1
|
Schneider M, Rauhut G. Comparison of curvilinear coordinates within vibrational structure calculations based on automatically generated potential energy surfaces. J Chem Phys 2024; 161:094102. [PMID: 39225517 DOI: 10.1063/5.0225991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
For floppy molecules showing internal rotations and/or large amplitude motions, curvilinear internal coordinates are known to be superior to rectilinear normal coordinates within vibrational structure calculations. Due to the myriad definitions of internal coordinates, automated and efficient potential energy surface generators necessitate a high degree of flexibility, supporting the properties arising from these coordinates. Within this work, an approach to deal with these challenges is presented, including key elements, such as the selection of appropriate fit functions, the exploitation of symmetry, the positioning of grid points, or elongation limits for different coordinates. These elements are tested for five definitions of curvilinear coordinates, with three of them being generated in an automated manner. Calculations for semi-rigid molecules, namely H2O, H2CO, CH2F2, and H2CNH, demonstrate the general functionality of the implemented algorithms. Additional calculations for the HOPO molecule highlight the benefits of these curvilinear coordinates for systems with large amplitude motions. This new implementation allowed us to compare the performance of these different coordinate systems with respect to the convergence of the underlying expansion of the potential energy surface and subsequent vibrational configuration interaction calculations.
Collapse
Affiliation(s)
- Moritz Schneider
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
Wang XG, Carrington T. A two-step quadrature-based variational calculation of ro-vibrational levels and wavefunctions of CO 2 using a bisector- x molecule-fixed frame. Phys Chem Chem Phys 2024; 26:15181-15191. [PMID: 38752328 DOI: 10.1039/d4cp00655k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
In this paper, we propose a new two-step strategy for computing ro-vibrational energy levels and wavefunctions of a triatomic molecule and apply it to CO2. A two-step method [J. Tennyson and B. T. Sutcliffe, Mol. Phys., 1986, 58, 1067] uses a basis whose functions are products of K-dependent "vibrational" functions and symmetric top functions. K is the quantum number for the molecule-fixed z component of the angular momentum. For a linear molecule, a two-step method is efficient because the Hamiltonian used to compute the basis functions includes the largest coupling term. The most important distinguishing feature of the two-step method we propose is that it uses an associated Legendre basis and quadrature rather than a K-dependent discrete variable representation. This reduces the cost of the calculation and simplifies the method. We have computed ro-vibrational energy levels with J up to 100 for CO2, on an accurate available potential energy surface which is known as the AMES-2 PES and present a subset of those levels. We have converged most levels up to 20 000 cm-1 to 0.0001 cm-1.
Collapse
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
3
|
Manzhos S, Ihara M, Carrington T. Using Collocation to Solve the Schrödinger Equation. J Chem Theory Comput 2023; 19:1641-1656. [PMID: 36974479 DOI: 10.1021/acs.jctc.2c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
We review the collocation approach to the solution of the Schrödinger equation and its uses in applications. Interrelations between collocation and other methods are highlighted. We also stress advantages and disadvantages of the rectangular collocation formulation. Using collocation makes it possible to use any, e.g. optimized, coordinates and basis functions, including nonintegrable basis functions, and provides a straightforward way of dealing with singularities in the potential. In addition, we stress that using collocation facilitates tuning the shape of basis functions and the placement of points, both of which can be done with machine-learning methods. Applications to electronic and vibrational problems are reviewed focusing on calculations for molecules on surfaces for which there are few variational calculations. Collocation has advantages when potential energy surfaces are unavailable, in particular, for molecule-surface systems, and for systems for which standard direct product quadrature grids, often used with variational methods, are costly.
