1
|
Romanini M, Macovez R, Valenti S, Noor W, Tamarit JL. Dielectric Spectroscopy Studies of Conformational Relaxation Dynamics in Molecular Glass-Forming Liquids. Int J Mol Sci 2023; 24:17189. [PMID: 38139017 PMCID: PMC10743228 DOI: 10.3390/ijms242417189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
We review experimental results obtained with broadband dielectric spectroscopy concerning the relaxation times and activation energies of intramolecular conformational relaxation processes in small-molecule glass-formers. Such processes are due to the interconversion between different conformers of relatively flexible molecules, and generally involve conformational changes of flexible chain or ring moieties, or else the rigid rotation of planar groups, such as conjugated phenyl rings. Comparative analysis of molecules possessing the same (type of) functional group is carried out in order to test the possibility of assigning the dynamic conformational isomerism of given families of organic compounds to the motion of specific molecular subunits. These range from terminal halomethyl and acetyl/acetoxy groups to both rigid and flexible ring structures, such as the planar halobenzene cycles or the buckled saccharide and diazepine rings. A short section on polyesters provides a generalisation of these findings to synthetic macromolecules.
Collapse
Affiliation(s)
| | | | | | | | - Josep Lluís Tamarit
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona East School of Engineering (EEBE), Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain; (M.R.); (R.M.); (S.V.); (W.N.)
| |
Collapse
|
2
|
Heczko D, Tarnacka M, Kamiński K, Paluch M, Kamińska E. Breakdown of isochronal superpositioning of α- and β-relaxation times in the van der Waals system – loratadine. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Heczko D, Jurkiewicz K, Grelska J, Kamiński K, Paluch M, Kamińska E. Influence of High Pressure on the Local Order and Dynamical Properties of the Selected Azole Antifungals. J Phys Chem B 2020; 124:11949-11961. [PMID: 33325713 DOI: 10.1021/acs.jpcb.0c08083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dielectric studies under various temperature (T) and pressure (p) conditions on five active pharmaceutical ingredients (APIs) with antifungal properties-itraconazole (ITZ), posaconazole (POS), terconazole (TER), ketoconazole (KET), and fluconazole (FLU)-were carried out. We have thoroughly studied the connection between the pressure coefficient of the glass transition temperature (dTg/dp) and the activation volume of both relaxation modes (ΔVα, ΔVδ/α') with respect to the molecular weight (Mw) or molar volume (Vm) in these systems. Besides, high pressure data revealed that the time scale separation between α- and δ- or α'-processes increases with pressure in ITZ and TER. What is more, the activation entropy, which is a measure of cooperativity, calculated from the Eyring model for the secondary (β)-relaxation in ITZ and POS, increased and decreased, respectively, in the compressed samples. To understand these peculiar results, we have carried out X-ray diffraction (XRD) measurements on the pressure-densified glasses and found that pressure may induce frustration in molecular organization and destroy the medium-range order while enhancing the short-range correlations between molecules. This finding allowed us to conclude that varying molecular spatial arrangement is responsible for the extraordinary dynamical behavior of ITZ, POS, and TER at high pressure.
Collapse
Affiliation(s)
- Dawid Heczko
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Joanna Grelska
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Kamil Kamiński
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.,Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland
| |
Collapse
|
4
|
Tu W, Chen Z, Li X, Gao Y, Liu R, Wang LM. Revisiting the glass transition and dynamics of supercooled benzene by calorimetric studies. J Chem Phys 2015; 143:164501. [PMID: 26520521 DOI: 10.1063/1.4933425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The glass transition and dynamics of benzene are studied in binary mixtures of benzene with five glass forming liquids, which can be divided into three groups: (a) o-terphenyl and m-xylene, (b) N-butyl methacrylate, and (c) N,N-dimethylpropionamide and N,N-diethylformamide to represent the weak, moderate, and strong interactions with benzene. The enthalpies of mixing, ΔH(mix), for the benzene mixtures are measured to show positive or negative signs, with which the validity of the extrapolations of the glass transition temperature T(g) to the benzene-rich regions is examined. The extrapolations for the T(g) data in the mixtures are found to converge around the point of 142 K, producing T(g) of pure benzene. The fragility m of benzene is also evaluated by extrapolating the results of the mixtures, and a fragility m ∼ 80 is yielded. The obtained T(g) and m values for benzene allow for the construction of the activation plot in the deeply supercooled region. The poor glass formability of benzene is found to result from the high melting point, which in turn leads to low viscosity in the supercooled liquid.
