1
|
Zhang XL, Ma YT, Zhai Y, Li H. Full quantum calculation of the rovibrational states and intensities for a symmetric top-linear molecule dimer: Hamiltonian, basis set, and matrix elements. J Chem Phys 2019; 151:074301. [PMID: 31438702 DOI: 10.1063/1.5115496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rovibrational energy levels and intensities of the CH3F-H2 dimer have been obtained using our recent global intermolecular potential energy surface [X.-L. Zhang et al., J. Chem. Phys. 148, 124302 (2018)]. The Hamiltonian, basis set, and matrix elements are derived and given for a symmetric top-linear molecule complex. This approach to the generation of energy levels and wavefunctions can readily be utilized for studying the rovibrational spectra of other van der Waals complexes composed of a symmetric top molecule and a linear molecule, and may readily be extended to other complexes of nonlinear molecules and linear molecules. To confirm our method, the rovibrational levels of the H2O-H2 dimer have been computed and shown to be in good agreement with experiment and with previous theoretical results. The rovibrational Schrödinger equation has been solved using a Lanczos algorithm together with an uncoupled product basis set. As expected, dimers containing ortho-H2 are more strongly bound than dimers containing para-H2. Energies and wavefunctions of the discrete rovibrational levels of CH3F-paraH2 complexes obtained from the direct vibrationally averaged 5-dimensional potentials are in good agreement with the results of the reduced 3-dimensional adiabatic-hindered-rotor (AHR) approximation. Accurate calculations of the transition line strengths for the orthoCH3F-paraH2 complex are also carried out, and are consistent with results obtained using the AHR approximation. The microwave spectrum associated with the orthoCH3F-orthoH2 dimer has been predicted for the first time.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yong-Tao Ma
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| |
Collapse
|
2
|
Borocci S, Grandinetti F, Sanna N, Antoniotti P, Nunzi F. Noncovalent Complexes of the Noble-Gas Atoms: Analyzing the Transition from Physical to Chemical Interactions. J Comput Chem 2019; 40:2318-2328. [PMID: 31254471 DOI: 10.1002/jcc.26010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023]
Abstract
The bonding character of the noncovalent complexes of the noble-gas (Ng) atoms ranges from nearly purely dispersive contacts to interactions featuring appreciable contributions of induction and charge transfer. In this study, we discuss a new quantitative index that seems peculiarly informative about these diverse bonding situations. This index was termed as the degree of polarization (DoP) of Ng, as it measures, in essence, the Ng polarization promoted by the binding partner. The definition of the DoP(Ng) relies on the analysis of the local electron energy density H(r), and its physical meaning was best appreciated by studying also the charge-displacement function and the molecular electrostatic potential of the investigated benchmark species, that include nearly 60 Ngs complexes of different bonding character. The DoP(Ng) appears of general applicability, and is also positively correlated with other bonding character indices. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefano Borocci
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy.,Istituto per i Sistemi Biologici del CNR, Via Salaria, Km 29.500, 00015 Monterotondo, Rome, Italy
| | - Felice Grandinetti
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy.,Istituto per i Sistemi Biologici del CNR, Via Salaria, Km 29.500, 00015 Monterotondo, Rome, Italy
| | - Nico Sanna
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy
| | - Paola Antoniotti
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria, 7 10125 Torino, Italy
| | - Francesca Nunzi
- Dipartimento di Chimica, Biologia e Biotecnologie (DCBB), Via Elce di Sotto, 8 06123 Perugia, Italy.,Istituto di Scienze e Tecnologie Molecolari del CNR (ISTM-CNR), Via Elce di Sotto, 8 06123 Perugia, Italy
| |
Collapse
|
3
|
Nunzi F, Cesario D, Belpassi L, Tarantelli F, Roncaratti LF, Falcinelli S, Cappelletti D, Pirani F. Insight into the halogen-bond nature of noble gas-chlorine systems by molecular beam scattering experiments, ab initio calculations and charge displacement analysis. Phys Chem Chem Phys 2019; 21:7330-7340. [PMID: 30896694 DOI: 10.1039/c9cp00300b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have carried out molecular-beam scattering experiments and high-level ab initio investigations on the potential energy surfaces of a series of noble-gas-Cl2 adducts. This effort has permitted the construction of a simple, reliable and easily generalizable analytical model potential formulation, which is based on a few physically meaningful parameters of the interacting partners and transparently shows the origin, strength, and stereospecificity of the various interaction components. The results demonstrate quantitatively beyond doubt that the interaction between a noble-gas (Ng) atom - even He - and Cl2 in a collinear configuration is characterized by weak halogen bond (XB) formation, accompanied by charge transfer (CT) from the Ng to chlorine. This characteristic, which stabilizes the adduct, rapidly disappears on going towards the T-shaped configuration, dominated by pure van der Waals (vdW) forces. Similarly, a pure vdW interaction takes place - with no CT component in any configuration - if Cl2 is present in the lowest πg* → σu* excited state, because the change in electron density that accompanies the excitation eliminates the Cl2 polar flattening and σ hole, making the XB interaction inaccessible.