Collapse
Affiliation(s)
- Sergei Manzhos
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Manabu Ihara
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Tucker Carrington
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
4
|
Wang XG, Carrington T. Computing excited OH stretch states of water dimer in 12D using contracted intermolecular and intramolecular basis functions. J Chem Phys 2023; 158:084107. [PMID: 36859104 DOI: 10.1063/5.0139586] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Due to the ubiquity and importance of water, water dimer has been intensively studied. Computing the (ro-)vibrational spectrum of water dimer is challenging. The potential has eight wells separated by low barriers, which makes harmonic approximations of limited utility. A variational approach is imperative, but difficult because there are 12 coupled vibrational coordinates. In this paper, we use a product contracted basis whose functions are products of intramolecular and intermolecular functions computed using an iterative eigensolver. An intermediate matrix F facilitates calculating matrix elements. Using F, it is possible to do calculations on a general potential without storing the potential on the full quadrature grid. We find that surprisingly many intermolecular functions are required. This is due to the importance of coupling between inter- and intra-molecular coordinates. The full G16 symmetry of water dimer is exploited. We calculate, for the first time, monomer excited stretch states and compare P(1) transition frequencies with their experimental counterparts. We also compare with experimental vibrational shifts and tunneling splittings. Surprisingly, we find that the largest tunneling splitting, which does not involve the interchange of the two monomers, is smaller in the asymmetric stretch excited state than in the ground state. Differences between levels we compute and those obtained with a [6+6]D adiabatic approximation [Leforestier et al. J. Chem. Phys. 137 014305 (2012)] are ∼0.6 cm-1 for states without monomer excitation, ∼4 cm-1 for monomer excited bend states, and as large as ∼10 cm-1 for monomer excited stretch states.
Collapse
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
5
|
Mátyus E, Martín Santa Daría A, Avila G. Exact quantum dynamics developments for floppy molecular systems and complexes. Chem Commun (Camb) 2023; 59:366-381. [PMID: 36519578 DOI: 10.1039/d2cc05123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Molecular rotation, vibration, internal rotation, isomerization, tunneling, intermolecular dynamics of weakly and strongly interacting systems, intra-to-inter-molecular energy transfer, hindered rotation and hindered translation over surfaces are important types of molecular motions. Their fundamentally correct and detailed description can be obtained by solving the nuclear Schrödinger equation on a potential energy surface. Many of the chemically interesting processes involve quantum nuclear motions which are 'delocalized' over multiple potential energy wells. These 'large-amplitude' motions in addition to the high dimensionality of the vibrational problem represent challenges to the current (ro)vibrational methodology. A review of the quantum nuclear motion methodology is provided, current bottlenecks of solving the nuclear Schrödinger equation are identified, and solution strategies are reviewed. Technical details, computational results, and analysis of these results in terms of limiting models and spectroscopically relevant concepts are highlighted for selected numerical examples.
Collapse
Affiliation(s)
- Edit Mátyus
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | - Alberto Martín Santa Daría
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | - Gustavo Avila
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| |
Collapse
|
6
|
Tyuterev V, Tashkun S, Rey M, Nikitin A. High-order contact transformations of molecular Hamiltonians: general approach, fast computational algorithm and convergence of ro-vibrational polyad models. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2096140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Vladimir Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique, Université de Reims, Reims, France
- Laboratory of Molecular Quantum Mechanics and Radiative Transfer, Tomsk State University, Tomsk, Russia
| | - Sergey Tashkun
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
| | - Michael Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, Université de Reims, Reims, France
| | - Andrei Nikitin
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
7
|
Martín Santa Daría A, Avila G, Mátyus E. Performance of a black-box-type rovibrational method in comparison with a tailor-made approach: Case study for the methane-water dimer. J Chem Phys 2021; 154:224302. [PMID: 34241197 DOI: 10.1063/5.0054512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The present work intends to join and respond to the excellent and thoroughly documented rovibrational study of X. G. Wang and T. Carrington, Jr. [J. Chem. Phys. 154, 124112 (2021)] that used an approach tailored for floppy dimers with an analytic dimer Hamiltonian and a non-product basis set including Wigner D functions. It is shown in the present work that the GENIUSH black-box-type rovibrational method can approach the performance of the tailor-made computation for the example of the floppy methane-water dimer. Rovibrational transition energies and intensities are obtained in the black-box-type computation with a twice as large basis set and in excellent numerical agreement in comparison with the more efficient tailor-made approach.
Collapse
Affiliation(s)
| | - Gustavo Avila
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Edit Mátyus
- Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| |
Collapse
|
8
|
Wang XG, Carrington T. A variational calculation of vibrational levels of vinyl radical. J Chem Phys 2020; 152:204311. [PMID: 32486683 DOI: 10.1063/5.0007225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the vibrational energy levels of vinyl radical (VR) that are computed with a Lanczos eigensolver and a contracted basis. Many of the levels of the two previous VR variational calculations differ significantly and differ also from those reported in this paper. We identify the source of and correct symmetry errors on the potential energy surfaces used in the previous calculations. VR has two equivalent equilibrium structures. By plotting wavefunction cuts, we show that two tunneling paths play an important role. Using the computed wavefunctions, it is possible to assign many states and thereby to determine tunneling splittings that are compared with their experimental counterparts. Our computed red shift of the hot band at 2897.23 cm-1, observed by Dong et al. [J Chem. Phys. 128, 044305 (2008)], is 4.47 cm-1, which is close to the experimental value of 4.63 cm-1.
