1
|
Triphase Separation of a Ternary Symmetric Highly Viscous Mixture. ENTROPY 2018; 20:e20120936. [PMID: 33266660 PMCID: PMC7512524 DOI: 10.3390/e20120936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/02/2022]
Abstract
We discuss numerical results of diffusion-driven separation into three phases of a symmetric, three-component highly viscous liquid mixture after an instantaneous quench from the one-phase region into an unstable location within the tie triangle of its phase diagram. Our theoretical approach follows a diffuse-interface model of partially miscible ternary liquid mixtures that incorporates the one-parameter Margules correlation as a submodel for the enthalpic (so-called excess) component of the Gibbs energy of mixing, while its nonlocal part is represented based on a square-gradient (Cahn–Hilliard-type) modeling assumption. The governing equations for this phase-field ternary mixture model are simulated in 3D, showing the segregation kinetics in terms of basic segregation statistics, such as the integral scale of the pair-correlation function and the separation depth for each component. Based on the temporal evolution of the integral scales, phase separation takes place via the simultaneous growth of three phases up until a symmetry-breaking event after which one component continues to separate quickly, while phase separation for the other two seems to be delayed. However, inspection of the separation depths reveals that there can be no symmetry among the three components at any instant in time during a triphase segregation process.
Collapse
|
2
|
Santos-Oliveira P, Correia A, Rodrigues T, Ribeiro-Rodrigues TM, Matafome P, Rodríguez-Manzaneque JC, Seiça R, Girão H, Travasso RDM. The Force at the Tip--Modelling Tension and Proliferation in Sprouting Angiogenesis. PLoS Comput Biol 2015; 11:e1004436. [PMID: 26248210 PMCID: PMC4527825 DOI: 10.1371/journal.pcbi.1004436] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 07/08/2015] [Indexed: 12/24/2022] Open
Abstract
Sprouting angiogenesis, where new blood vessels grow from pre-existing ones, is a complex process where biochemical and mechanical signals regulate endothelial cell proliferation and movement. Therefore, a mathematical description of sprouting angiogenesis has to take into consideration biological signals as well as relevant physical processes, in particular the mechanical interplay between adjacent endothelial cells and the extracellular microenvironment. In this work, we introduce the first phase-field continuous model of sprouting angiogenesis capable of predicting sprout morphology as a function of the elastic properties of the tissues and the traction forces exerted by the cells. The model is very compact, only consisting of three coupled partial differential equations, and has the clear advantage of a reduced number of parameters. This model allows us to describe sprout growth as a function of the cell-cell adhesion forces and the traction force exerted by the sprout tip cell. In the absence of proliferation, we observe that the sprout either achieves a maximum length or, when the traction and adhesion are very large, it breaks. Endothelial cell proliferation alters significantly sprout morphology, and we explore how different types of endothelial cell proliferation regulation are able to determine the shape of the growing sprout. The largest region in parameter space with well formed long and straight sprouts is obtained always when the proliferation is triggered by endothelial cell strain and its rate grows with angiogenic factor concentration. We conclude that in this scenario the tip cell has the role of creating a tension in the cells that follow its lead. On those first stalk cells, this tension produces strain and/or empty spaces, inevitably triggering cell proliferation. The new cells occupy the space behind the tip, the tension decreases, and the process restarts.
Our results highlight the ability of mathematical models to suggest relevant hypotheses with respect to the role of forces in sprouting, hence underlining the necessary collaboration between modelling and molecular biology techniques to improve the current state-of-the-art. Sprouting angiogenesis—a process by which new blood vessels grow from existing ones—is an ubiquitous phenomenon in health and disease of higher organisms, playing a crucial role in organogenesis, wound healing, inflammation, as well as on the onset and progression of over 50 different diseases such as cancer, rheumatoid arthritis and diabetes. Mathematical models have the ability to suggest relevant hypotheses with respect to the mechanisms of cell movement and rearrangement within growing vessel sprouts. The inclusion of both biochemical and mechanical processes in a mathematical model of sprouting angiogenesis permits to describe sprout extension as a function of the forces exerted by the cells in the tissue. It also allows to question the regulation of biochemical processes by mechanical forces and vice-versa. In this work we present a compact model of sprouting angiogenesis that includes the mechanical characteristics of the vessel and the tissue. We use this model to suggest the mechanism for the regulation of proliferation within sprout formation. We conclude that the tip cell has the role of creating a tension in the cells that follow its lead. On those first cells of the stalk, this tension produces strain and/or empty spaces, inevitably triggering cell proliferation. The new cells occupy the space behind the tip, the tension decreases, and the process restarts. The modelling strategy used, deemed phase-field, permits to describe the evolution of the shape of different domains in complex systems. It is focused on the movement of the interfaces between the domains, and not on an exhaustive description of the transport properties within each domain. For this reason, it requires a reduced number of parameters, and has been used extensively in modelling other biological phenomena such as tumor growth. The coupling of mechanical and biochemical processes in a compact mathematical model of angiogenesis will enable the study of lumen formation and aneurisms in the near future. Also, this framework will allow the study of the action of flow in vessel remodelling, since local forces can readily be coupled with cell movement to obtain the final vessel morphology.