Collapse
Affiliation(s)
- Francesca Nunzi
- Dipartimento di Chimica, Biologia e Biotecnologie, via Elce di Sotto 8, I-06123 Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Pirani F, Cappelletti D, Falcinelli S, Cesario D, Nunzi F, Belpassi L, Tarantelli F. Selective Emergence of the Halogen Bond in Ground and Excited States of Noble‐Gas–Chlorine Systems. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fernando Pirani
- Dipartimento di Chimica, Biologia e BiotecnologieUniversità degli Studi di Perugia via Elce di Sotto 8 06213 Perugia Italy
| | - David Cappelletti
- Dipartimento di Chimica, Biologia e BiotecnologieUniversità degli Studi di Perugia via Elce di Sotto 8 06213 Perugia Italy
| | - Stefano Falcinelli
- Dipartimento di Ingegneria Civile ed AmbientaleUniversità degli Studi di Perugia via G. Duranti 93 06215 Perugia Italy
| | - Diego Cesario
- Dipartimento di Chimica, Biologia e BiotecnologieUniversità degli Studi di Perugia via Elce di Sotto 8 06213 Perugia Italy
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Center for Multiscale ModelingVrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Francesca Nunzi
- Dipartimento di Chimica, Biologia e BiotecnologieUniversità degli Studi di Perugia via Elce di Sotto 8 06213 Perugia Italy
- Istituto di Scienze e Tecnologie Molecolari del CNR (ISTM-CNR) via Elce di Sotto 8 06123 Perugia Italy
| | - Leonardo Belpassi
- Istituto di Scienze e Tecnologie Molecolari del CNR (ISTM-CNR) via Elce di Sotto 8 06123 Perugia Italy
| | - Francesco Tarantelli
- Dipartimento di Chimica, Biologia e BiotecnologieUniversità degli Studi di Perugia via Elce di Sotto 8 06213 Perugia Italy
- Istituto di Scienze e Tecnologie Molecolari del CNR (ISTM-CNR) via Elce di Sotto 8 06123 Perugia Italy
| |
Collapse
|
5
|
Pirani F, Cappelletti D, Falcinelli S, Cesario D, Nunzi F, Belpassi L, Tarantelli F. Selective Emergence of the Halogen Bond in Ground and Excited States of Noble-Gas-Chlorine Systems. Angew Chem Int Ed Engl 2019; 58:4195-4199. [PMID: 30701641 DOI: 10.1002/anie.201812889] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/10/2019] [Indexed: 11/07/2022]
Abstract
Molecular-beam scattering experiments and theoretical calculations prove the nature, strength, and selectivity of the halogen bonds (XB) in the interaction of halogen molecules with the series of noble gas (Ng) atoms. The XB, accompanied by charge transfer from the Ng to the halogen, is shown to take place in, and measurably stabilize, the collinear conformation of the adducts, which thus becomes (in contrast to what happens for other Ng-molecule systems) approximately as bound as the T-shaped form. It is also shown how and why XB is inhibited when the halogen molecule is in the 3 Πu excited state. A general potential formulation fitting the experimental observables, based on few physically essential parameters, is proposed to describe the interaction accurately and is validated by ab initio computations.
