol in the mixture the shape of the Debye process loses exponentiality and the temperature dependence of relaxation times starts to change. This change was illuminated based on the analysis of the steepness index. For the lowest concentration, the value of this parameter becomes the same as the value of the steepness index of faster relaxation, called process II, of pure alcohol at ambient pressure. The observed change in relaxation dynamics with lowering concentration of alcohol is astonishingly similar to the behavior observed in the same material at elevated pressure. A possible origin of these similarities is also discussed.
Collapse
Affiliation(s)
- Sebastian Pawlus
- Institute of Physics, University of Silesia, Uniwersytecka 4, PL-40-007 Katowice, Poland.
| | | | | |
Collapse
|
21
|
Hong L, Novikov VN, Sokolov AP. Dynamic heterogeneities, boson peak, and activation volume in glass-forming liquids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:061508. [PMID: 21797373 DOI: 10.1103/physreve.83.061508] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/12/2011] [Indexed: 05/31/2023]
Abstract
There are various arguments and models connecting the characteristic length associated with the boson peak vibrations ξ to the length scale of dynamical heterogeneity L(het). ξ is usually defined as the ratio of the transverse sound velocity to the boson peak frequency. Here we present pressure, temperature, and molecular weight dependencies of ξ, estimated using light scattering, in a few molecular and polymeric glass formers. These dependencies are compared with respective dependencies of the activation volume ΔV(#) in the same materials. Good agreement is found for the pressure and molecular weight dependencies of ξ and ΔV(#) measured at the glass transition temperature T(g). These results provide more evidence for a possible relationship between the sensitivity of structural relaxation to density (activation volume) and the heterogeneity volume. However, contrary to the expectations for L(het), ξ does not decrease with temperature above T(g) in most of the studied materials. The temperature dependence of ξ is compared to that of L(het) in glycerol and orthoterphenyl (OTP) estimated from literature data. The analysis shows a clear difference in the behavior of ξ(T) and ΔV(#)(T) at temperatures above T(g), although ΔV(#)(T)(1/3) and L(het)(T) have similar temperature dependence. Possible reasons for the observed difference are discussed.
Collapse
Affiliation(s)
- L Hong
- Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | |
Collapse
|
22
|
Grzybowski A, Grzybowska K, Paluch M, Swiety A, Koperwas K. Density scaling in viscous systems near the glass transition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:041505. [PMID: 21599167 DOI: 10.1103/physreve.83.041505] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/08/2011] [Indexed: 05/30/2023]
Abstract
In this paper, a general equation of state (EOS) valid for fluids in the vicinity of the glass transition is derived on the basis of its isothermal precursor. This EOS is able to predict the density scaling of both isobaric and isothermal PVT data and it explicitly involves the scaling exponent γ(EOS), which is most likely straightforwardly related to the exponent of the inverse power law of some effective potential valid for viscous systems. This EOS and the density scaling are very successfully tested for representatives of several material classes (van der Waals liquids, polymer melts, ionic liquids, and even strongly hydrogen-bonded systems). Additionally, if the thermodynamic scaling of primary relaxation times can be achieved with the scaling exponent γ for a given material, then the value γ(EOS) found from fitting its PVT data to the EOS enables us to evaluate the value γ, which is always considerably smaller than γ(EOS).
Collapse
Affiliation(s)
- A Grzybowski
- Institute of Physics, Silesian University, Uniwersytecka 4, PL-40-007 Katowice, Poland.
