1
|
Novotný J, Munzarová M, Marek R. Mechanisms of Ligand Hyperfine Coupling in Transition-Metal Complexes: σ and π Transmission Pathways. Inorg Chem 2024; 63:8580-8592. [PMID: 38690843 PMCID: PMC11094796 DOI: 10.1021/acs.inorgchem.3c04425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/03/2024]
Abstract
Theoretical interpretation of hyperfine interactions was pioneered in the 1950s-1960s by the seminal works of McConnell, Karplus, and others for organic radicals and by Watson and Freeman for transition-metal (TM) complexes. In this work, we investigate a series of octahedral Ru(III) complexes with aromatic ligands to understand the mechanism of transmission of the spin density from the d-orbital of the metal to the s-orbitals of the ligand atoms. Spin densities and spin populations underlying ligand hyperfine couplings are analyzed in terms of π-conjugative or σ-hyperconjugative delocalization vs spin polarization based on symmetry considerations and restricted open-shell vs unrestricted wave function analysis. The transmission of spin density is shown to be most efficient in the case of symmetry-allowed π-conjugative delocalization, but when the π-conjugation is partially or fully symmetry-forbidden, it can be surpassed by σ-hyperconjugative delocalization. Despite a lower spin population of the ligand in σ-hyperconjugative transmission, the hyperfine couplings can be larger because of the direct involvement of the ligand s-orbitals in this delocalization pathway. We demonstrate a quantitative correlation between the hyperfine couplings of aromatic ligand atoms and the characteristics of the metal-ligand bond modulated by the trans substituent, a hyperfine trans effect.
Collapse
Affiliation(s)
- Jan Novotný
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, Brno CZ-62500, Czechia
| | - Markéta Munzarová
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, Brno CZ-62500, Czechia
| | - Radek Marek
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, Brno CZ-62500, Czechia
| |
Collapse
|
2
|
Margaret McCutcheon M, Freindorf M, Kraka E. Bonding in Nitrile Photo-dissociating Ruthenium Drug Candidates --A Local Vibrational Mode Study. J Chem Phys 2022; 157:014301. [DOI: 10.1063/5.0094567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we investigated bonding features 15 ruthenium complexes of the type [Ru(tpy)(L)-(CH3CN)]n+, containing the tridentate tpy ligand (tpy = 2,2':6',2'--terpyridine) and various bidentate ancillary ligands, 12 compounds originally synthesized by Loftus et al. (J. Phys. Chem. C 123, 10291-10299 (2019)) complemented with three additional complexes. The main focus of our work was to relate these local features to the experimental data of Loftus et al. which assess the efficiency of nitrile release in an indirect way via observed quantum yields for ruthenium water association after nitrile release. As a tool to quantitatively assess Ru-NC and Ru-L bonding we utilized the local vibrational mode analysis complemented by the topological analysis of the electron density and the natural bond orbital analysis. Interestingly, the stronger Ru-NC bonds have the greater observed quantum yields, leading to the conclusion that the observed quantum yields are a result of a complex interplay of several processes excluding a direct relationship between QY and Ru-NC or Ru-L bond strengths. We identified the ST splitting as one of the key players and not the Ru-NC bond strength, as one may have thought. In summary, this work has presented a modern computational tool set for the investigation of bonding features applied to nitrile photo-dissociating ruthenium drug candidates forming a valuable basis for future design and fine tuning of nitrile releasing ruthenium compounds, as well as for the understanding of how local properties affect overall experimental outcomes.
Collapse
Affiliation(s)
| | | | - Elfi Kraka
- Chemistry, Southern Methodist University, United States of America
| |
Collapse
|
3
|
Vogler S, Dietschreit JCB, Peters LDM, Ochsenfeld C. Important components for accurate hyperfine coupling constants: electron correlation, dynamic contributions, and solvation effects. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1772515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Sigurd Vogler
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich, Germany
| | | | - Laurens D. M. Peters
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich, Germany
| |
Collapse
|
4
|
Olsen JMH, Reine S, Vahtras O, Kjellgren E, Reinholdt P, Hjorth Dundas KO, Li X, Cukras J, Ringholm M, Hedegård ED, Di Remigio R, List NH, Faber R, Cabral Tenorio BN, Bast R, Pedersen TB, Rinkevicius Z, Sauer SPA, Mikkelsen KV, Kongsted J, Coriani S, Ruud K, Helgaker T, Jensen HJA, Norman P. Dalton Project: A Python platform for molecular- and electronic-structure simulations of complex systems. J Chem Phys 2020; 152:214115. [PMID: 32505165 DOI: 10.1063/1.5144298] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Dalton Project provides a uniform platform access to the underlying full-fledged quantum chemistry codes Dalton and LSDalton as well as the PyFraME package for automatized fragmentation and parameterization of complex molecular environments. The platform is written in Python and defines a means for library communication and interaction. Intermediate data such as integrals are exposed to the platform and made accessible to the user in the form of NumPy arrays, and the resulting data are extracted, analyzed, and visualized. Complex computational protocols that may, for instance, arise due to a need for environment fragmentation and configuration-space sampling of biochemical systems are readily assisted by the platform. The platform is designed to host additional software libraries and will serve as a hub for future modular software development efforts in the distributed Dalton community.