Collapse
Affiliation(s)
| | - António Correia
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tiago Rodrigues
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Teresa M Ribeiro-Rodrigues
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, Coimbra, Portugal
| | | | - Raquel Seiça
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Henrique Girão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Rui D. M. Travasso
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
3
|
Mesoscale modeling: solving complex flows in biology and biotechnology. Trends Biotechnol 2013; 31:426-34. [DOI: 10.1016/j.tibtech.2013.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 11/24/2022]
|
4
|
LATTICE BOLTZMANN SIMULATION OF THE CHEMICALLY REACTIVE MIXTURES UNDER SIMPLE AND OSCILLATORY SHEAR FLOW. ACTA POLYM SIN 2013. [DOI: 10.3724/sp.j.1105.2013.12223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Furtado K, Skartlien R. Derivation and thermodynamics of a lattice Boltzmann model with soluble amphiphilic surfactant. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:066704. [PMID: 20866541 DOI: 10.1103/physreve.81.066704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Indexed: 05/29/2023]
Abstract
We derive a lattice Boltzmann model of a ternary fluid mixture, one component of which consists of amphiphilic molecules with a rotational degree of freedom. The model was first introduced elsewhere where it was constructed on the basis of the earlier Shan-Chen type lattice Boltzmann model for binary fluids. We provide a rigorous derivation of the model from an underlying continuum kinetic theory. In particular, we show how the model can be interpreted as a discretization of a Vlasov-Boltzmann type kinetic theory for a fluid composed of two species of oppositely charged monopoles and a composite, dipolar molecule. We also derive a free-energy functional for the model, including the contribution from the amphiphiles, and confirm that the free energy is lowered during phase separation and during the formation of a stable emulsion.
Collapse
Affiliation(s)
- Kalli Furtado
- Institute for Energy Technology, 2027 Kjeller, Norway.
| | | |
Collapse
|
6
|
Balazs AC, Kuksenok O, Alexeev A. Modeling the Interactions between Membranes and Inclusions: Designing Self-Cleaning Films and Resealing Pores. MACROMOL THEOR SIMUL 2009. [DOI: 10.1002/mats.200800057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Furtado K, Pooley CM, Yeomans JM. Lattice Boltzmann study of convective drop motion driven by nonlinear chemical kinetics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:046308. [PMID: 18999527 DOI: 10.1103/physreve.78.046308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2008] [Indexed: 05/27/2023]
Abstract
We model a reaction-diffusion-convection system which comprises a liquid drop containing solutes that undergo an Oregonator reaction producing chemical waves. The reactants are taken to have surfactant properties so that the variation in their concentrations induces Marangoni flows at the drop interface which lead to a displacement of the drop. We discuss the mechanism by which the chemical-mechanical coupling leads to drop motion and the way in which the net displacement of the drop depends on the strength of the surfactant action. The equations of motion are solved using a lattice Boltzmann approach.
Collapse
Affiliation(s)
- K Furtado
- Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, United Kingdom
| | | | | |
Collapse
|
8
|
Kuksenok O, Balazs AC. Gradient sensing in reactive, ternary membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1878-1883. [PMID: 18220431 DOI: 10.1021/la7028615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Using computer simulations, we investigate the behavior of reactive ternary ABC membranes that are subjected to an external, spatially nonuniform stimulus, which controls the rate of interconversion between the A and B components. We assume that A and B have different spontaneous curvatures. Furthermore, the C component is taken to be nonreactive and incompatible with both A and B. We find that a gradient in the applied stimulus causes the dynamic reconstruction of the membrane, with a preferential reorientation of the reactive AB domains along the gradient. In addition, the external gradient effectively controls the transport of the nonreactive C component within the membrane. The latter effect could potentially be exploited for cleaning the membrane of the nonreactive C "impurities" or for the targeted delivery of the C component to specific locations.