Collapse
Affiliation(s)
- Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06213, Perugia, Italy
| | - David Cappelletti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06213, Perugia, Italy
| | - Stefano Falcinelli
- Dipartimento di Ingegneria Civile ed Ambientale, Università degli Studi di Perugia, via G. Duranti 93, 06215, Perugia, Italy
| | - Diego Cesario
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06213, Perugia, Italy.,Department of Chemistry and Pharmaceutical Sciences and Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081, HV, Amsterdam, The Netherlands
| | - Francesca Nunzi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06213, Perugia, Italy.,Istituto di Scienze e Tecnologie Molecolari del CNR (ISTM-CNR), via Elce di Sotto 8, 06123, Perugia, Italy
| | - Leonardo Belpassi
- Istituto di Scienze e Tecnologie Molecolari del CNR (ISTM-CNR), via Elce di Sotto 8, 06123, Perugia, Italy
| | - Francesco Tarantelli
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06213, Perugia, Italy.,Istituto di Scienze e Tecnologie Molecolari del CNR (ISTM-CNR), via Elce di Sotto 8, 06123, Perugia, Italy
| |
Collapse
|
6
|
Huang J, Zhou Y, Xie D. Predicted infrared spectra in the HF stretching band of the H 2-HF complex. J Chem Phys 2018; 149:094307. [PMID: 30195303 DOI: 10.1063/1.5046359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The infrared spectra with hydrogen fluoride (HF) and deuterium fluoride (DF) (v2 = 1 ← 0) for eight isotropic species of H2-HF complex are predicted, based on our newly constructed high-accuracy ab initio potential energy surface [D. Yang et al., J. Chem. Phys. 148, 184301 (2018)]. The radial discrete variable representation/angular finite basis representation method and Lanczos algorithm were used to determine the ro-vibrational energy levels and wave functions for eight species of H2-HF complex (para-H2-HF, ortho-H2-HF, para-D2-HF, ortho-D2-HF, para-H2-DF, ortho-H2-DF, para-D2-DF, and ortho-D2-DF) with separating the inter- and intra-molecular vibrations. Bound states properties including their dissociation energies and rotational constants were presented. The calculated band origins are all red shifted to the isolated HF molecule and in good agreement with available experimental values. The frequencies and line intensities of ro-vibrational transitions in the HF stretching band were further calculated, and the predicted infrared spectra are consistent with available observed spectra. Among them, the spectra for three isotopic species of H2-HF (para-H2-DF, para-D2-DF, and ortho-D2-DF) were predicted for the first time.
Collapse
Affiliation(s)
- Jing Huang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yanzi Zhou
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Interaction-induced electric (hyper)polarizability in the dihydrogen-neon pair: basis set and electron correlation effects. J Mol Model 2018; 24:265. [PMID: 30171367 DOI: 10.1007/s00894-018-3801-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
We investigated the interaction (hyper)polarizability of neon-dihydrogen pairs by performing high-level ab initio calculations with atom/molecule-specific, purpose-oriented Gaussian basis sets. We obtained interaction-induced electric properties at the SCF, MP2, and CCSD levels of theory. At the CCSD level, for the T-shaped configuration, around the respective potential minimum of 6.437 a0, the interaction-induced mean first hyperpolarizability varies for 5 < R/a0 < 10 as[Formula: see text]Again, at the CCSD level, but for the L-shaped configuration around the respective potential minimum of 6.572 a0, this property varies for 5 < R/a0 < 10 as[Formula: see text] Graphical Abstract Interaction-induced mean dipole polarizability ([Formula: see text]) for the T-shaped configuration of H2-Ne calculated at the SCF, MP2, and CCSD levels of theory.