Collapse
Affiliation(s)
- Jógvan Magnus Haugaard Olsen
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Simen Reine
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, N-0315 Oslo, Norway
| | - Olav Vahtras
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Erik Kjellgren
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Karen Oda Hjorth Dundas
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Xin Li
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Janusz Cukras
- Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Magnus Ringholm
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Erik D Hedegård
- Division of Theoretical Chemistry, Lund University, SE-223 62 Lund, Sweden
| | - Roberto Di Remigio
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Nanna H List
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Rasmus Faber
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | - Radovan Bast
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Thomas Bondo Pedersen
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, N-0315 Oslo, Norway
| | - Zilvinas Rinkevicius
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Kenneth Ruud
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Trygve Helgaker
- Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, N-0315 Oslo, Norway
| | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Schattenberg CJ, Maier TM, Kaupp M. Lessons from the Spin-Polarization/Spin-Contamination Dilemma of Transition-Metal Hyperfine Couplings for the Construction of Exchange-Correlation Functionals. J Chem Theory Comput 2018; 14:5653-5672. [DOI: 10.1021/acs.jctc.8b00597] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caspar J. Schattenberg
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Toni M. Maier
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Martin Kaupp
- Institut für Chemie, Technische Universität Berlin, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
6
|
Maier TM, Arbuznikov AV, Kaupp M. Local hybrid functionals: Theory, implementation, and performance of an emerging new tool in quantum chemistry and beyond. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1378] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Toni M. Maier
- Institut für Chemie Theoretische Chemie/Quantenchemie Technische Universität Berlin Berlin Germany
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering Waseda University Tokyo Japan
| | - Alexei V. Arbuznikov
- Institut für Chemie Theoretische Chemie/Quantenchemie Technische Universität Berlin Berlin Germany
| | - Martin Kaupp
- Institut für Chemie Theoretische Chemie/Quantenchemie Technische Universität Berlin Berlin Germany
| |
Collapse
|
7
|
Vogler S, Savasci G, Ludwig M, Ochsenfeld C. Selected-Nuclei Method for the Computation of Hyperfine Coupling Constants within Second-Order Møller-Plesset Perturbation Theory. J Chem Theory Comput 2018; 14:3014-3024. [PMID: 29762028 DOI: 10.1021/acs.jctc.8b00116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We introduce a new ansatz to compute hyperfine coupling constants of selected nuclei at the level of second-order Møller-Plesset perturbation (MP2) and double-hybrid density functional theory with reduced computational effort, opening the route to the analyis of hyperfine coupling constants of large molecular structures. Our approach is based on a reformulation of the canonical MP2 term in atomic orbitals, thus exploiting the locality of electron correlation. We show that a perturbation-including integral screening reduces the scaling behavior of the number of significant two-electron integrals to sublinear. This selected-nuclei approach allows for an efficient computation within scaled-opposite spin (SOS) RI-MP2 on massively parallelized architectures such as graphical processor units (GPUs), thus enabling studies on the influence of the environment on hyperfine coupling constants.