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- C. M. Roland
- Naval Research Laboratory, Chemistry Division, Code 6120, Washington, D.C. 20375-5342
| |
Collapse
|
24
|
Adrjanowicz K, Kaminski K, Wojnarowska Z, Dulski M, Hawelek L, Pawlus S, Paluch M, Sawicki W. Dielectric Relaxation and Crystallization Kinetics of Ibuprofen at Ambient and Elevated Pressure. J Phys Chem B 2010; 114:6579-93. [DOI: 10.1021/jp910009b] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. Adrjanowicz
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - K. Kaminski
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - Z. Wojnarowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - M. Dulski
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - L. Hawelek
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - S. Pawlus
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - M. Paluch
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
| | - W. Sawicki
- Department of Pharmaceutical Technology, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| |
Collapse
|
25
|
Fragiadakis D, Roland CM, Casalini R. Insights on the origin of the Debye process in monoalcohols from dielectric spectroscopy under extreme pressure conditions. J Chem Phys 2010; 132:144505. [DOI: 10.1063/1.3374820] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Wojnarowska Z, Adrjanowicz K, Wlodarczyk P, Kaminska E, Kaminski K, Grzybowska K, Wrzalik R, Paluch M, Ngai KL. Broadband Dielectric Relaxation Study at Ambient and Elevated Pressure of Molecular Dynamics of Pharmaceutical: Indomethacin. J Phys Chem B 2009; 113:12536-45. [DOI: 10.1021/jp905162r] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Z. Wojnarowska
- Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice, Poland, Naval Research Laboratory, Washington, D.C. 20375-5320
| | - K. Adrjanowicz
- Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice, Poland, Naval Research Laboratory, Washington, D.C. 20375-5320
| | - P. Wlodarczyk
- Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice, Poland, Naval Research Laboratory, Washington, D.C. 20375-5320
| | - E. Kaminska
- Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice, Poland, Naval Research Laboratory, Washington, D.C. 20375-5320
| | - K. Kaminski
- Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice, Poland, Naval Research Laboratory, Washington, D.C. 20375-5320
| | - K. Grzybowska
- Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice, Poland, Naval Research Laboratory, Washington, D.C. 20375-5320
| | - R. Wrzalik
- Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice, Poland, Naval Research Laboratory, Washington, D.C. 20375-5320
| | - M. Paluch
- Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice, Poland, Naval Research Laboratory, Washington, D.C. 20375-5320
| | - K. L. Ngai
- Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice, Poland, Naval Research Laboratory, Washington, D.C. 20375-5320
| |
Collapse
|
27
|
Hong L, Gujrati PD, Novikov VN, Sokolov AP. Molecular cooperativity in the dynamics of glass-forming systems: A new insight. J Chem Phys 2009; 131:194511. [DOI: 10.1063/1.3266508] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Voigtmann T. Idealized glass transitions under pressure: dynamics versus thermodynamics. PHYSICAL REVIEW LETTERS 2008; 101:095701. [PMID: 18851623 DOI: 10.1103/physrevlett.101.095701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 07/14/2008] [Indexed: 05/26/2023]
Abstract
The interplay of slow dynamics and thermodynamic features of dense liquids is studied by examining how the glass transition changes depending on the presence or absence of Lennard-Jones-like attractions. Quite different thermodynamic behavior leaves the dynamics unchanged, with important consequences for high-pressure experiments on glassy liquids. Numerical results are obtained within mode-coupling theory (MCT), but the qualitative features are argued to hold more generally. A simple square-well model can be used to explain generic features found in experiment.
Collapse
Affiliation(s)
- Th Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| |
Collapse
|
29
|
Urban S, Roland CM, Czub J, Skrzypek K. Thermodynamic analysis of the low frequency relaxation time in the smectic A and C phases of a liquid crystal. J Chem Phys 2007; 127:094901. [PMID: 17824759 DOI: 10.1063/1.2759488] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pressure-temperature-volume (pVT) measurements were carried out on 2-(4-hexyloxyphenyl)-5-octyl-pyrimidine, a substance exhibiting nematic and smectic A and C polymorphism. Analysis of the longitudinal relaxation times obtained recently for elevated pressures [Czub et al., Z. Naturforsch. A: Phys. Sci. 58, 333 (2003)] was performed for isobaric, isothermal, and isochoric conditions within the two smectic phases. Several relationships linking the dynamical and thermodynamical quantities, derived recently for isotropic glass formers [Roland et al. Rep. Prog. Phys. 68, 1405 (2005)], were found to hold for the liquid crystal, revealing a striking similarity of behaviors for these two types of materials. The parameter gamma characterizing the steepness of the interaction potential was derived in different ways. It is interesting that the liquid crystal gives relaxation time versus TV(-gamma) plots that are linear, unlike results for glass formers, implying that the dynamics of the former is thermally activated.
Collapse
Affiliation(s)
- S Urban
- Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland.
| | | | | | | |
Collapse
|
30
|
Casalini R, Roland CM, Capaccioli S. Effect of chain length on fragility and thermodynamic scaling of the local segmental dynamics in poly(methylmethacrylate). J Chem Phys 2007; 126:184903. [PMID: 17508828 DOI: 10.1063/1.2728898] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Local segmental relaxation properties of poly(methylmethacrylate) (PMMA) of varying molecular weight are measured by dielectric spectroscopy and analyzed in combination with the equation of state obtained from PVT measurements. Significant variations of glass transition temperature and fragility with molecular weight are observed. In accord with the general properties of glass-forming materials, single molecular weight dependent scaling exponent gamma is sufficient to define the mean segmental relaxation time taualpha and its distribution. This exponent can be connected to the Gruneisen parameter and related thermodynamic quantities, thus demonstrating the interrelationship between dynamics and thermodynamics in PMMA. Changes in the relaxation properties ("dynamic crossover") are observed as a function of both temperature and pressure, with taualpha serving as the control parameter for the crossover. At longer taualpha another change in the dynamics is apparent, associated with a decoupling of the local segmental process from ionic conductivity.