Collapse
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
9
|
Zhang Z, Gatti F, Zhang DH. Full-dimensional quantum mechanical calculations of the reaction probability of the H + CH 4 reaction based on a mixed Jacobi and Radau description. J Chem Phys 2020; 152:201101. [PMID: 32486690 DOI: 10.1063/5.0009721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A full-dimensional time-dependent wave packet study using mixed polyspherical Jacobi and Radau coordinates for the title reaction has been reported. The non-reactive moiety CH3 has been described using three Radau vectors, whereas two Jacobi vectors have been used for the bond breaking/formation process. A potential-optimized discrete variable representation basis has been employed to describe the vibrational coordinates of the reagent CH4. About one hundred billion basis functions have been necessary to achieve converged results. The reaction probabilities for some initial vibrational states are given. A comparison between the present approach and other methods, including reduced and full-dimensional ones, is also presented.
Collapse
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d'Orsay - UMR 8214 CNRS/Université Paris-Saclay, F-91405 Orsay, France
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
10
|
Simmons J, Wang XG, Carrington T. Computational Study of the Rovibrational Spectra of CH 2D + and CHD 2. J Phys Chem A 2019; 123:10281-10289. [PMID: 31657568 DOI: 10.1021/acs.jpca.9b09045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper, we present rovibrational energy levels of CH2D+ and CHD2+. They are computed with a large basis and the Lanczos algorithm. CH2D+ and CHD2+ are believed to play an important role in interstellar space, but so far, there are no definitive observations. The predictions of this paper should facilitate detection. For CH2D+, two CH stretch bands have been studied at high resolution. Compared to our calculated energies, the root-mean-square error is 0.08 cm-1. For CHD2+, one CH stretch band has been studied at high resolution. Compared to our calculated energies, the root-mean-square error is 0.5 cm-1. Errors are larger, for both isotopologues, for bend states. We attribute these errors to the potential energy surface. Wave function and probability distribution plots are used to make assignments. The ν1 band of CHD2+ is significantly perturbed, and according to our calculations, the 3ν3 state is closest and might be the most important perturber.
Collapse
Affiliation(s)
- Jesse Simmons
- Department of Chemistry , and Department of Physics , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Xiao-Gang Wang
- Department of Chemistry , and Department of Physics , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Tucker Carrington
- Department of Chemistry , and Department of Physics , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| |
Collapse
|
11
|
Castro-Juárez E, Wang XG, Carrington T, Quintas-Sánchez E, Dawes R. Computational study of the ro-vibrational spectrum of CO-CO 2. J Chem Phys 2019; 151:084307. [PMID: 31470713 DOI: 10.1063/1.5119762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An accurate ab initio ground-state intermolecular potential energy surface (PES) was determined for the CO-CO2 van der Waals dimer. The Lanczos algorithm was used to compute rovibrational energies on this PES. For both the C-in and O-in T-shaped isomers, the fundamental transition frequencies agree well with previous experimental results. We confirm that the in-plane states previously observed are geared states. In addition, we have computed and assigned many other vibrational states. The rotational constants we determine from J = 1 energy levels agree well with their experimental counterparts. Planar and out-of-plane cuts of some of the wavefunctions we compute are quite different, indicating strong coupling between the bend and torsional modes. Because the stable isomers are T-shaped, vibration along the out-of-plane coordinates is very floppy. In CO-CO2, when the molecule is out-of-plane, interconversion of the isomers is possible, but the barrier height is higher than the in-plane geared barrier height.