Collapse
Affiliation(s)
- Sigurd Vogler
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , Butenandtstrasse 7 , 81377 Munich , Germany
| | - Gökcen Savasci
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , Butenandtstrasse 7 , 81377 Munich , Germany.,Max Planck Institute for Solid State Research, Heisenbergstrasse 1 , 70569 Stuttgart , Germany
| | - Martin Ludwig
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , Butenandtstrasse 7 , 81377 Munich , Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , Butenandtstrasse 7 , 81377 Munich , Germany.,Max Planck Institute for Solid State Research, Heisenbergstrasse 1 , 70569 Stuttgart , Germany
| |
Collapse
|
8
|
Giner E, Tenti L, Angeli C, Ferré N. Computation of the Isotropic Hyperfine Coupling Constant: Efficiency and Insights from a New Approach Based on Wave Function Theory. J Chem Theory Comput 2017; 13:475-487. [DOI: 10.1021/acs.jctc.6b00827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuel Giner
- Dipartimento
di Scienze Chimiche e Famaceutiche, Universita di Ferrara, Via Fossato
di Mortara 17, I-44121 Ferrara, Italy
| | - Lorenzo Tenti
- Dipartimento
di Scienze Chimiche e Famaceutiche, Universita di Ferrara, Via Fossato
di Mortara 17, I-44121 Ferrara, Italy
| | - Celestino Angeli
- Dipartimento
di Scienze Chimiche e Famaceutiche, Universita di Ferrara, Via Fossato
di Mortara 17, I-44121 Ferrara, Italy
| | | |
Collapse
|
9
|
Remigio RD, Repisky M, Komorovsky S, Hrobarik P, Frediani L, Ruud K. Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1239846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Roberto Di Remigio
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø– The Arctic University of Norway, Tromsø, Norway
| | - Michal Repisky
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø– The Arctic University of Norway, Tromsø, Norway
| | - Stanislav Komorovsky
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø– The Arctic University of Norway, Tromsø, Norway
| | - Peter Hrobarik
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Luca Frediani
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø– The Arctic University of Norway, Tromsø, Norway
| | - Kenneth Ruud
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø– The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
10
|
Adam AY, Yachmenev A, Yurchenko SN, Jensen P. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical. J Chem Phys 2015; 143:244306. [PMID: 26723670 DOI: 10.1063/1.4938253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant's equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.
Collapse
Affiliation(s)
- Ahmad Y Adam
- Fakultät Mathematik und Naturwissenschaften, Physikalische und Theoretische Chemie, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
| | - Andrey Yachmenev
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Sergei N Yurchenko
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Per Jensen
- Fakultät Mathematik und Naturwissenschaften, Physikalische und Theoretische Chemie, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
| |
Collapse
|
11
|
Calculations of hyperfine coupling constant of copper(II) in aqueous environment. Finite temperature molecular dynamics and relativistic effects. J Mol Model 2015; 21:237. [DOI: 10.1007/s00894-015-2752-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
|
12
|
Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Ekström U, Enevoldsen T, Eriksen JJ, Ettenhuber P, Fernández B, Ferrighi L, Fliegl H, Frediani L, Hald K, Halkier A, Hättig C, Heiberg H, Helgaker T, Hennum AC, Hettema H, Hjertenæs E, Høst S, Høyvik IM, Iozzi MF, Jansík B, Jensen HJA, Jonsson D, Jørgensen P, Kauczor J, Kirpekar S, Kjærgaard T, Klopper W, Knecht S, Kobayashi R, Koch H, Kongsted J, Krapp A, Kristensen K, Ligabue A, Lutnæs OB, Melo JI, Mikkelsen KV, Myhre RH, Neiss C, Nielsen CB, Norman P, Olsen J, Olsen JMH, Osted A, Packer MJ, Pawlowski F, Pedersen TB, Provasi PF, Reine S, Rinkevicius Z, Ruden TA, Ruud K, Rybkin VV, Sałek P, Samson CCM, de Merás AS, Saue T, Sauer SPA, Schimmelpfennig B, Sneskov K, Steindal AH, Sylvester-Hvid KO, Taylor PR, Teale AM, Tellgren EI, Tew DP, Thorvaldsen AJ, Thøgersen L, Vahtras O, Watson MA, Wilson DJD, Ziolkowski M, Agren H. The Dalton quantum chemistry program system. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2013; 4:269-284. [PMID: 25309629 PMCID: PMC4171759 DOI: 10.1002/wcms.1172] [Citation(s) in RCA: 874] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.
