1
|
|
2
|
Affiliation(s)
- S. Ciccariello
- a Istituto di Fisica ‘G. Galilei’ and Istituto Nazionale di Fisica Nucleare, Sezione di Padova , Padua , Italy
| | - D. Gazzillo
- b Istituto di Chimica Fisica, Università di Venezia , Venice , Italy
| |
Collapse
|
3
|
|
4
|
|
5
|
Kinoshita M, Harada M, Shioi A. Singularity of the HNC equation occurring at a very high density for hard spheres. Mol Phys 1991. [DOI: 10.1080/00268979100102711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Caillol JM, Weis JJ. Nematic to smectic‐A transition of parallel dipolar hard spherocylinders and ellipsoids, a hypernetted chain equation study. J Chem Phys 1990. [DOI: 10.1063/1.457870] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Siders P, Kozak JJ. Thermodynamic self‐consistency for hard spheres at low density. J Chem Phys 1985. [DOI: 10.1063/1.448816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Larsen B. Studies in statistical mechanics of Coulombic systems. III. Numerical solutions of the HNC and RHNC equations for the restricted primitive model. J Chem Phys 1978. [DOI: 10.1063/1.435555] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Dale WDT, Friedman HL. Series solution of the HNC and PY equations: The simple chain recursion way. J Chem Phys 1978. [DOI: 10.1063/1.436236] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
|
11
|
Hutchinson P, Conkie W. Thermodynamically self consistent radial distribution functions for inverse power potentials. Mol Phys 1972. [DOI: 10.1080/00268977200101701] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Alder BJ, Hecht CE. Studies in Molecular Dynamics. VII. Hard‐Sphere Distribution Functions and an Augmented van der Waals Theory. J Chem Phys 1969. [DOI: 10.1063/1.1671328] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Chae DG, Ree FH, Ree T. Radial Distribution Functions and Equation of State of the Hard‐Disk Fluid. J Chem Phys 1969. [DOI: 10.1063/1.1671244] [Citation(s) in RCA: 106] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Lee Y, Ree FH, Ree T. Distribution Function of Classical Fluids of Hard Spheres. I. J Chem Phys 1968. [DOI: 10.1063/1.1669643] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Lado F. Pressure‐Consistent Integral Equation for Classical Fluids: Hard‐Sphere Solutions. J Chem Phys 1967. [DOI: 10.1063/1.1701707] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
|
17
|
|
18
|
Throop GJ, Bearman RJ. Numerical Solutions of the Percus—Yevick Equation for the Hard‐Sphere Potential. J Chem Phys 1965. [DOI: 10.1063/1.1696308] [Citation(s) in RCA: 214] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Carley DD, Lado F. Approximate Methods for Obtaining Radial Distribution Functions of Fluids. ACTA ACUST UNITED AC 1965. [DOI: 10.1103/physrev.137.a42] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|