Collapse
|
8
|
Qin M, Zhu H, Fan H. Ab initio potential energy surface and microwave spectra for the H 2-HCCCN complex. J Chem Phys 2017; 147:084309. [PMID: 28863519 DOI: 10.1063/1.4999689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a four-dimensional ab initio potential energy surface of the H2-HCCCN complex at the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)]-F12 level with a large basis set including an additional set of bond functions. The artificial neural networks method was extended to fit the intermolecular potential energy surface. The complex has a planar linear global minimum with the well depth of 199.366 cm-1 located at R = 5.09 Å, φ = 0°, θ1 = 0°, and θ2 = 180°. An additional planar local minimum is also found with a depth of 175.579 cm-1 that is located at R = 3.37 Å, φ = 0°, θ1 = 110°, and θ2 = 104°. The radial discrete variable representation/angular finite basis representation and the Lanczos algorithm were employed to calculate the rovibrational energy levels for four species of H2-HCCCN (pH2-HCCCN, oH2-HCCCN, pD2-HCCCN, and oD2-HCCCN). The rotational frequencies and spectroscopic parameters were also determined for four complexes, which agree well with the experimental values.
Collapse
Affiliation(s)
- Miao Qin
- School of Chemistry, Sichuan University, Chengdu 610064, China and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Hua Zhu
- School of Chemistry, Sichuan University, Chengdu 610064, China and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, China
| | - Hongjun Fan
- School of Biological Engineering, Sichuan University of Science Engineering, Zigong 643000, China
| |
Collapse
|
9
|
Liu JM, Zhai Y, Li H. Explicit correlation treatment of the six-dimensional potential energy surface and predicted infrared spectra for OCS–H2. J Chem Phys 2017; 147:044313. [DOI: 10.1063/1.4996086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing-Min Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People’s Republic of China
| | - Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People’s Republic of China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People’s Republic of China
| |
Collapse
|
10
|
Głaz W, Bancewicz T, Godet JL, Gustafsson M, Haskopoulos A, Maroulis G. Effects of anisotropic interaction-induced properties of hydrogen-rare gas compounds on rototranslational Raman scattering spectra: Comprehensive theoretical and numerical analysis. J Chem Phys 2016; 145:034303. [DOI: 10.1063/1.4958339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Bartocci A, Cappelletti D, Pirani F, Tarantelli F, Belpassi L. Intermolecular Interaction in the H2S–H2 Complex: Molecular Beam Scattering Experiments and Ab-Inito Calculations. J Phys Chem A 2014; 118:6440-50. [DOI: 10.1021/jp502170g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alessio Bartocci
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123, Italy
| | - David Cappelletti
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123, Italy
| | - Fernando Pirani
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123, Italy
| | - Francesco Tarantelli
- Dipartimento
di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123, Italy
| | - Leonardo Belpassi
- Istituto di Scienze e Tecnologie Molecolari del CNR, Perugia, 06123, Italy
| |
Collapse
|
12
|
Li H, Zhang XL, Le Roy RJ, Roy PN. Analytic Morse/long-range potential energy surfaces and predicted infrared spectra for CO–H2 dimer and frequency shifts of CO in (para-H2)N N = 1–20 clusters. J Chem Phys 2013; 139:164315. [DOI: 10.1063/1.4826595] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Wang L, Xie D, Le Roy RJ, Roy PN. A new six-dimensional potential energy surface for H2–N2O and its adiabatic-hindered-rotor treatment. J Chem Phys 2013; 139:034312. [DOI: 10.1063/1.4813527] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Głaz W, Bancewicz T, Godet JL, Maroulis G, Haskopoulos A. Morphology of collisional nonlinear spectra in H2-Kr and H2-Xe mixtures. J Chem Phys 2013; 138:124307. [DOI: 10.1063/1.4795438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Li H, Roy PN, Le Roy RJ. Analytic Morse/long-range potential energy surfaces and predicted infrared spectra for CO2–H2. J Chem Phys 2010; 132:214309. [DOI: 10.1063/1.3428619] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
16
|