Collapse
Affiliation(s)
- Kestutis Aidas
- Department of General Physics and Spectroscopy, Faculty of Physics, Vilnius University Vilnius, Lithuania
| | | | - Keld L Bak
- Aarhus University School of Engineering Aarhus, Denmark
| | - Vebjørn Bakken
- Faculty of Mathematics and Natural Sciences, University of Oslo Oslo, Norway
| | - Radovan Bast
- Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology Stockholm, Sweden
| | | | | | | | - Sonia Coriani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste Trieste, Italy
| | - Pål Dahle
- Norwegian Computing Center Oslo, Norway
| | | | - Ulf Ekström
- CTCC, Department of Chemistry, University of Oslo Oslo, Norway
| | - Thomas Enevoldsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Odense, Denmark
| | | | | | - Berta Fernández
- Department of Physical Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela Santiago de Compostela, Spain
| | - Lara Ferrighi
- CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø Norway
| | - Heike Fliegl
- CTCC, Department of Chemistry, University of Oslo Oslo, Norway
| | - Luca Frediani
- CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø Norway
| | | | | | - Christof Hättig
- Department of Theoretical Chemistry, Ruhr-University Bochum Bochum, Germany
| | | | - Trygve Helgaker
- CTCC, Department of Chemistry, University of Oslo Oslo, Norway
| | | | - Hinne Hettema
- Department of Philosophy, The University of Auckland Auckland, New Zealand
| | - Eirik Hjertenæs
- Department of Chemistry, Norwegian University of Science and Technology Trondheim, Norway
| | - Stinne Høst
- Department of Geoscience, Aarhus University Aarhus, Denmark
| | | | | | | | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Odense, Denmark
| | - Dan Jonsson
- High-Performance Computing Group, UiT The Arctic University of Norway, Tromsø Norway
| | - Poul Jørgensen
- Department of Chemistry, Aarhus University Aarhus, Denmark
| | - Joanna Kauczor
- Department of Physics, Chemistry and Biology, Linköping University Linköping, Sweden
| | | | | | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Stefan Knecht
- Laboratory of Physical Chemistry, ETH Zürich Zürich, Switzerland
| | - Rika Kobayashi
- Australian National University Supercomputer Facility Canberra, Australia
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology Trondheim, Norway
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Odense, Denmark
| | | | | | - Andrea Ligabue
- Computer Services: Networks and Systems, University of Modena and Reggio Emilia Modena, Italy
| | | | - Juan I Melo
- Physics Department, FCEyN-UBA and IFIBA-CONICET, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Copenhagen Denmark
| | - Rolf H Myhre
- Department of Chemistry, Norwegian University of Science and Technology Trondheim, Norway
| | - Christian Neiss
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Erlangen, Germany
| | | | - Patrick Norman
- Department of Physics, Chemistry and Biology, Linköping University Linköping, Sweden
| | - Jeppe Olsen
- Department of Chemistry, Aarhus University Aarhus, Denmark
| | - Jógvan Magnus H Olsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Odense, Denmark
| | | | - Martin J Packer
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Odense, Denmark
| | - Filip Pawlowski
- Institute of Physics, Kazimierz Wielki University Bydgoszcz, Poland
| | | | - Patricio F Provasi
- Department of Physics, University of Northeastern and IMIT-CONICET Corrientes, Argentina
| | - Simen Reine
- CTCC, Department of Chemistry, University of Oslo Oslo, Norway
| | - Zilvinas Rinkevicius
- Department of Theoretical Chemistry and Biology, School of Biotechnology and Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology Stockholm, Sweden
| | | | - Kenneth Ruud
- CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø Norway
| | - Vladimir V Rybkin
- Institute of Physical Chemistry, Karlsruhe Institute of Technology Karlsruhe, Germany
| | | | - Claire C M Samson
- Institute of Physical Chemistry, Karlsruhe Institute of Technology Karlsruhe, Germany
| | | | - Trond Saue
- Paul Sabatier University Toulouse, France
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, Copenhagen Denmark
| | - Bernd Schimmelpfennig
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology Karlsruhe, Germany
| | | | - Arnfinn H Steindal
- CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø Norway
| | | | - Peter R Taylor
- VLSCI and School of Chemistry, University of Melbourne Parkville, Australia
| | - Andrew M Teale
- School of Chemistry, University of Nottingham Nottingham, UK
| | - Erik I Tellgren
- CTCC, Department of Chemistry, University of Oslo Oslo, Norway
| | - David P Tew
- School of Chemistry, University of Bristol Bristol, UK
| | | | | | - Olav Vahtras
- Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology Stockholm, Sweden
| | - Mark A Watson
- Department of Chemistry, Princeton University Princeton, New Jersey
| | - David J D Wilson
- Department of Chemistry and La Trobe Institute for Molecular Sciences, La Trobe University Melbourne, Australia
| | - Marcin Ziolkowski
- CoE for Next Generation Computing, Clemson University Clemson, South Carolina
| | - Hans Agren
- Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology Stockholm, Sweden
| |
Collapse
|
13
|
Frecus B, Rinkevicius Z, Ågren H. π-Stacking effects on the EPR parameters of a prototypical DNA spin label. Phys Chem Chem Phys 2013; 15:10466-71. [PMID: 23685812 DOI: 10.1039/c3cp51129d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The character and value of spin labels for probing environments like double-stranded DNA depend on the degree of change in the spin Hamiltonian parameters of the spin label induced by the environment. Herein we provide a systematic theoretical investigation of this issue, based on a density functional theory method applied to a spin labeled DNA model system, focusing on the dependence of the EPR properties of the spin label on the π stacking and hydrogen bonding that occur upon incorporating the spin label into the selected base pair inside DNA. It is found that the EPR spin Hamiltonian parameters of the spin label are only negligibly affected by its incorporation into DNA, when compared to its free form. This result gives a theoretical ground for the common empirical assumption regarding the behaviour of spin Hamiltonian parameters made in EPR based measurements of the distance between spin labels incorporated into DNA.