Collapse
Affiliation(s)
- R Casalini
- Chemistry Department, George Mason University, Fairfax, Virginia 22030, USA
| | | | | |
Collapse
|
31
|
Grzybowska K, Pawlus S, Mierzwa M, Paluch M, Ngai KL. Changes of relaxation dynamics of a hydrogen-bonded glass former after removal of the hydrogen bonds. J Chem Phys 2006; 125:144507. [PMID: 17042609 DOI: 10.1063/1.2354492] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dielectric relaxation spectra of two closely related glass formers, dipropylene glycol [H-(C3H6O)2-OH] and dipropylene glycol dimethyl ether [CH3-O-(C3H6O)2-CH3], were measured at ambient and elevated pressures in the supercooled and the glassy states are presented. Hydrogen bonds formed in dipropylene glycol are removed when its ends are replaced by two methyl groups to become dipropylene glycol dimethyl ether. In the process, the primary relaxation, the excess wing, and the resolved secondary relaxation of dipropylene glycol are all modified when the structure is transformed to become dipropylene glycol dimethyl ether. The modifications include the pressure and temperature dependences of these relaxation processes and their interrelations. Thus, by comparing the dielectric spectra of these two closely related glass formers at ambient and elevated pressures, the differences in the relaxation dynamics and properties in the presence and absence of hydrogen bonding are identified.
Collapse
Affiliation(s)
- K Grzybowska
- Institute of Physics, Silesian University, Uniwersytechka 4, 40-007 Katowice, Poland.
| | | | | | | | | |
Collapse
|
32
|
Grzybowski A, Grzybowska K, Zioło J, Paluch M. Correlations between isobaric and isochoric fragilities and thermodynamical scaling exponent for glass-forming liquids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:041503. [PMID: 17155061 DOI: 10.1103/physreve.74.041503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/09/2006] [Indexed: 05/12/2023]
Abstract
Two correlations concerning the isobaric and isochoric fragilities, m(P) and m(V), as well as the scaling exponent gamma reported by Casalini and Roland [Phys. Rev. E 72, 031503 (2005)] have been examined for several van der Waals and hydrogen-bonded glass formers. It has been pointed out that the correlations lead to some serious inconsistency with the exponent gamma, which is expected to be a constant dependent only on material, but varies also on pressure if experimentally found pressure dependences of m(P) are taken into account. This problem could be solved in the case of van der Waals liquids, but then at least one of the correlations becomes dependent on thermodynamic conditions, and consequently, loses its universality. However, some H-bonded systems, due to properties of hydrogen bonding, have been well argued not to be included to determine the correlations independently of thermodynamic conditions. Furthermore, it has been noticed that another correlation concerning the fragility, between m(P) and the structural relaxation peak breadth, yields discrepancies in comparison with results of experiments under elevated pressure.
Collapse
Affiliation(s)
- A Grzybowski
- Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice, Poland
| | | | | | | |
Collapse
|
33
|
Roland CM, Bair S, Casalini R. Thermodynamic scaling of the viscosity of van der Waals, H-bonded, and ionic liquids. J Chem Phys 2006; 125:124508. [PMID: 17014192 DOI: 10.1063/1.2346679] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Viscosities eta and their temperature T and volume V dependences are reported for seven molecular liquids and polymers. In combination with literature viscosity data for five other liquids, we show that the superpositioning of relaxation times for various glass-forming materials when expressed as a function of TV(gamma), where the exponent gamma is a material constant, can be extended to the viscosity. The latter is usually measured to higher temperatures than the corresponding relaxation times, demonstrating the validity of the thermodynamic scaling throughout the supercooled and higher T regimes. The value of gamma for a given liquid principally reflects the magnitude of the intermolecular forces (e.g., steepness of the repulsive potential); thus, we find decreasing gamma in going from van der Waals fluids to ionic liquids. For some strongly H-bonded materials, such as low molecular weight polypropylene glycol and water, the superpositioning fails, due to the nontrivial change of chemical structure (degree of H bonding) with thermodynamic conditions.