Dham AK, McBane GC, McCourt FRW, Meath WJ. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. II. Molecular beam scattering and bulk gas phenomena in Ne-CO mixtures. J Chem Phys 2010; 132:024308. [PMID: 20095675 DOI: 10.1063/1.3285721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Four potential energy surfaces are of current interest for the Ne-CO interaction. Two are high-level fully ab initio surfaces obtained a decade ago using symmetry-adapted perturbation theory and supermolecule coupled-cluster methods. The other two are very recent exchange-Coulomb (XC) model potential energy surfaces constructed by using ab initio Heitler-London interaction energies and literature long range dispersion and induction energies, followed by the determination of a small number of adjustable parameters to reproduce a selected subset of pure rotational transition frequencies for the (20)Ne-(12)C(16)O van der Waals cluster. Testing of the four potential energy surfaces against a wide range of available experimental microwave, millimeter-wave, and mid-infrared Ne-CO transition frequencies indicated that the XC potential energy surfaces gave results that were generally far superior to the earlier fully ab initio surfaces. In this paper, two XC model surfaces and the two fully ab initio surfaces are tested for their abilities to reproduce experiment for a wide range of nonspectroscopic Ne-CO gas mixture properties. The properties considered here are relative integral cross sections and the angle dependence of rotational state-to-state differential cross sections, rotational relaxation rate constants for CO(v=2) in Ne-CO mixtures at T=296 K, pressure broadening of two pure rotational lines and of the rovibrational lines in the CO fundamental and first overtone transitions at 300 K, and the temperature and, where appropriate, mole fraction dependencies of the interaction second virial coefficient, the binary diffusion coefficient, the interaction viscosity, the mixture shear viscosity and thermal conductivity coefficients, and the thermal diffusion factor. The XC model potential energy surfaces give results that lie within or very nearly within the experimental uncertainties for all properties considered, while the coupled-cluster ab initio surface gives results that agree similarly well for all but one of the properties considered. When the present comparisons are combined with the ability to give accurate spectroscopic transition frequencies for the Ne-CO van der Waals complex, only the XC potential energy surfaces give results that agree well with all extant experimental data for the Ne-CO interaction.
Collapse
Affiliation(s)
- Ashok K Dham
- Department of Physics, Punjabi University, Patiala 147002, India
| | | | | | | |
Collapse
|
17
|
Dham AK, McCourt FRW, Meath WJ. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. I. Calculation of Ne-CO van der Waals spectra. J Chem Phys 2009; 130:244310. [PMID: 19566156 DOI: 10.1063/1.3157169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exchange-Coulomb model potential energy surfaces have been developed for the Ne-CO interaction. The initial model is a three-dimensional potential energy surface based upon computed Heitler-London interaction energies and literature results for the long-range induction and dispersion energies, all as functions of interspecies distance, the orientation of CO relative to the interspecies axis, and the bond length of the CO molecule. Both a rigid-rotor model potential energy surface, obtained by setting the CO bond length equal to its experimental spectroscopic equilibrium value, and a vibrationally averaged model potential energy surface, obtained by averaging the stretching dependence over the ground vibrational motion of the CO molecule, have been constructed from the full data set. Adjustable parameters in each model potential energy surface have been determined through fitting a selected subset of pure rotational transition frequencies calculated for the (20)Ne-(12)C(12)O isotopolog to precisely known experimental values. Both potential energy surfaces provide calculated results for a wide range of available experimental microwave, millimeter-wave, and midinfrared Ne-CO transition frequencies that are generally far superior to those obtained using the best current literature potential energy surfaces. The vibrationally averaged CO ground state potential energy surface, employed together with a potential energy surface obtained from it by replacing the ground vibrational state average of the CO stretching dependence of the potential energy surface by an average over the first excited CO vibrational state, has been found to be particularly useful for computing and/or interpreting mid-IR transition frequencies in the Ne-CO dimer.