Collapse
Affiliation(s)
| | - Xiao-Gang Wang
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| |
Collapse
|
12
|
Nikitin AV, Protasevich AE, Rey M, Tyuterev VG. Highly excited vibrational levels of methane up to 10 300 cm -1: Comparative study of variational methods. J Chem Phys 2018; 149:124305. [PMID: 30278662 DOI: 10.1063/1.5042154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this work, we report calculated vibrational energy levels of the methane molecule up to 10 300 cm-1. Two potential energy surfaces constructed in quite different coordinate systems with different analytical representations are employed in order to evaluate the uncertainty of vibrational predictions. To calculate methane energy levels, we used two independent techniques of the variational method. One method uses an exact kinetic energy operator in internal curvilinear coordinates. Another one uses an expansion of Eckart-Watson nuclear motion Hamiltonian in rectilinear normal coordinates. In the Icosad range (up to five vibrational quanta bands-below 7800 cm-1), the RMS standard deviations between calculated and observed energy levels were 0.22 cm-1 and 0.41 cm-1 for these two quite different approaches. For experimentally well-known 3v3 sub-levels, the calculation accuracy is estimated to be ∼1 cm-1. In the Triacontad range (7660-9188 cm-1), the average error of the calculation is about 0.5 cm-1. The accuracy and convergence issues for higher energy ranges are discussed.
Collapse
Affiliation(s)
- Andrei V Nikitin
- V.E. Zuev Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Akademichesky Avenue, 634055 Tomsk, Russian Federation
| | - Alexander E Protasevich
- V.E. Zuev Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Akademichesky Avenue, 634055 Tomsk, Russian Federation
| | - Michael Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
| | - Vladimir G Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
| |
Collapse
|
13
|
Wang XG, Carrington T. Using monomer vibrational wavefunctions to compute numerically exact (12D) rovibrational levels of water dimer. J Chem Phys 2018; 148:074108. [DOI: 10.1063/1.5020426] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
14
|
Zhao Z, Chen J, Zhang Z, Zhang DH, Wang XG, Carrington T, Gatti F. Computing energy levels of CH4, CHD3, CH3D, and CH3F with a direct product basis and coordinates based on the methyl subsystem. J Chem Phys 2018; 148:074113. [DOI: 10.1063/1.5019323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhiqiang Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Siming South Road 422, 361005 Xiamen, China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiao-Gang Wang
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d’Orsay - UMR 8214 CNRS/Université Paris-Sud, F-91405 Orsay, France
| |
Collapse
|
15
|
|
16
|
Fábri C, Quack M, Császár AG. On the use of nonrigid-molecular symmetry in nuclear motion computations employing a discrete variable representation: A case study of the bending energy levels of C H 5 +. J Chem Phys 2017; 147:134101. [DOI: 10.1063/1.4990297] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Csaba Fábri
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Martin Quack
- Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Attila G. Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
| |
Collapse
|
17
|
Protasevich AE, Nikitin AV. Matrix elements of vibration kinetic energy operator of tetrahedral molecules in non-orthogonal-dependent coordinates. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1366568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alexander E. Protasevich
- Laboratory of Atmospheric Absorption Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB RAS, 1, Academician Zuev square, 634021, Tomsk, Russian Federation
| | - Andrei V. Nikitin
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB RAS, 1, Academician Zuev square, 634021, Tomsk, Russian Federation
| |
Collapse
|
18
|
Carrington T. Perspective: Computing (ro-)vibrational spectra of molecules with more than four atoms. J Chem Phys 2017; 146:120902. [DOI: 10.1063/1.4979117] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario
K7L 3N6, Canada
| |
Collapse
|
19
|
Wang XG, Carrington T. Using monomer vibrational wavefunctions as contracted basis functions to compute rovibrational levels of an H2O-atom complex in full dimensionality. J Chem Phys 2017; 146:104105. [DOI: 10.1063/1.4977179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
20
|
Manzhos S, Carrington T. Using an internal coordinate Gaussian basis and a space-fixed Cartesian coordinate kinetic energy operator to compute a vibrational spectrum with rectangular collocation. J Chem Phys 2016; 145:224110. [DOI: 10.1063/1.4971295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sergei Manzhos
- Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, 117576 Singapore
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
21
|
Nikitin AV, Rey M, Tyuterev VG. First fullyab initiopotential energy surface of methane with a spectroscopic accuracy. J Chem Phys 2016. [DOI: 10.1063/1.4961973] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Yu HG. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion. J Chem Phys 2016; 145:084109. [DOI: 10.1063/1.4961642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hua-Gen Yu
- Division of Chemistry, Department of Energy and Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| |
Collapse
|
23
|