Collapse
Affiliation(s)
- Bogdan Frecus
- KTH Royal Institute of Technology, School of Biotechnology, Division of Theoretical Chemistry & Biology, SE-106 91 Stockholm, Sweden.
| | | | | |
Collapse
|
14
|
Chen X, Rinkevicius Z, Ruud K, Ågren H. Role of zero-point vibrational corrections to carbon hyperfine coupling constants in organic π radicals. J Chem Phys 2013; 138:054310. [PMID: 23406122 DOI: 10.1063/1.4789769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
By analyzing a set of organic π radicals, we demonstrate that zero-point vibrational corrections give significant contributions to carbon hyperfine coupling constants, in one case even inducing a sign reversal for the coupling constant. We discuss the implications of these findings for the computational analysis of electron paramagnetic spectra based on hyperfine coupling constants evaluated at the equilibrium geometry of radicals. In particular, we note that a dynamical description that involves the nuclear motion is in many cases necessary in order to achieve a semi-quantitatively predictive theory for carbon hyperfine coupling constants. In addition, we discuss the implications of the strong dependence of the carbon hyperfine coupling constants on the zero-point vibrational corrections for the selection of exchange-correlation functionals in density functional theory studies of these constants.
Collapse
Affiliation(s)
- X Chen
- KTH Royal Institute of Technology, School of Biotechnology, Division of Theoretical Chemistry and Biology, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
15
|
Li X, Rinkevicius Z, Kongsted J, Murugan NA, Ågren H. Binding Mechanism and Magnetic Properties of a Multifunctional Spin Label for Targeted EPR Imaging of Amyloid Proteins: Insight from Atomistic Simulations and First-Principles Calculations. J Chem Theory Comput 2012; 8:4766-74. [DOI: 10.1021/ct300606q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xin Li
- Department of Theoretical Chemistry
and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Zilvinas Rinkevicius
- Department of Theoretical Chemistry
and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
- Swedish e-Science Research Center
(SeRC), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Jacob Kongsted
- Department of Physics, Chemistry
and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - N. Arul Murugan
- Department of Theoretical Chemistry
and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Hans Ågren
- Department of Theoretical Chemistry
and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| |
Collapse
|
16
|
Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K. Recent Advances in Wave Function-Based Methods of Molecular-Property Calculations. Chem Rev 2012; 112:543-631. [DOI: 10.1021/cr2002239] [Citation(s) in RCA: 463] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Trygve Helgaker
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Sonia Coriani
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| | - Poul Jørgensen
- Lundbeck Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Kasper Kristensen
- Lundbeck Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Jeppe Olsen
- Lundbeck Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
17
|
Rinkevicius Z, Murugan NA, Kongsted J, Frecuş B, Steindal AH, Ågren H. Density Functional Restricted–Unrestricted/Molecular Mechanics Theory for Hyperfine Coupling Constants of Molecules in Solution. J Chem Theory Comput 2011; 7:3261-71. [DOI: 10.1021/ct2003572] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zilvinas Rinkevicius
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Swedish e-Science Research Center (SeRC), Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - N. Arul Murugan
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Jacob Kongsted
- Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Bogdan Frecuş
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Arnfinn Hykkerud Steindal
- Centre of Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | - Hans Ågren
- Department of Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
18
|
Li Z, Liu W. Spin-adapted open-shell random phase approximation and time-dependent density functional theory. I. Theory. J Chem Phys 2010; 133:064106. [PMID: 20707560 DOI: 10.1063/1.3463799] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin-flip configuration interaction approaches can easily be spin-adapted via the tensor-coupling scheme.
