1
|
Kondrashov OV, Galimzyanov TR, Molotkovsky RJ, Batishchev OV, Akimov SA. Membrane-Mediated Lateral Interactions Regulate the Lifetime of Gramicidin Channels. MEMBRANES 2020; 10:membranes10120368. [PMID: 33255806 PMCID: PMC7760706 DOI: 10.3390/membranes10120368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
Abstract
The lipid matrix of cellular membranes is an elastic liquid crystalline medium. Its deformations regulate the functionality and interactions of membrane proteins,f membrane-bound peptides, lipid and protein-lipid domains. Gramicidin A (gA) is a peptide, which incorporates into membrane leaflets as a monomer and may form a transmembrane dimer. In both configurations, gA deforms the membrane. The transmembrane dimer of gA is a cation-selective ion channel. Its electrical response strongly depends on the elastic properties of the membrane. The gA monomer and dimer deform the membrane differently; therefore, the elastic energy contributes to the activation barriers of the dimerization and dissociation of the conducting state. It is shown experimentally that channel characteristics alter if gA molecules have been located in the vicinity of the conducting dimer. Here, based on the theory of elasticity of lipid membranes, we developed a quantitative theoretical model which allows explaining experimentally observed phenomena under conditions of high surface density of gA or its analogues, i.e., in the regime of strong lateral interactions of gA molecules, mediated by elastic deformations of the membrane. The model would be useful for the analysis and prediction of the gA electrical response in various experimental conditions. This potentially widens the possible applications of gA as a convenient molecular sensor of membrane elasticity.
Collapse
Affiliation(s)
- Oleg V. Kondrashov
- Correspondence: (O.V.K.); (S.A.A.); Tel.: +7-495-955-4776 (O.V.K.); +7-495-955-4776 (S.A.A.)
| | | | | | | | - Sergey A. Akimov
- Correspondence: (O.V.K.); (S.A.A.); Tel.: +7-495-955-4776 (O.V.K.); +7-495-955-4776 (S.A.A.)
| |
Collapse
|
2
|
Kahraman O, Haselwandter CA. Supramolecular organization of membrane proteins with anisotropic hydrophobic thickness. SOFT MATTER 2019; 15:4301-4310. [PMID: 31070658 DOI: 10.1039/c9sm00358d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Experiments have revealed that membrane proteins often self-assemble into locally ordered clusters. Such membrane protein lattices can play key roles in the functional organization of cell membranes. Membrane protein organization can be driven, at least in part, by bilayer-mediated elastic interactions between membrane proteins. For membrane proteins with anisotropic hydrophobic thickness, bilayer-mediated protein interactions are inherently directional. Here we establish general relations between anisotropy in membrane protein hydrophobic thickness and supramolecular membrane protein organization. We show that protein symmetry is distinctively reflected in the energy landscape of bilayer-mediated protein interactions, favoring characteristic lattice architectures of membrane protein clusters. We find that, in the presence of thermal fluctuations, anisotropy in protein hydrophobic thickness can induce membrane proteins to form mesh-like structures dividing the membrane into compartments. Our results help to elucidate the physical principles and mechanisms underlying the functional organization of cell membranes.
Collapse
Affiliation(s)
- Osman Kahraman
- Department of Physics & Astronomy and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
3
|
Kahraman O, Koch PD, Klug WS, Haselwandter CA. Bilayer-thickness-mediated interactions between integral membrane proteins. Phys Rev E 2016; 93:042410. [PMID: 27176332 DOI: 10.1103/physreve.93.042410] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 12/14/2022]
Abstract
Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane environments provided by living cells.
