1
|
Blancafort-Jorquera M, González M. Vibrational energy relaxation of a diatomic molecule in a superfluid helium nanodroplet: influence of the nanodroplet size, interaction energy and energy gap. Phys Chem Chem Phys 2021; 23:25961-25973. [PMID: 34783338 DOI: 10.1039/d1cp03629g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of the nanodroplet size, molecule-helium interaction potential energy and ν = 1 - ν = 0 vibrational energy gap on the vibrational energy relaxation (VER) of a diatomic molecule (X2) in a superfluid helium nanodroplet [HeND or (4He)N; finite quantum solvent at T = 0.37 K] has been studied using a hybrid quantum approach recently proposed by us and taking as a reference the VER results on the I2@(4He)100 doped nanodroplet (Vilà et al., Phys. Chem. Chem. Phys., 2018, 20, 118, which corresponds to the first theoretical study on the VER of molecules embedded in a HeND). This has allowed us to obtain a deeper insight into the vibrational relaxation dynamics. The nanodroplet size has a very small effect on the VER, as this process mainly depends on the interaction between the molecule and the nanodroplet first solvation shell. Regarding the interaction potential energy and the energy gap, both factors play an important and comparable role in the VER time properties (global relaxation time, lifetime and transition time). As the former becomes stronger the relaxation time properties decrease in a significant way (their inverse follows a linear dependence with respect to the ν = 1 - ν = 0 coupling term) and they also decrease in a significant manner when the energy gap diminishes (linear dependence on the ν = 1 - ν = 0 energy difference). We expect that this study will motivate further work on the vibrational relaxation process in HeNDs.
Collapse
Affiliation(s)
- Miquel Blancafort-Jorquera
- Departament de Ciència dels Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | - Miguel González
- Departament de Ciència dels Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
2
|
Vilà A, Paniagua M, González M. Vibrational energy relaxation dynamics of diatomic molecules inside superfluid helium nanodroplets. The case of the I2 molecule. Phys Chem Chem Phys 2018; 20:118-130. [DOI: 10.1039/c7cp05694j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vibrational relaxation (VER) of a X2 molecule in a 4He superfluid nanodroplet (HeND; 0.37 K) was studied adapting a quantum approach recently proposed by us. In the first theoretical study on the VER of molecules inside HeND the I2 molecule was examined [cascade mechanism (ν → ν − 1; ν − 1 → ν − 2; …) and time scale of ns].
Collapse
Affiliation(s)
- Arnau Vilà
- Departament de Ciència de Materials i Química Física and IQTC
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- Departamento de Química Física Aplicada
| | - Miguel Paniagua
- Departamento de Química Física Aplicada
- Universidad Autónoma de Madrid
- 28049 Cantoblanco
- Spain
| | - Miguel González
- Departament de Ciència de Materials i Química Física and IQTC
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| |
Collapse
|
3
|
Jain A, Subotnik JE. Vibrational Energy Relaxation: A Benchmark for Mixed Quantum–Classical Methods. J Phys Chem A 2017; 122:16-27. [DOI: 10.1021/acs.jpca.7b09018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amber Jain
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Miguel B, Zúñiga J, Requena A, Bastida A. Relaxation pathways of the OD stretch fundamental of HOD in liquid H2O. J Chem Phys 2016; 145:244502. [DOI: 10.1063/1.4972128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Beatriz Miguel
- Departamento de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - José Zúñiga
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain
| | - Alberto Requena
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain
| | - Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
5
|
Miguel B, Zúñiga J, Requena A, Bastida A. Theoretical Study of the Temperature Dependence of the Vibrational Relaxation of the H2O Bend Fundamental in Liquid Water and the Subsequent Distortion of the Hydrogen Bond Network. J Phys Chem B 2014; 118:9427-37. [DOI: 10.1021/jp5058447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Beatriz Miguel
- Departamento
de Ingeniería Química y Ambiental, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - José Zúñiga
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain
| | - Alberto Requena
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain
| | - Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
6
|
Jiang R, Sibert EL. Surface hopping simulation of vibrational predissociation of methanol dimer. J Chem Phys 2012; 136:224104. [DOI: 10.1063/1.4724219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Bastida A, Soler MA, Zúñiga J, Requena A, Kalstein A, Fernández-Alberti S. Hybrid quantum/classical simulations of the vibrational relaxation of the amide I mode of N-methylacetamide in D2O solution. J Phys Chem B 2012; 116:2969-80. [PMID: 22304000 DOI: 10.1021/jp210727u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hybrid quantum/classical molecular dynamics (MD) is applied to simulate the vibrational relaxation (VR) of the amide I mode of deuterated N-methylacetamide (NMAD) in aqueous (D(2)O) solution. A novel version of the vibrational molecular dynamics with quantum transitions (MDQT) treatment is developed in which the amide I mode is treated quantum mechanically while the remaining degrees of freedom are treated classically. The instantaneous normal modes of the initially excited NMAD molecule (INM(0)) are used as internal coordinates since they provide a proper initial partition of the system in quantum and classical subsystems. The evolution in time of the energy stored in each individual normal mode is subsequently quantified using the hybrid quantum-classical instantaneous normal modes (INM(t)). The identities of both the INM(0)s and the INM(t)s are tracked using the equilibrium normal modes (ENMs) as templates. The results extracted from the hybrid MDQT simulations show that the quantum treatment of the amide I mode accelerates the whole VR process versus pure classical simulations and gives better agreement with experiments. The relaxation of the amide I mode is found to be essentially an intramolecular vibrational redistribution (IVR) process with little contribution from the solvent, in agreement with previous theoretical and experimental studies. Two well-defined relaxation mechanisms are identified. The faster one accounts for ≈40% of the total vibrational energy that flows through the NMAD molecule and involves the participation of the lowest frequency vibrations as short-life intermediate modes. The second and slower mechanism accounts for the remaining ≈60% of the energy released and is associated to the energy flow through specific mid-range and high-frequency modes.
