Khriachtchev L. Matrix-isolation studies of noncovalent interactions: more sophisticated approaches.
J Phys Chem A 2015;
119:2735-46. [PMID:
25679775 DOI:
10.1021/jp512005h]
[Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Noncovalent interactions are crucial for many physical, chemical, and biological phenomena. Matrix isolation is a powerful method to study noncovalent interactions, including hydrogen-bonded species, and it has been extensively used in this field. However, there are difficult situations, such as in the case of species that are impossible to prepare in the gas phase. In this article, we describe some advanced approaches allowing studies of complexes that are problematic for the traditional methods. Photolysis of a suitable precursor in a matrix can lead to a large concentration of 1:1 complexes, which are otherwise very difficult to prepare (e.g., the H2O···O complex). Photolysis of species combined with annealing can lead to complexes of molecules with mobile atoms (e.g., the same H2O···O complex). Simultaneous photolysis of two species combined with annealing can produce complexes of radicals via reactions of the photogenerated complexes with mobile atoms (e.g., the H2O···HCO complex). Interaction of noble-gas (Ng) hydrides with other species is another topic (e.g., the N2···HArF complex) and very large blue shifts of the H-Ng stretching modes are normally observed for these systems. Complexes and dimers of the higher-energy conformer of formic acid have been prepared by using selective vibrational excitation of the ground-state conformer. The higher-energy conformer of formic acid can be efficiently stabilized in the complexes with strong hydrogen bonding. We also consider some problematic cases when the changes in the vibrational frequencies of the 1:1 complexes are very small (e.g., the phenol···Xe complex) and when the complex formation is prevented by strong solvation in the matrix (e.g., species in solid xenon).
Collapse