Collapse
Affiliation(s)
- Zhendong Li
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | | |
Collapse
|
19
|
Chen X, Rinkevicius Z, Cao Z, Ruud K, Agren H. Zero-point vibrational corrections to isotropic hyperfine coupling constants in polyatomic molecules. Phys Chem Chem Phys 2010; 13:696-707. [PMID: 21063618 DOI: 10.1039/c0cp01443e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present work addresses isotropic hyperfine coupling constants in polyatomic systems with a particular emphasis on a largely neglected, but a posteriori significant, effect, namely zero-point vibrational corrections. Using the density functional restricted-unrestricted approach, the zero-point vibrational corrections are evaluated for the allyl radical and four of its derivatives. In addition for establishing the numerical size of the zero-point vibrational corrections to the isotropic hyperfine coupling constants, we present simple guidelines useful for identifying hydrogens for which such corrections are significant. Based on our findings, we critically re-examine the computational procedures used for the determination of hyperfine coupling constants in general as well as the practice of using experimental hyperfine coupling constants as reference data when benchmarking and optimizing exchange-correlation functionals and basis sets for such calculations.
Collapse
Affiliation(s)
- Xing Chen
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | | | | | | | | |
Collapse
|
20
|
Hernández-Muñoz LS, González FJ, González I, Goulart MO, Abreu FCD, Ribeiro AS, Ribeiro RT, Longo RL, Navarro M, Frontana C. Revisiting the electrochemical formation, stability and structure of radical and biradical anionic structures in dinitrobenzenes. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
|
22
|
Li X, Rinkevicius Z, Tu Y, Tian H, Ågren H. Paramagnetic Perturbation of the 19F NMR Chemical Shift in Fluorinated Cysteine by O2: A Theoretical Study. J Phys Chem B 2009; 113:10916-22. [DOI: 10.1021/jp902659s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xin Li
- Department of Theoretical Chemistry, Royal Institute of Technology, AlbaNova University Center, S-106 91 Stockholm, Sweden, Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, People’s Republic of China, and Biophysical Chemistry, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Zilvinas Rinkevicius
- Department of Theoretical Chemistry, Royal Institute of Technology, AlbaNova University Center, S-106 91 Stockholm, Sweden, Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, People’s Republic of China, and Biophysical Chemistry, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Yaoquan Tu
- Department of Theoretical Chemistry, Royal Institute of Technology, AlbaNova University Center, S-106 91 Stockholm, Sweden, Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, People’s Republic of China, and Biophysical Chemistry, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - He Tian
- Department of Theoretical Chemistry, Royal Institute of Technology, AlbaNova University Center, S-106 91 Stockholm, Sweden, Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, People’s Republic of China, and Biophysical Chemistry, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Hans Ågren
- Department of Theoretical Chemistry, Royal Institute of Technology, AlbaNova University Center, S-106 91 Stockholm, Sweden, Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, People’s Republic of China, and Biophysical Chemistry, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|
23
|
Rinkevicius Z, de Almeida KJ, Vahtras O. Density functional restricted-unrestricted approach for nonlinear properties: application to electron paramagnetic resonance parameters of square planar copper complexes. J Chem Phys 2008; 129:064109. [PMID: 18715053 DOI: 10.1063/1.2964102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The density functional restricted-unrestricted approach for treatments of spin polarization effects in molecular properties using spin restricted Kohn-Sham theory has been extended from linear to nonlinear properties. It is shown that the spin polarization contribution to a nonlinear property has the form of a quadratic response function that includes the zero-order Kohn-Sham operator, in analogy to the lower order case where the spin polarization correction to an expectation value has the form of a linear response function. The developed approach is used to formulate new schemes for computation of electronic g-tensors and hyperfine coupling constants, which include spin polarization effects within the framework of spin restricted Kohn-Sham theory. The proposed computational schemes are in the present work employed to study the spin polarization effects on electron paramagnetic resonance spin Hamiltonian parameters of square planar copper complexes. The obtained results indicate that spin polarization gives rise to sizable contributions to the hyperfine coupling tensor of copper in all investigated complexes, while the electronic g-tensors of these complexes are only marginally affected by spin polarization and other factors, such as choice of exchange-correlation functional or molecular structures, will have more pronounced impact on the accuracy of the results.