Zhao Z, Chen J, Zhang Z, Zhang DH, Lauvergnat D, Gatti F. Full-dimensional vibrational calculations of five-atom molecules using a combination of Radau and Jacobi coordinates: Applications to methane and fluoromethane. J Chem Phys 2016; 144:204302. [DOI: 10.1063/1.4950028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhiqiang Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - David Lauvergnat
- CNRS, Laboratoire de Chimie Physique (UMR 8000), Université Paris-Sud, F-91405 Orsay, France
| | - Fabien Gatti
- CTMM, Institut Charles Gerhardt (UMR 5253), CC 1501, Université Montpellier, F-34095 Montpellier, Cedex 05, France
| |
Collapse
|
24
|
Wang XG, Carrington T. Calculated rotation-bending energy levels of CH5+ and a comparison with experiment. J Chem Phys 2016; 144:204304. [DOI: 10.1063/1.4948549] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
25
|
Ndengué S, Dawes R, Wang XG, Carrington T, Sun Z, Guo H. Calculated vibrational states of ozone up to dissociation. J Chem Phys 2016; 144:074302. [DOI: 10.1063/1.4941559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Steve Ndengué
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Xiao-Gang Wang
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Center for Advanced Chemical Physics and 2011 Frontier Center for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
26
|
Thomas PS, Carrington T. Using Nested Contractions and a Hierarchical Tensor Format To Compute Vibrational Spectra of Molecules with Seven Atoms. J Phys Chem A 2015; 119:13074-91. [DOI: 10.1021/acs.jpca.5b10015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Phillip S. Thomas
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
27
|
Brown J, Carrington T. Using an iterative eigensolver to compute vibrational energies with phase-spaced localized basis functions. J Chem Phys 2015; 143:044104. [DOI: 10.1063/1.4926805] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- James Brown
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
28
|
Yachmenev A, Yurchenko SN. Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame. J Chem Phys 2015; 143:014105. [DOI: 10.1063/1.4923039] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrey Yachmenev
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Sergei N. Yurchenko
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
29
|
Ndengué SA, Dawes R, Gatti F, Meyer HD. Resonances of HCO Computed Using an Approach Based on the Multiconfiguration Time-Dependent Hartree Method. J Phys Chem A 2015; 119:12043-51. [DOI: 10.1021/acs.jpca.5b04642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steve Alexandre Ndengué
- Department
of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Richard Dawes
- Department
of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Fabien Gatti
- CTMM,
Institut Charles Gerhardt, UMR 5253, Univeristé de Montpellier II, Place Eugène Bataillon, 34095 Montpellier, France
| | - Hans-Dieter Meyer
- Theoretische
Chemie, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 229, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
30
|
Abstract
I review two new ideas for coping with the size of large product basis sets and large product grids when one computes vibrational energy levels. The first is based on a tensor reduction scheme. It exploits advantages of a sum-of-products potential. The key idea is to use a basis each of whose function is a sum of optimized products and to compress the number of terms in each basis function. When the potential does not have the sum-of-products form, it is usually necessary to use quadrature. The second idea uses a nondirect product grid that has structure and is therefore compatible with efficient matrix–vector products.
Collapse
Affiliation(s)
- Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, ON K7L 3N6, Canada
- Chemistry Department, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
31
|
Yu HG. Accurate quantum dynamics calculations of vibrational spectrum of dideuteromethane CH2D2. J Chem Phys 2015; 142:194307. [DOI: 10.1063/1.4921411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hua-Gen Yu
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| |
Collapse
|
32
|
Han H, Song H, Li J, Guo H. Near Spectroscopically Accurate Ab Initio Potential Energy Surface for NH4+ and Variational Calculations of Low-Lying Vibrational Levels. J Phys Chem A 2015; 119:3400-6. [DOI: 10.1021/acs.jpca.5b01835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huixian Han
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- School
of Physics, Northwest University, Xi’an, Shaanxi 710069, China
| | - Hongwei Song
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jun Li
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
33
|
Nikitin AV, Rey M, Tyuterev VG. An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: Tetrahedral molecules. J Chem Phys 2015; 142:094118. [DOI: 10.1063/1.4913520] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Yu HG. Multi-layer Lanczos iteration approach to calculations of vibrational energies and dipole transition intensities for polyatomic molecules. J Chem Phys 2015; 142:044106. [DOI: 10.1063/1.4906492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hua-Gen Yu
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| |
Collapse
|
35
|
Yu HG. Neural network iterative diagonalization method to solve eigenvalue problems in quantum mechanics. Phys Chem Chem Phys 2015; 17:14071-82. [DOI: 10.1039/c5cp01438g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The neural network iterative diagonalization structure for computing the eigenstates of complex symmetric or Hermitian matrices.