Collapse
Affiliation(s)
- C M Roland
- Chemistry Division, Naval Research Laboratory, Code 6120, Washington, DC 20375-5342, USA.
| | | | | |
Collapse
|
34
|
Cerveny S, Schwartz GA, Alegría A, Bergman R, Swenson J. Water dynamics in n-propylene glycol aqueous solutions. J Chem Phys 2006; 124:194501. [PMID: 16729819 DOI: 10.1063/1.2198206] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The relaxation dynamics of dipropylene glycol and tripropylene glycol (nPG-n=2,3) water solutions on the nPG-rich side has been studied by broadband dielectric spectroscopy and differential scanning calorimetry in the temperature range of 130-280 K. Two relaxation processes are observed for all the hydration levels; the slower process (I) is related to the alpha relaxation of the solution whereas the faster one (II) is associated with the reorientation of water molecules in the mixture. Dielectric data for process (II) at temperatures between 150 and 200 K indicate the existence of a critical water concentration (x(c)) below which water mobility is highly restricted. Below x(c), nPG-water domains drive the dielectric signal whereas above x(c), water-water domains dominate the dielectric response at low temperatures. The results also show that process (II) at low temperatures is due to local motions of water molecules in the glassy frozen matrix. Additionally, we will show that the glass transition temperatures (T(g)) for aqueous PG, 2PG, and 3PG solutions do not extrapolate to approximately 136 K, regardless of the extrapolation method. Instead, we find that the extrapolated T(g) value for water from these solutions lies in the neighborhood of 165 K.
Collapse
Affiliation(s)
- S Cerveny
- Donostia Internacional Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain.
| | | | | | | | | |
Collapse
|
35
|
Drozd-Rzoska A. Pressure dependence of the glass temperature in supercooled liquids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:041505. [PMID: 16383383 DOI: 10.1103/physreve.72.041505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Indexed: 05/05/2023]
Abstract
The description of the pressure evolution of the glass temperature Tg(p) based on experimental data for diethyl phtalate is discussed. First, parameterizations of Tg(P) experimental data applied are briefly given. Then a novel relation based on the modified Simon-Glatzel equation is proposed. Its applications may result in the appearance of the asymptotic temperature (theta) and the asymptotic pressure (pi) previously postulated [E. Donth,, Springer Series in Material Sci. II (Springer, Berlin, 1998), Vol. 48, pp. 6, 375]. The asymptotic pressure is hidden in the negative pressure domain. Such asymptotic behavior was absent for parameterizations of Tg(p) data in glassy liquids applied up to now.
Collapse
|
36
|
Roland CM, Casalini R. Effect of chemical structure on the isobaric and isochoric fragility in polychlorinated biphenyls. J Chem Phys 2005; 122:134505. [PMID: 15847479 DOI: 10.1063/1.1863173] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pressure-volume-temperature data, along with dielectric relaxation measurements, are reported for a series of polychlorinated biphenyls (PCB), differing in the number of chlorine atoms on their phenyl rings. Analysis of the results reveals that with increasing chlorine content, the relaxation times of the PCB become governed to a greater degree by density rho relative to the effect of temperature T. This result is consistent with the respective magnitudes of the scaling exponent gamma yielding superpositioning of the relaxation times measured at various temperatures and pressures, when plotted versus rho(gamma)/T. While at constant (atmospheric) pressure, fragilities for the various PCB are equivalent, the fragility at constant volume varies inversely with chlorine content. Evidently, the presence of bulkier chlorine atoms on the phenyl rings magnifies the effect which the density has on the relaxation dynamics.
Collapse
Affiliation(s)
- C M Roland
- Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342, USA.