Collapse
Affiliation(s)
- Zilvinas Rinkevicius
- Department of Theoretical Chemistry, School of Biotechnology, The Royal Institute of Technology, SE-10691 Stockholm, Sweden.
| | | | | |
Collapse
|
24
|
Zarycz N, Botek E, Champagne B, Sciannaméa V, Jérôme C, Detrembleur C. Joint Theoretical Experimental Investigation of the Electron Spin Resonance Spectra of Nitroxyl Radicals: Application to Intermediates in in Situ Nitroxide Mediated Polymerization (in Situ NMP) of Vinyl Monomers. J Phys Chem B 2008; 112:10432-42. [DOI: 10.1021/jp803552x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Natalia Zarycz
- Laboratoire de Chimie Théorique Appliquée, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, Departamento de Física, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, B-4000 Liège, Belgium
| | - Edith Botek
- Laboratoire de Chimie Théorique Appliquée, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, Departamento de Física, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, B-4000 Liège, Belgium
| | - Benoît Champagne
- Laboratoire de Chimie Théorique Appliquée, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, Departamento de Física, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, B-4000 Liège, Belgium
| | - Valérie Sciannaméa
- Laboratoire de Chimie Théorique Appliquée, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, Departamento de Física, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, B-4000 Liège, Belgium
| | - Christine Jérôme
- Laboratoire de Chimie Théorique Appliquée, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, Departamento de Física, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, B-4000 Liège, Belgium
| | - Christophe Detrembleur
- Laboratoire de Chimie Théorique Appliquée, Facultés Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur, Belgium, Departamento de Física, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina, and Center for Education and Research on Macromolecules (CERM), University of Liège, Sart-Tilman, B6, B-4000 Liège, Belgium
| |
Collapse
|
25
|
Rinkevicius Z, Jha PC, Oprea CI, Vahtras O, Agren H. Time-dependent density functional theory for nonlinear properties of open-shell systems. J Chem Phys 2007; 127:114101. [PMID: 17887822 DOI: 10.1063/1.2768357] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper presents response theory based on a spin-restricted Kohn-Sham formalism for computation of time-dependent and time-independent nonlinear properties of molecules with a high spin ground state. The developed approach is capable to handle arbitrary perturbations and constitutes an efficient procedure for evaluation of electric, magnetic, and mixed properties. Apart from presenting the derivation of the proposed approach, we show results from illustrating calculations of static and dynamic hyperpolarizabilities of small Si(3n+1)H(6n+3) (n=0,1,2) clusters which mimic Si(111) surfaces with dangling bond defects. The results indicate that the first hyperpolarizability tensor components of Si(3n+1)H(6n+3) have an ordering compatible with the measurements of second harmonic generation in SiO2/Si(111) interfaces and, therefore, support the hypothesis that silicon surface defects with dangling bonds are responsible for this phenomenon. The results exhibit a strong dependence on the quality of basis set and exchange-correlation functional, showing that an appropriate set of diffuse functions is required for reliable predictions of the first hyperpolarizability of open-shell compounds.
Collapse
Affiliation(s)
- Zilvinas Rinkevicius
- Department of Theoretical Chemistry, Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
26
|
Esteves MC, Vugman NV, Leitão AA, Bielschowsky CE. DFT Calculations of EPR Parameters in an Ionic Lattice of [M(CN)4]3-(M = Ni, Pd, Fe, Ru, Os) Complexes. J Phys Chem A 2007; 111:7218-22. [PMID: 17616108 DOI: 10.1021/jp0701845] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electronic g-tensor and hyperfine coupling constants were calculated for cyanide coordination complexes [M(CN)4]3- (M = Ni, Pd, Fe, Ru, Os) in KCl or NaCl host lattices through an embedded calculation approach using the Density Functional Theory and compared with previous experiments. For all tested complexes, the B3LYP functional is in good agreement with the experiments for the hyperfine coupling constants. For the electronic g-tensor calculations, performed using the coupled perturbed SCF theory, some discrepancies were found, and the best agreements with the experimental values were achieved by the B3LYP functional.