Collapse
Affiliation(s)
- Hua-Gen Yu
- Department of Chemistry
- Brookhaven National Laboratory
- Upton
- USA
| |
Collapse
|
36
|
Yu HG. A complex guided spectral transform Lanczos method for studying quantum resonance states. J Chem Phys 2014; 141:244114. [PMID: 25554140 DOI: 10.1063/1.4905083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths, and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore, the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO2, and compared to previous calculations.
Collapse
Affiliation(s)
- Hua-Gen Yu
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| |
Collapse
|
37
|
Shimshovitz A, Bačić Z, Tannor DJ. The von Neumann basis in non-Cartesian coordinates: Application to floppy triatomic molecules. J Chem Phys 2014; 141:234106. [DOI: 10.1063/1.4902553] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Asaf Shimshovitz
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zlatko Bačić
- Department of Chemistry, New York University, New York, New York 10003, USA
- NYU-ECNU Center of Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - David J. Tannor
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
38
|
Rey M, Nikitin AV, Tyuterev VG. Accurate first-principles calculations for 12CH3D infrared spectra from isotopic and symmetry transformations. J Chem Phys 2014; 141:044316. [DOI: 10.1063/1.4890956] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Wang XG, Carrington T. Rovibrational levels and wavefunctions of Cl−H2O. J Chem Phys 2014; 140:204306. [DOI: 10.1063/1.4875798] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Brown J, Wang XG, Carrington T, Grubbs GS, Dawes R. Computational study of the rovibrational spectrum of CO2–CS2. J Chem Phys 2014; 140:114303. [DOI: 10.1063/1.4867792] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Ramakrishnan R, Carrington T. Vibrational energy levels of difluorodioxirane computed with variational and perturbative methods from a hybrid force field. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 119:107-112. [PMID: 23290829 DOI: 10.1016/j.saa.2012.11.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/06/2012] [Accepted: 11/23/2012] [Indexed: 06/01/2023]
Abstract
We have computed vibrational energy levels of difluorodioxirane (CF2O2). For the potential, a Taylor expansion in normal coordinates is used. The CCSD(T) and MP2 methods and correlation consistent basis sets of quadruple-zeta quality are used to determine the force constants. The vibrational Schrödinger equation was solved using both a variational method and second order perturbation theory. The Watson kinetic energy operator and a discrete variable representation were used with the DEWE (E. Mátyus, G. Czakó, B.T. Sutcliffe and A.G. Császár, J. Chem. Phys. 127 (2007) 084102) computer program to do the variational calculations. For the variational calculations, the average absolute deviation of fundamentals, with respect to experimental values, is less than 3 cm(-1). Perturbative results are almost as good. About 300 vibrational levels were computed. (16)O→(18)O isotopic shifts have also been calculated variationally for the lowest 75 vibrational energy levels and are compared to experimental results.
Collapse
Affiliation(s)
- Raghunathan Ramakrishnan
- Theoretische Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.
| | | |
Collapse
|
42
|
The Interplay of Nuclear and Electron Wavepacket Motion in the Control of Molecular Processes: A Theoretical Perspective. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-45290-1_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
43
|
Non-adiabatic Photochemistry: Ultrafast Electronic State Transitions and Nuclear Wavepacket Coherence. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-45290-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
44
|
Brown J, Wang XG, Carrington T. Calculating and assigning rovibrational energy levels of (15N2O)2, (15N14NO)2, 14N2O-15N2O and 15N14NO-15N2O. Phys Chem Chem Phys 2013; 15:19159-68. [PMID: 24104969 DOI: 10.1039/c3cp52548a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we report transition frequencies and rotational constants computed for several isotopologues of the nitrous oxide dimer. A previously reported intermolecular potential, the symmetry adapted Lanczos algorithm and an uncoupled product basis set are used to do the calculations. Rotational transition frequencies and rotational constants are in good agreement with experiment. We calculate states localized in both polar and nonpolar wells on the potential surface. Two of the four isotopologues we study have inequivalent monomers. They have wavefunctions localized over a single polar well.