Collapse
Affiliation(s)
- Olga Kuksenok
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
9
|
Abstract
Using a variety of computational techniques, I investigate how the self-assembly of complex mixtures can be guided by surfaces or external stimuli to form spatially regular or temporally periodic patterns. Focusing on mixtures in confined geometries, I examine how thermodynamic and hydrodynamic effects can be exploited to create regular arrays of nanowires or monodisperse, particle-filled droplets. I also show that an applied light source and chemical reaction can be harnessed to create hierarchically ordered patterns in ternary, phase-separating mixtures. Finally, I consider the combined effects of confining walls and a chemical reaction to demonstrate that a swollen polymer gel can be driven to form dynamically periodic structures. In addition to illustrating the effectiveness of external factors in directing the self-organization of multicomponent mixtures, the selected examples illustrate how coarse-grained models can be used to capture both the equilibrium phase behavior and the dynamics of these complex systems.
Collapse
Affiliation(s)
- Anna C Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
10
|
Kuksenok O, Balazs AC. Modeling multicomponent reactive membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:051906. [PMID: 17677097 DOI: 10.1103/physreve.75.051906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Indexed: 05/16/2023]
Abstract
Using analytical calculations and computer simulations, we study binary AB and ternary ABC membranes that respond to an external stimulus by interconverting A and B components. The C component is assumed to be nonreactive and is incompatible with both A and B . We also assume that A and B have different spontaneous curvatures. The dynamics of the ternary system is described in terms of three order parameters: two specify the local composition and a third characterizes the local height of the membrane. Our description of the two-component membrane is based on a recent model proposed by Reigada [Phys. Rev. E. 72, 051921 (2005)]; we extend the latter approach by explicitly including the effects of the membrane's surface tension on the phase behavior of the system. By performing a linear stability analysis, we determine the behavior of the reactive AB membrane for a given bending elasticity and surface tension at different values of the reaction rate coefficients. We also numerically integrate the governing dynamic equations, and the results of these simulations are in agreement with the analytical predictions. For the two-component membranes, we calculate two critical values of the reaction rate coefficients, which define the behavior of the system, and plot the phase diagrams in terms of different parameters. We illustrate that the surface tension of the membrane strongly affects these critical values of the reaction rate coefficients and therefore the location of the phase boundaries. We also pinpoint the regions on the phase diagram where the late-time behavior is affected by the initial fluctuations, i.e., where such a reactive system has some "memory" of its prior state. In the case of the three-component system, we show that the presence of the nonreactive C component strongly affects the composition and topology of the membrane, as well as critically altering the propagation of the traveling waves within the system.
Collapse
Affiliation(s)
- Olga Kuksenok
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
11
|
Kuksenok O, Travasso RDM, Balazs AC. Dynamics of ternary mixtures with photosensitive chemical reactions: creating three-dimensionally ordered blends. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:011502. [PMID: 16907095 DOI: 10.1103/physreve.74.011502] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Indexed: 05/11/2023]
Abstract
Using computer simulations, we establish an approach for creating defect-free, periodically ordered polymeric materials. The system involves ABC ternary mixtures where the A and B components undergo a reversible photochemical reaction. In addition, all three components are mutually immiscible and undergo phase separation. Through the simulations, we model the effects of illuminating a three-dimensional (3D) sample with spatially and temporally dependent light irradiation. Experimentally, this situation can be achieved by utilizing both a uniform background light and a spatially localized, higher intensity light, and then rastering a higher-intensity light over the 3D sample. We first focus on the case where the higher-intensity light is held stationary and focused in a distinct region within the system. The C component is seen to displace the A and B within this region and replicate the pattern formed by the higher-intensity light. In effect, one can write a pattern of C onto the AB binary system by focusing the higher-intensity light in the desired arrangement. We isolate the conditions that are necessary for producing clearly written patterns of C (i.e., for obtaining sharp interfaces between the C and A/B domains). We next consider the effect of rastering a higher-intensity light over this sample and find that this light "combs out" defects in the AB blend as it moves through the system. The resulting material displays a defect-free structure that encompasses both a periodic ordering of the A and B domains and a well-defined motif of C. In this manner, one can create hierarchically patterned materials that exhibit periodicity over two distinct length scales. The approach is fully reversible, noninvasive, and points to a novel means of patterning with homopolymers, which normally do not self-assemble into periodic structures.