Collapse
Affiliation(s)
- Osman Kahraman
- Department of Physics & Astronomy and Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Peter D Koch
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - William S Klug
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - Christoph A Haselwandter
- Department of Physics & Astronomy and Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
4
|
Kahraman O, Koch PD, Klug WS, Haselwandter CA. Architecture and Function of Mechanosensitive Membrane Protein Lattices. Sci Rep 2016; 6:19214. [PMID: 26771082 PMCID: PMC4725903 DOI: 10.1038/srep19214] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/07/2015] [Indexed: 12/04/2022] Open
Abstract
Experiments have revealed that membrane proteins can form two-dimensional clusters with regular translational and orientational protein arrangements, which may allow cells to modulate protein function. However, the physical mechanisms yielding supramolecular organization and collective function of membrane proteins remain largely unknown. Here we show that bilayer-mediated elastic interactions between membrane proteins can yield regular and distinctive lattice architectures of protein clusters, and may provide a link between lattice architecture and lattice function. Using the mechanosensitive channel of large conductance (MscL) as a model system, we obtain relations between the shape of MscL and the supramolecular architecture of MscL lattices. We predict that the tetrameric and pentameric MscL symmetries observed in previous structural studies yield distinct lattice architectures of MscL clusters and that, in turn, these distinct MscL lattice architectures yield distinct lattice activation barriers. Our results suggest general physical mechanisms linking protein symmetry, the lattice architecture of membrane protein clusters, and the collective function of membrane protein lattices.
Collapse
Affiliation(s)
- Osman Kahraman
- Departments of Physics &Astronomy and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter D Koch
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - William S Klug
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
| | - Christoph A Haselwandter
- Departments of Physics &Astronomy and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
5
|
Haselwandter CA, Wingreen NS. The role of membrane-mediated interactions in the assembly and architecture of chemoreceptor lattices. PLoS Comput Biol 2014; 10:e1003932. [PMID: 25503274 PMCID: PMC4263354 DOI: 10.1371/journal.pcbi.1003932] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 09/22/2014] [Indexed: 01/04/2023] Open
Abstract
In vivo fluorescence microscopy and electron cryo-tomography have revealed that chemoreceptors self-assemble into extended honeycomb lattices of chemoreceptor trimers with a well-defined relative orientation of trimers. The signaling response of the observed chemoreceptor lattices is remarkable for its extreme sensitivity, which relies crucially on cooperative interactions among chemoreceptor trimers. In common with other membrane proteins, chemoreceptor trimers are expected to deform the surrounding lipid bilayer, inducing membrane-mediated anisotropic interactions between neighboring trimers. Here we introduce a biophysical model of bilayer-chemoreceptor interactions, which allows us to quantify the role of membrane-mediated interactions in the assembly and architecture of chemoreceptor lattices. We find that, even in the absence of direct protein-protein interactions, membrane-mediated interactions can yield assembly of chemoreceptor lattices at very dilute trimer concentrations. The model correctly predicts the observed honeycomb architecture of chemoreceptor lattices as well as the observed relative orientation of chemoreceptor trimers, suggests a series of “gateway” states for chemoreceptor lattice assembly, and provides a simple mechanism for the localization of large chemoreceptor lattices to the cell poles. Our model of bilayer-chemoreceptor interactions also helps to explain the observed dependence of chemotactic signaling on lipid bilayer properties. Finally, we consider the possibility that membrane-mediated interactions might contribute to cooperativity among neighboring chemoreceptor trimers. The chemotaxis system allows bacteria to respond to minute changes in chemical concentration, and serves as a paradigm for biological signal processing and the self-assembly of large protein lattices in living cells. The sensitivity of the chemotaxis system relies crucially on cooperative interactions among chemoreceptor trimers, which are organized into intricate honeycomb lattices. Chemoreceptors are membrane proteins and, hence, are expected to deform the surrounding lipid bilayer, leading to membrane-mediated interactions between chemoreceptor trimers. Using a biophysical model of bilayer-chemoreceptor interactions we show that the membrane-mediated interactions induced by chemoreceptor trimers provide a mechanism for the observed self-assembly of chemoreceptor lattices. We find that the directionality of membrane-mediated interactions between trimers complements protein-protein interactions in the stabilization of the observed honeycomb architecture of chemoreceptor lattices. Our results suggest that the symmetry of membrane protein complexes such as chemoreceptor trimers is reflected in the anisotropy of membrane-mediated interactions, yielding a general mechanism for the self-assembly of ordered protein lattices in cell membranes.