Collapse
Affiliation(s)
- Ashok K Dham
- Department of Physics, Punjabi University, Patiala 147002, India
| | | | | |
Collapse
|
18
|
Li H, Le Roy RJ. Analytic three-dimensional ‘MLR’ potential energy surface for CO2–He, and its predicted microwave and infrared spectra. Phys Chem Chem Phys 2008; 10:4128-37. [DOI: 10.1039/b800718g] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Cappelletti D, Pirani F, Bussery-Honvault B, Gomez L, Bartolomei M. A bond–bond description of the intermolecular interaction energy: the case of weakly bound N2–H2 and N2–N2 complexes. Phys Chem Chem Phys 2008; 10:4281-93. [DOI: 10.1039/b803961e] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Kumar A, Jhanwar BL, Meath W. Dipole oscillator strength distributions, properties, and dispersion energies for ethylene, propene, and 1-butene. CAN J CHEM 2007. [DOI: 10.1139/v07-057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the ethylene molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength (DOS) data; the DOS data employed are recent experimental results not available at the time of the original constrained DOSD analysis of this molecule. The constraints are furnished by molar refractivity data and the Thomas–Reiche–Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums, and mean excitation energies for ethylene. Pseudo-DOSDs for this molecule, and for propene and 1–butene, which are based on an earlier constrained DOSD analysis for these molecules, are developed. They are used to obtain reliable results for the isotropic dipole–dipole dispersion-energy coefficients C6, for the interactions of the alkenes with each other and with 47 other species, and the triple-dipole dispersion-energy coefficients C9 for interactions involving any triple of molecules taken from ethylene, propene, and 1–butene.Key words: alkenes, dipole properties, pseudo-states, dipole–dipole and triple-dipole dispersion energies, long-range additive, non-additive interaction energies.
Collapse
|
21
|
Dham AK, McCourt FRW, Dickinson AS. Accuracy of recent potential energy surfaces for the He–N2 interaction. I. Virial and bulk transport coefficients. J Chem Phys 2007; 127:054302. [PMID: 17688335 DOI: 10.1063/1.2753483] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A new exchange-Coulomb semiempirical model potential energy surface for the He-N2 interaction has been developed. Together with two recent high-level ab initio potential energy surfaces, it has been tested for the reliability of its predictions of second-virial coefficients and bulk transport phenomena in binary mixtures of He and N2. The agreement with the relevant available measurements is generally within experimental uncertainty for the exchange-Coulomb surface and the ab initio surface of Patel et al. [J. Chem. Phys. 119, 909 (2003)], but with slightly poorer agreement for the earlier ab initio surface of Hu and Thakkar [J. Chem. Phys. 104, 2541 (1996)].
Collapse
Affiliation(s)
- Ashok K Dham
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | |
Collapse
|
22
|
Xie D, Ran H, Zhou Y. Potential energy surfaces and predicted infrared spectra for van der Waals complexes: dependence on one intramolecular vibrational coordinate. INT REV PHYS CHEM 2007. [DOI: 10.1080/01442350701437926] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Calculating intermolecular potentials with SIMPER: the water–nitrogen and water–oxygen interactions, dispersion energy coefficients, and preliminary results for larger molecules. INT REV PHYS CHEM 2007. [DOI: 10.1080/01442350701371539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Wheatley RJ. Time-dependent coupled-cluster calculations of polarizabilities and dispersion energy coefficients. J Comput Chem 2007; 29:445-50. [PMID: 17639500 DOI: 10.1002/jcc.20801] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Time-dependent coupled cluster theory, with unrestricted electron spins and full treatment of orbital rotation, is used to calculate polarizabilities at imaginary frequencies for Li, Ar, HCl, CO, N(2), O(2), and H(2)O, and to obtain dispersion energy coefficients for their pair interactions. Results obtained with augmented quadruple-zeta basis sets agree well with the best literature values of the C(6) dispersion energy coefficients. Time-dependent coupled cluster with single and double excitations theory will be useful as a benchmark for evaluating more approximate theories. (c) 2007 Wiley Periodicals, Inc. J Comput Chem, 2008.