Collapse
Affiliation(s)
- Olga Kuksenok
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
12
|
Travasso RDM, Kuksenok O, Balazs AC. Exploiting photoinduced reactions in polymer blends to create hierarchically ordered, defect-free materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:2620-8. [PMID: 16519462 DOI: 10.1021/la053350d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Computer simulations reveal how photoinduced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which thereby undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated diblock copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a nonreactive homopolymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, nonintrusive process for manufacturing high quality polymeric devices in a low-cost, efficient manner.
Collapse
Affiliation(s)
- Rui D M Travasso
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
13
|
Travasso RDM, Kuksenok O, Balazs AC. Harnessing light to create defect-free, hierarchically structured polymeric materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:10912-5. [PMID: 16285752 DOI: 10.1021/la052511a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Computer simulations reveal how photoinduced chemical reactions in polymeric mixtures can be exploited to create long-range order in materials with features that range from the submicron to the nanoscale. The process is initiated by shining a spatially uniform light on a photosensitive AB binary blend, which thereby undergoes both a reversible chemical reaction and a phase separation. When a well-collimated, higher intensity light is rastered over the sample, the system forms defect-free, spatially periodic structures. If a nonreactive homopolymer C is added to the system, this component localizes in regions that are irradiated with a higher intensity light, and one can effectively "write" a pattern of C onto the AB film. Rastering over the ternary blend with the collimated light now leads to hierarchically ordered patterns of A, B, and C. Because our approach involves homopolymers, it significantly expands the range of materials that can be fashioned into a periodic pattern. The findings point to a facile process for manufacturing high-quality polymeric components in an efficient manner.
Collapse
|
14
|
Buxton GA, Clarke N. Creating structures in polymer blends via a dissolution and phase-separation process. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:011807. [PMID: 16089993 DOI: 10.1103/physreve.72.011807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Indexed: 05/03/2023]
Abstract
We show how three-dimensional structures can be formed in polymer blends from pre-existing structures. "Tape" of one polymer is inserted into a matrix of an alternative polymer to form an array of parallelepipeds. We subject this regular structure to partial dissolution in the one-phase region, before quenching the system into the two-phase region. The interplay between dissolution and phase separation can result in complex hierarchic structures. In particular, arrays of microchannels of one polymer species can be formed inside the other polymer.
Collapse
|
15
|
Buxton GA, Verberg R, Jasnow D, Balazs AC. Newtonian fluid meets an elastic solid: coupling lattice Boltzmann and lattice-spring models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:056707. [PMID: 16089691 DOI: 10.1103/physreve.71.056707] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Indexed: 05/03/2023]
Abstract
We integrate the lattice Boltzmann model (LBM) and lattice spring model (LSM) to capture the coupling between a compliant bounding surface and the hydrodynamic response of an enclosed fluid. We focus on an elastic, spherical shell filled with a Newtonian fluid where no-slip boundary conditions induce the interaction. We calculate the "breathing mode" oscillations for this system and find good agreement with analytical solutions. Furthermore, we simulate the impact of the fluid-filled, elastic shell on a hard wall and on an adhesive surface. Understanding the dynamics of fluid-filled shells, especially near adhesive surfaces, can be particularly important in the design of microcapsules for pharmaceutical and other technological applications. Our studies reveal that the binding of these capsules to specific surfaces can be sensitive to the physical properties of both the outer shell and the enclosed fluid. The integrated LBM-LSM methodology opens up the possibility of accurately and efficiently capturing the dynamic coupling between fluid flow and a compliant bounding surface in a broad variety of systems.
Collapse
Affiliation(s)
- Gavin A Buxton
- Chemical and Petroleum Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
16
|
Balazs AC. Challenges in polymer science: Controlling vesicle-substrate interactions. ACTA ACUST UNITED AC 2005. [DOI: 10.1002/polb.20635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Buxton GA, Balazs AC. Micromechanical Simulation of the Deformation and Fracture of Polymer Blends. Macromolecules 2004. [DOI: 10.1021/ma048470r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gavin A. Buxton
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Anna C. Balazs
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|