Collapse
Affiliation(s)
- Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain.
| | | | | | | | | | | |
Collapse
|
8
|
Bastida A, Soler MA, Zúñiga J, Requena A, Kalstein A, Fernández-Alberti S. Instantaneous normal modes, resonances, and decay channels in the vibrational relaxation of the amide I mode of N-methylacetamide-D in liquid deuterated water. J Chem Phys 2010; 132:224501. [DOI: 10.1063/1.3435212] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Applications of Mixed-Quantum/Classical Trajectories to the Study of Nuclear Quantum Effects in Chemical Reactions and Vibrational Relaxation Processes. ADVANCES IN QUANTUM CHEMISTRY 2010. [DOI: 10.1016/s0065-3276(10)59008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Bastida A, Zúñiga J, Requena A, Miguel B. Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water. J Chem Phys 2009; 131:204505. [DOI: 10.1063/1.3266834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
|
12
|
Morales CM, Thompson WH. Mixed Quantum-Classical Molecular Dynamics Analysis of the Molecular-Level Mechanisms of Vibrational Frequency Shifts. J Phys Chem A 2007; 111:5422-33. [PMID: 17580980 DOI: 10.1021/jp071656i] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A detailed analysis of the origins of vibrational frequency shifts of diatomic molecules (I2 and ICl) in a rare gas (Xe) liquid is presented. Specifically, vibrationally adiabatic mixed quantum-classical molecular dynamics simulations are used to obtain the instantaneous frequency shifts and correlate the shifts to solvent configurations. With this approach, important mechanistic questions are addressed, including the following: How many solvent atoms determine the frequency shift? What solvent atom configurations lead to blue shifts, and which lead to red shifts? What is the effect of solute asymmetry? The mechanistic analysis can be generally applied and should be useful in understanding what information is provided by infrared and Raman spectra about the environment of the probed vibrational mode.
Collapse
|
13
|
Bastida A, Cruz C, Zúñiga J, Requena A, Miguel B. The Ehrenfest method with quantum corrections to simulate the relaxation of molecules in solution: Equilibrium and dynamics. J Chem Phys 2007; 126:014503. [PMID: 17212496 DOI: 10.1063/1.2404676] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The use of the Ehrenfest method to simulate the relaxation of molecules in solution is explored. Using the cyanide ion dissolved in water as a test model, the independent trajectory (IT) and the bundle of trajectories (BT) approximations are shown to provide very different results for the time evolution of the vibrational populations of the solute. None of these approximations reproduce the Boltzmann equilibrium vibrational populations accurately. A modification of the Ehrenfest method based on the use of quantum correction factors is thus proposed to solve this problem. The simulations carried out using the modified Ehrenfest method provide IT and BT relaxation times which are closer to each other and which agree quite well with previous hybrid perturbative results.
Collapse
Affiliation(s)
- Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain.
| | | | | | | | | |
Collapse
|
14
|
Käb G. Fewest Switches Adiabatic Surface Hopping As Applied to Vibrational Energy Relaxation. J Phys Chem A 2006; 110:3197-215. [PMID: 16509644 DOI: 10.1021/jp054577k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this contribution quantum/classical surface hopping methodology is applied to vibrational energy relaxation of a quantum oscillator in a classical heat bath. The model of a linearly damped (harmonic) oscillator is chosen which can be mapped onto the Brownian motion (Caldeira-Leggett) Hamiltonian. In the simulations Tully's fewest switches surface hopping scheme is adopted with inclusion of dephasing in the adiabatic basis using a simple decoherence algorithm. The results are compared to the predictions of a Redfield-type quantum master equation modeling using the classical heat bath force correlation function as input. Thereby a link is established between both types of quantum/classical approaches. Viewed from the latter perspective, surface hopping with dephasing may be interpreted as "on-the-fly" stochastic realization of a quantum/classical Pauli master equation.
Collapse
Affiliation(s)
- Günter Käb
- Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany.
| |
Collapse
|
15
|
Bastida A, Cruz C, Zúñiga J, Requena A, Miguel B. A modified Ehrenfest method that achieves Boltzmann quantum state populations. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2005.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|