Collapse
Affiliation(s)
- James Brown
- Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
45
|
Tyuterev V, Tashkun S, Rey M, Kochanov R, Nikitin A, Delahaye T. Accurate Spectroscopic Models for Methane Polyads Derived from a Potential Energy Surface Using High-Order Contact Transformations. J Phys Chem A 2013; 117:13779-805. [DOI: 10.1021/jp408116j] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vladimir Tyuterev
- GSMA,
UMR CNRS 7331, University of Reims, BP 1039, 51687 Reims Cedex 2, France
| | - Sergei Tashkun
- LTS, V.E. Zuev Institute of Atmospheric Optics, Academician Zuev square 1, 634021, Tomsk, Russia
| | - Michael Rey
- GSMA,
UMR CNRS 7331, University of Reims, BP 1039, 51687 Reims Cedex 2, France
| | - Roman Kochanov
- GSMA,
UMR CNRS 7331, University of Reims, BP 1039, 51687 Reims Cedex 2, France
- LTS, V.E. Zuev Institute of Atmospheric Optics, Academician Zuev square 1, 634021, Tomsk, Russia
| | - Andrei Nikitin
- GSMA,
UMR CNRS 7331, University of Reims, BP 1039, 51687 Reims Cedex 2, France
- LTS, V.E. Zuev Institute of Atmospheric Optics, Academician Zuev square 1, 634021, Tomsk, Russia
| | - Thibault Delahaye
- GSMA,
UMR CNRS 7331, University of Reims, BP 1039, 51687 Reims Cedex 2, France
| |
Collapse
|
46
|
Petit AS, Ford JE, McCoy AB. Simultaneous Evaluation of Multiple Rotationally Excited States of H3+, H3O+, and CH5+ Using Diffusion Monte Carlo. J Phys Chem A 2013; 118:7206-20. [DOI: 10.1021/jp408821a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew S. Petit
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jason E. Ford
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Anne B. McCoy
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
47
|
Wang XG, Carrington T. Computing rovibrational levels of polyatomic molecules with polyspherical coordinates and a contracted basis built with a K-independent vibrational primitive basis. Mol Phys 2013. [DOI: 10.1080/00268976.2013.808387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Xiao-Gang Wang
- Chemistry Department, Queen’s University , Kingston, Ontario, Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University , Kingston, Ontario, Canada
| |
Collapse
|
48
|
Dawes R, Wang XG, Carrington T. CO Dimer: New Potential Energy Surface and Rovibrational Calculations. J Phys Chem A 2013; 117:7612-30. [DOI: 10.1021/jp404888d] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard Dawes
- Department
of Chemistry, Missouri University of Science and Technology, Rolla,
Missouri 65409, United States
| | - Xiao-Gang Wang
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6,
Canada
| | - Tucker Carrington
- Chemistry Department, Queen’s University, Kingston, Ontario K7L 3N6,
Canada
| |
Collapse
|
49
|
Jaquet R, Carrington T. Using a Nondirect Product Basis to Compute J > 0 Rovibrational States of H3+. J Phys Chem A 2013; 117:9493-500. [DOI: 10.1021/jp312027s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ralph Jaquet
- Theoretische Chemie, Universität Siegen, D-57068 Siegen, Germany
| | - Tucker Carrington
- Chemistry Department, Queens’s University, Kingston, Ontario, K7L
3N6, Canada
| |
Collapse
|
50
|
Mielke SL, Chakraborty A, Truhlar DG. Vibrational Configuration Interaction Using a Tiered Multimode Scheme and Tests of Approximate Treatments of Vibrational Angular Momentum Coupling: A Case Study for Methane. J Phys Chem A 2013; 117:7327-43. [DOI: 10.1021/jp4011789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven L. Mielke
- Department of Chemistry
and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis,
Minnesota 55455-0431, United States
| | - Arindam Chakraborty
- Department of Chemistry
and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis,
Minnesota 55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry
and Minnesota Supercomputing
Institute, University of Minnesota, Minneapolis,
Minnesota 55455-0431, United States
| |
Collapse
|