Collapse
Affiliation(s)
- Richard J Wheatley
- School of Chemistry, The University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
25
|
Zhou Y, Ran H, Xie D. A five-dimensional potential energy surface and predicted infrared spectra for the N2O-hydrogen complexes. J Chem Phys 2006; 125:174310. [PMID: 17100442 DOI: 10.1063/1.2363992] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a five-dimensional potential energy surface for the N(2)O-hydrogen complex using supermolecular approach with the full counterpoise correction at the coupled-cluster singles and doubles with noniterative inclusion of connected triple level. The normal mode Q(3) for the nu(3) antisymmetric stretching vibration of the N(2)O molecule was included in the calculations of the potential energies. The radial discrete variable representation/angular finite basis representation method and Lanczos algorithm were employed to calculate the rovibrational energy levels for four species of N(2)O-hydrogen complexes (N(2)O-para-H(2), -ortho-H(2), -ortho-D(2), and -para-D(2)) without separating the inter- and intramolecular vibrations. The calculated band origins are all blueshifted relative to the isolated N(2)O molecule and in good agreement with the experimental values. The calculated rotational spectroscopic constants and molecular structures agree well with the available experimental results. The frequencies and line intensities of the rovibrational transitions in the nu(3) region of N(2)O for the van der Waals ground vibrational state were calculated and compared with the observed spectra. The predicted infrared spectra are consistent with the observed spectra and show that the N(2)O-H(2) complexes are mostly a-type transitions while both a-type and b-type transitions are significant for the N(2)O-D(2) complexes.
Collapse
Affiliation(s)
- Yanzi Zhou
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
26
|
Zhou Y, Xie D. Three-dimensional ab initio potential-energy surface and rovibrational spectra of the H2–Kr complex. J Chem Phys 2005; 123:134323. [PMID: 16223304 DOI: 10.1063/1.2042448] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report a three-dimensional ab initio potential-energy surface for the H2-Kr complex calculated using a supermolecular method. The electronic calculations were performed at the coupled-cluster singles and doubles level with noniterative inclusion of connected triples levels with a large basis set including midbond functions and the full counterpoise correction for the basis-set superposition error. The intermolecular potential energy between the H2 molecule and the Kr atom were evaluated at five potential-optimized discrete variable representation (DVR) grid points generated from the potential-energy curve of H2. The potential for other bond lengths of H2 could be deduced using polynomial interpolations. The complex is found to have a linear preferred structure with a rather flat energy barrier. The three-dimensional DVR method and the Lanczos propagation algorithm were employed to calculate the rovibrational states without separating the inter- and intramolecular nuclear motions. In addition, the rovibrational spectra from the H2 fundamental vibrational band were calculated. The calculated shift for the band origin is -1.50 cm-1, which is in good agreement with the experimental value of -1.706 cm-1, and the calculated transition frequencies in Q1(0) and S1(0) bands are within 3% of the observed values.
Collapse
Affiliation(s)
- Yanzi Zhou
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, Department of Chemistry, Nanjing University, Nanjing 210093, China
| | | |
Collapse
|
27
|
Sumiyoshi Y, Endo Y. Spectroscopy of Ar–SH and Ar–SD. II. Determination of the three-dimensional intermolecular potential-energy surface. J Chem Phys 2005; 123:054325. [PMID: 16108657 DOI: 10.1063/1.1943968] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
All the pure rotational transitions reported in the previous studies [J. Chem. Phys. 113, 10121 (2000); J. Mol. Spectrosc. 222, 22 (2003)] and newly observed rotation-vibration transitions, P = 1/2 <-- 3/2, for Ar-SH and Ar-SD [J. Chem. Phys. (2005), the preceding paper] have been simultaneously analyzed to determine a new intermolecular potential-energy surface of Ar-SH in the ground state. A Schrodinger equation considering the three-dimensional freedom of motion for an atom-diatom complex in the Jacobi coordinate, R, theta, and r, was numerically solved to obtain energies of the rovibrational levels using the discrete variable representation method. A three-dimensional potential-energy surface is determined by a least-squares fitting with initial values of the parameters for the potential obtained by ab initio calculations at the RCCSD(T)/aug-cc-pVTZ level of theory. The potential well reproduces all the observed data in the microwave and millimeter wave regions with parity doublings and hyperfine splittings. Several low-lying rovibrational energies are calculated using the new potential-energy surface. The dependence of the interaction energy between Ar and SH(2pi(i)) on the bond length of the SH monomer is discussed.
Collapse
Affiliation(s)
- Yoshihiro Sumiyoshi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | |
Collapse
|