Chaki S, Chakrabarti R. Escape of a passive particle from an activity-induced energy landscape: emergence of slow and fast effective diffusion.
SOFT MATTER 2020;
16:7103-7115. [PMID:
32657294 DOI:
10.1039/d0sm00711k]
[Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spontaneous persistent motions driven by active processes play a central role in maintaining living cells far from equilibrium. In the majority of research studies, the steady state dynamics of an active system has been described in terms of an effective temperature. By contrast, we have examined a prototype model for diffusion in an activity-induced rugged energy landscape to describe the slow dynamics of a tagged particle in a dense active environment. The expression for the mean escape time from the activity-induced rugged energy landscape holds only in the limit of low activity and the mean escape time from the rugged energy landscape increases with activity. The precise form of the active correlation will determine whether the mean escape time will depend on the persistence time or not. The activity-induced rugged energy landscape approach also allows an estimate of the non-equilibrium effective diffusivity characterizing the slow diffusive motion of the tagged particle due to activity. On the other hand, in a dilute environment, high activity augments the diffusion of the tagged particle. The enhanced diffusion can be attributed to an effective temperature higher than the ambient temperature and this is used to calculate the Kramers' mean escape time, which decreases with activity. Our results have direct relevance to recent experiments on tagged particle diffusion in condensed phases.
Collapse