Collapse
Affiliation(s)
- Marcos C Esteves
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT Bloco A, Rio de Janeiro, 21949-900 RJ, Brazil
| | | | | | | |
Collapse
|
27
|
de Almeida KJ, Rinkevicius Z, Hugosson HW, Ferreira AC, Ågren H. Modeling of EPR parameters of copper(II) aqua complexes. Chem Phys 2007. [DOI: 10.1016/j.chemphys.2006.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Rogowska A, Kuhl S, Schneider R, Walcarius A, Champagne B. Theoretical investigation of the EPR hyperfine coupling constants in amino derivatives. Phys Chem Chem Phys 2007; 9:828-36. [PMID: 17287876 DOI: 10.1039/b613275h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The HFCCs of the radical cations of a series of amines have been determined at different levels of approximation including the CISD, QCISD, and CCSD ab initio correlated methods and density functional theory approaches employing the B3LYP, PBE0, BHandHLYP, TPSS, and BLYP exchange-correlation functionals. Although quantitative differences with respect to experimental data have been noticed, these are mostly systematic within a given class of N and H atoms. As a consequence, these different levels of theory are reliable in most cases to account for the substituent and structure effects on the HFCCs of amines. Linear regression fits have then been performed to reach quantitative agreement between the theoretical and experimental values. This has finally been substantiated by considering the EPR signal of the recently synthesized radical cations of two derivatives of [10-(4-aminophenyl)-9-anthryl]aniline as well as in confirming a recent assignment of the EPR signal of n-propylamine.
Collapse
Affiliation(s)
- Agnieszka Rogowska
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland
| | | | | | | | | |
Collapse
|
29
|
Oprea CI, Telyatnyk L, Rinkevicius Z, Vahtras O, Agren H. Time-dependent density functional theory with the generalized restricted-unrestricted approach. J Chem Phys 2006; 124:174103. [PMID: 16689563 DOI: 10.1063/1.2191501] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work presents the derivation, implementation, and first applications of the generalized restricted-unrestricted method based on the density functional Kohn-Sham formalism. By using a spin-restricted Kohn-Sham representation for the reference state the well-known spin contamination problem is avoided, while the unrestricted representation of the perturbation response retains a proper description of spin polarization. The formulation is a generalization of our previous implementation of the restricted-unrestricted method [Z. Rinkevicius et al., J. Chem. Phys. 121, 7614 (2004)], as it accounts for the full unrestricted response instead of describing the spin polarization in terms of triplet operators only. The purpose of this paper is to investigate the role of the generalization employed and demonstrate its numerical performance. For this purpose we focus on isotropic hyperfine coupling constants of a set of organic radicals and transition metal compounds. For both classes of molecules we observe that the effect of neglecting singlet excitation operators in the response part of restricted-unrestricted formalism changes the calculated hyperfine coupling parameters by a few MHz. The obtained results confirm the validity of the approximation used in the simplified restricted-unrestricted approach, i.e. spin polarization can, in most cases, be adequately described by an account of only triplet operators in the response term.
Collapse
Affiliation(s)
- Corneliu I Oprea
- Laboratory of Theoretical Chemistry, The Royal Institute of Technology, SCFAB, SE-10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
30
|
Cronstrand P, Rinkevicius Z, Luo Y, Agren H. Time-dependent density-functional theory calculations of triplet-triplet absorption. J Chem Phys 2005; 122:224104. [PMID: 15974648 DOI: 10.1063/1.1914772] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We present density-functional theory calculations of triplet-triplet absorption by three different approaches based on time-dependent density-functional theory (DFT): unrestricted DFT linear response, open-shell restricted DFT linear response applied to the triplet state, and quadratic response with triplet excitations applied to the ground state. Comparison is also made with corresponding results obtained by Hartree-Fock and multiconfiguration self-consistent-field response theory. Two main conclusions concerning triplet-triplet transitions are drawn in this study: First, the very good agreement between unrestricted and restricted DFT results indicates that spin contamination of the triplet state is not a serious problem when computing triplet-triplet spectra of common organic molecules. Second, DFT response calculations of triplet-triplet transitions can be affected by triplet instability problems, especially for the combination of DFT quadratic response with functionals containing fractional exact Hartree-Fock exchange.
Collapse
Affiliation(s)
- Peter Cronstrand
- Laboratory of Theoretical Chemistry, The Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | | | | | | |
Collapse
|