Collapse
Affiliation(s)
- Christoph A. Haselwandter
- Departments of Physics & Astronomy and Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (CAH); (NSW)
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (CAH); (NSW)
| |
Collapse
|
6
|
Haselwandter CA, Phillips R. Connection between oligomeric state and gating characteristics of mechanosensitive ion channels. PLoS Comput Biol 2013; 9:e1003055. [PMID: 23696720 PMCID: PMC3656111 DOI: 10.1371/journal.pcbi.1003055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/08/2013] [Indexed: 01/06/2023] Open
Abstract
The mechanosensitive channel of large conductance (MscL) is capable of transducing mechanical stimuli such as membrane tension into an electrochemical response. MscL provides a widely-studied model system for mechanotransduction and, more generally, for how bilayer mechanical properties regulate protein conformational changes. Much effort has been expended on the detailed experimental characterization of the molecular structure and biological function of MscL. However, despite its central significance, even basic issues such as the physiologically relevant oligomeric states and molecular structures of MscL remain a matter of debate. In particular, tetrameric, pentameric, and hexameric oligomeric states of MscL have been proposed, together with a range of detailed molecular structures of MscL in the closed and open channel states. Previous theoretical work has shown that the basic phenomenology of MscL gating can be understood using an elastic model describing the energetic cost of the thickness deformations induced by MscL in the surrounding lipid bilayer. Here, we generalize this elastic model to account for the proposed oligomeric states and hydrophobic shapes of MscL. We find that the oligomeric state and hydrophobic shape of MscL are reflected in the energetic cost of lipid bilayer deformations. We make quantitative predictions pertaining to the gating characteristics associated with various structural models of MscL and, in particular, show that different oligomeric states and hydrophobic shapes of MscL yield distinct membrane contributions to the gating energy and gating tension. Thus, the functional properties of MscL provide a signature of the oligomeric state and hydrophobic shape of MscL. Our results suggest that, in addition to the hydrophobic mismatch between membrane proteins and the surrounding lipid bilayer, the symmetry and shape of the hydrophobic surfaces of membrane proteins play an important role in the regulation of protein function by bilayer membranes.
Collapse
Affiliation(s)
- Christoph A. Haselwandter
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, United States of America
- Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (CAH); (RP)
| | - Rob Phillips
- Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (CAH); (RP)
| |
Collapse
|
7
|
Lundbæk JA. Regulation of membrane protein function by lipid bilayer elasticity-a single molecule technology to measure the bilayer properties experienced by an embedded protein. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:S1305-S1344. [PMID: 21690843 DOI: 10.1088/0953-8984/18/28/s13] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Membrane protein function is generally regulated by the molecular composition of the host lipid bilayer. The underlying mechanisms have long remained enigmatic. Some cases involve specific molecular interactions, but very often lipids and other amphiphiles, which are adsorbed to lipid bilayers, regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes, in the general regulation of membrane protein function, is unclear. This is to a large extent due to lack of a generally accepted framework in which to understand the many observations. The present review summarizes studies which have demonstrated that the hydrophobic interactions between a membrane protein and the host lipid bilayer provide an energetic coupling, whereby protein function can be regulated by the bilayer elasticity. The feasibility of this 'hydrophobic coupling mechanism' has been demonstrated using the gramicidin channel, a model membrane protein, in planar lipid bilayers. Using voltage-dependent sodium channels, N-type calcium channels and GABA(A) receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established.
Collapse
Affiliation(s)
- Jens August Lundbæk
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
8
|
Nielsen SO, Ensing B, Ortiz V, Moore PB, Klein ML. Lipid bilayer perturbations around a transmembrane nanotube: a coarse grain molecular dynamics study. Biophys J 2005; 88:3822-8. [PMID: 15778436 PMCID: PMC1305616 DOI: 10.1529/biophysj.104.057703] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The perturbations induced in a lipid bilayer by the presence of a transmembrane nanotube are investigated using coarse grained molecular dynamics. Meniscus formation by the lipids and tilting of the nanotube occur in response to hydrophobic mismatch, although these two effects do not compensate completely for the total mismatch. The lipid head-to-tail vector field is examined and shows strong ordering in the membrane plane regardless of the nanotube length. Molecular layering at the lipid-nanotube interface is reported. This study extends previous theoretical approaches to a more realistic setting.
Collapse
Affiliation(s)
- Steve O Nielsen
- Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | |
Collapse
|