| | | |
Collapse
|
37
|
Casalini R, Roland CM. Temperature and Density Effects on the Local Segmental and Global Chain Dynamics of Poly(oxybutylene). Macromolecules 2005. [DOI: 10.1021/ma0476902] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Casalini
- Chemistry Division, Code 6120, Naval Research Laboratory, Washington, D.C. 20375-5342, and Chemistry Department, George Mason University, Fairfax, Virginia 22030
| | - C. M. Roland
- Chemistry Division, Code 6120, Naval Research Laboratory, Washington, D.C. 20375-5342, and Chemistry Department, George Mason University, Fairfax, Virginia 22030
| |
Collapse
|
38
|
Prevosto D, Capaccioli S, Lucchesi M, Rolla PA, Paluch M, Pawlus S, Zioło J. Emergence of a new feature in the high pressure-high temperature relaxation spectrum of tri-propylene glycol. J Chem Phys 2005; 122:061102. [PMID: 15740359 DOI: 10.1063/1.1858857] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated dielectric relaxation of a tri-propylene glycol system under high compression. By increasing temperature and pressure we observed that a new relaxation process emerges from the low frequency tail of the structural peak. This new peak starts to be visible at about 0.5 GPa and becomes clearly evident at 1.7 GPa. However, this additional peak merges again with the structural one as the glass transition is approached, since it has a weaker temperature dependence. This finding enriches the relaxation scenario of molecular glass formers confirming that the application of very high hydrostatic pressure can favor the detection of new relaxation or otherwise unresolved processes in supercooled liquid systems.
Collapse
Affiliation(s)
- D Prevosto
- INFM and Dipartimento di Fisica Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Minoguchi A, Richert R, Angell CA. Dielectric Relaxation in Aqueous Solutions of Hydrazine and Hydrogen Peroxide: Water Structure Implications. J Phys Chem B 2004. [DOI: 10.1021/jp0471608] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ayumi Minoguchi
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Ranko Richert
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - C. Austen Angell
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| |
Collapse
|
40
|
Scaling of the segmental relaxation times of polymers and its relation to the thermal expansivity. Colloid Polym Sci 2004. [DOI: 10.1007/s00396-004-1156-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Roland CM, Capaccioli S, Lucchesi M, Casalini R. Adam–Gibbs model for the supercooled dynamics in the ortho-terphenyl ortho-phenylphenol mixture. J Chem Phys 2004; 120:10640-6. [PMID: 15268090 DOI: 10.1063/1.1739394] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dielectric measurements of the alpha-relaxation time were carried out on a mixture of ortho-terphenyl (OTP) with ortho-phenylphenol, over a range of temperatures at two pressures, 0.1 and 28.8 MPa. These are the same conditions for which heat capacity, thermal expansivity, and compressibility measurements were reported by Takahara et al. [S. Takahara, M. Ishikawa, O. Yamamuro, and T. Matsuo, J. Phys. Chem. B 103, 3288 (1999)] for the same mixture. From the combined dynamic and thermodynamic data, we determine that density and temperature govern to an equivalent degree the variation of the relaxation times with temperature. Over the measured range, the dependence of the relaxation times on configurational entropy is in accord with the Adam-Gibbs model, and this dependence is invariant to pressure. Consistent with the implied connection between relaxation and thermodynamic properties, the kinetic and thermodynamic fragilities are found to have the same pressure independence. In comparing the relaxation properties of the mixture to those of neat OTP, density effects are stronger in the former, perhaps suggestive of less efficient packing.
Collapse
Affiliation(s)
- C M Roland
- Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342, USA.
| | | | | | | |
Collapse
|
42
|
Zhang S, Runt J. Segmental Dynamics and Ionic Conduction in Poly(vinyl methyl ether)−Lithium Perchlorate Complexes. J Phys Chem B 2004; 108:6295-302. [DOI: 10.1021/jp0499777] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shihai Zhang
- Department of Materials Science and Engineering, and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - James Runt
- Department of Materials Science and Engineering, and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
43
|
Roland CM, Paluch M, Casalini R. Effects of the volume and temperature on the global and segmental dynamics in poly(propylene glycol) and 1,4-polyisoprene. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/polb.20287] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Zhang SH, Casalini R, Runt J, Roland CM. Pressure Effects on the Segmental Dynamics of Hydrogen-Bonded Polymer Blends. Macromolecules 2003. [DOI: 10.1021/ma035213y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. H. Zhang
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802; Chemistry Division, Code 6120, Naval Research Laboratory, Washington D.C. 20375-5342; and Chemistry Department, George Mason University, Fairfax, Virginia 22030
| | - R. Casalini
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802; Chemistry Division, Code 6120, Naval Research Laboratory, Washington D.C. 20375-5342; and Chemistry Department, George Mason University, Fairfax, Virginia 22030
| | - J. Runt
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802; Chemistry Division, Code 6120, Naval Research Laboratory, Washington D.C. 20375-5342; and Chemistry Department, George Mason University, Fairfax, Virginia 22030
| | - C. M. Roland
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802; Chemistry Division, Code 6120, Naval Research Laboratory, Washington D.C. 20375-5342; and Chemistry Department, George Mason University, Fairfax, Virginia 22030
| |
Collapse
|