Collapse
Affiliation(s)
- Wenkang Tu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Zeming Chen
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Xiangqian Li
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Yanqin Gao
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Riping Liu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
5
|
Li X, Wang M, Liu R, Ngai KL, Tian Y, Wang LM, Capaccioli S. Secondary relaxation dynamics in rigid glass-forming molecular liquids with related structures. J Chem Phys 2015; 143:104505. [DOI: 10.1063/1.4930262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiangqian Li
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Meng Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Riping Liu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Kia L. Ngai
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
- CNR-IPCF, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Yongjun Tian
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Simone Capaccioli
- CNR-IPCF, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
- Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
| |
Collapse
|
6
|
Saini MK, Murthy SSN. Glass Formation in Binary Solutions of Acetaminophen with Guaifenesin and Mephenesin. J SOLUTION CHEM 2015. [DOI: 10.1007/s10953-015-0364-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Johari GP, Khouri J. Non-exponential nature of calorimetric and other relaxations: Effects of 2 nm-size solutes, loss of translational diffusion, isomer specificity, and sample size. J Chem Phys 2013; 138:12A511. [DOI: 10.1063/1.4770056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Singh LP, Murthy SSN, Singh G. Study of supercooled orientationally disordered binary solid solutions II: cyclohexyl derivatives, neopentanol and neopentylglycol. Phys Chem Chem Phys 2009; 11:9278-92. [DOI: 10.1039/b907215b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Singh LP, Murthy SSN. Dielectric and Calorimetric Study of Orientationally Disordered Phases in Two Unusual Two-Component Systems. J Phys Chem B 2008; 112:2606-15. [DOI: 10.1021/jp077663o] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- L. P. Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110 067, India
| | - S. S. N. Murthy
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi - 110 067, India
| |
Collapse
|
10
|
Singh LP, Murthy SSN. Study of secondary relaxation in disordered plastic crystals of isocyanocyclohexane, cyanocyclohexane, and 1-cyanoadamantane. J Chem Phys 2008; 129:094501. [DOI: 10.1063/1.2961036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
11
|
Kessairi K, Capaccioli S, Prevosto D, Lucchesi M, Rolla P. Relaxation dynamics intert-butylpyridine/tristyrene mixture investigated by broadband dielectric spectroscopy. J Chem Phys 2007; 127:174502. [DOI: 10.1063/1.2784190] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Shahin M, Murthy SSN, Singh LP. Glass Transition Phenomena in Two-Component Plastic Crystals: Study of Hexasubstituted Benzenes. J Phys Chem B 2006; 110:18573-82. [PMID: 16970486 DOI: 10.1021/jp063599j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have critically examined the relaxation that is known to occur in the crystalline phase of pentachloronitrobenzene (PCNB) and 2,3,4,5,6-pentabromotoluene using dielectric spectroscopy and differential scanning calorimetry (DSC). Within the resolution of our experimental setup, a relaxation process similar to that of the primary (or alpha-) relaxation is found. A slight deviation from Arrhenius behavior is noticed only in the vicinity of the glass transition temperature (T(g)). This deviation and a small steplike change found in the DSC scans at T(g) indicates that the "fragility" of these plastic crystals is rather low. However, in PCNB, the dielectric strength (Deltaepsilon) of the above said alpha-process did not change appreciably with temperature, and, interestingly, a small addition of an impurity such as pentachlorobenzene (PCB) to the molten state of PCNB drastically lowered the dielectric strength and the calorimetric signature of glass transition phenomena in the DSC data at T(g). The room-temperature powder X-ray diffraction measurements in combination with the DSC data in the melting temperature region did not indicate any observable change in the crystalline structure. A residual alpha-process with no significant change in the shape of the dielectric spectrum indicates that the hindrance to the rotational motion of PCNB molecules is caused by the presence of a small number of PCB molecules in the crystalline lattice of PCNB over a certain region. Outside of this region, the original PCNB disordered phase is preserved, which is the origin of the residual alpha-process. With a further increase in PCB concentration, the alpha-process, characteristic of pure PCNB, vanishes, and instead another relaxation develops. This process is explained with the help of a solid-liquid phase diagram of the alpha-process of the plastic phase of 2:1 and 1:2 compound formations, which are stable below 386 +/- 1 and 366 +/- 1 K, respectively.
Collapse
Affiliation(s)
- Md Shahin
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | |
Collapse
|
13
|
|