1
|
Jang SJ, Rhee YM. Modified Fermi's golden rule rate expressions. J Chem Phys 2023; 159:014101. [PMID: 37403843 DOI: 10.1063/5.0152804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Fermi's golden rule (FGR) serves as the basis for many expressions of spectroscopic observables and quantum transition rates. The utility of FGR has been demonstrated through decades of experimental confirmation. However, there still remain important cases where the evaluation of a FGR rate is ambiguous or ill-defined. Examples are cases where the rate has divergent terms due to the sparsity in the density of final states or time dependent fluctuations of system Hamiltonians. Strictly speaking, assumptions of FGR are no longer valid for such cases. However, it is still possible to define modified FGR rate expressions that are useful as effective rates. The resulting modified FGR rate expressions resolve a long standing ambiguity often encountered in using FGR and offer more reliable ways to model general rate processes. Simple model calculations illustrate the utility and implications of new rate expressions.
Collapse
Affiliation(s)
- Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, USA and PhD Programs in Chemistry and Physics, Graduate Center of the City University of New York, New York, New York 10016, USA
- Korea Institute for Advanced Study, Seoul 02455, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
2
|
Matyushov DV, Newton MD. Thermodynamics of Reactions Affected by Medium Reorganization. J Phys Chem B 2018; 122:12302-12311. [PMID: 30514079 DOI: 10.1021/acs.jpcb.8b08865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a thermodynamic analysis of the activation barrier for reactions which can be monitored through the difference in the energies of reactants and products defined as the reaction coordinate (electron and atom transfer, enzyme catalysis, etc.). The free-energy surfaces along the reaction coordinate are separated into the enthalpy and entropy surfaces. For the Gaussian statistics of the reaction coordinate, the free-energy surfaces are parabolas, and the entropy surface is an inverted parabola. Its maximum coincides with the transition state for reactions with zero value of the reaction free energy. Maximum entropic depression of the activation barrier, anticipated by the concept of transition-state ensembles, can be achieved for such reactions. From Onsager's reversibility, the entropy of equilibrium fluctuations encodes the entropic component of the activation barrier. The reorganization entropy thus becomes the critical parameter of the theory reducing the problem of activation entropy to the problem of reorganization entropy. Standard solvation theories do not allow reorganization entropy sufficient for the barrier depression. Complex media, characterized by many relaxation processes, need to be involved. Proteins provide several routes for achieving large entropic effects through incomplete (nonergodic) sampling of the complex energy landscape and by facilitating an active role of water in the reaction mechanism.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- Department of Physics and School of Molecular Sciences , Arizona State University , PO Box 871504, Tempe , Arizona 85287 , United States
| | - Marshall D Newton
- Brookhaven National Laboratory , Chemistry Department , Box 5000, Upton , New York 11973-5000 , United States
| |
Collapse
|
3
|
Matyushov DV, Newton MD. Electrode reactions in slowly relaxing media. J Chem Phys 2017; 147:194506. [DOI: 10.1063/1.5003022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Dmitry V. Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, USA
| | - Marshall D. Newton
- Chemistry Department, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| |
Collapse
|
4
|
Matyushov DV. Protein electron transfer: is biology (thermo)dynamic? JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:473001. [PMID: 26558324 DOI: 10.1088/0953-8984/27/47/473001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life's ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein's elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic activated kinetics, which extends the transition-state theory to dynamically dispersive media. Releasing the grip of thermodynamics in kinetic calculations through nonergodicity provides the mechanism for an efficient optimization between reaction rates and the spectrum of relaxation times of the protein-water thermal bath. Bath dynamics, it appears, play as important role as the free energy in optimizing biology's performance.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504, USA
| |
Collapse
|
5
|
LeBard DN, Matyushov DV. Protein–water electrostatics and principles of bioenergetics. Phys Chem Chem Phys 2010; 12:15335-48. [DOI: 10.1039/c0cp01004a] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Abstract
A theoretical formulation is developed for the activated kinetics when some subset of nuclear modes of the thermal bath is slower than the reaction and ergodicity of the thermal bath is not maintained. Nonergodic free energy profiles along the reaction coordinate are constructed by using restricted canonical ensembles with the phase space available to the system found by solving a self-consistent kinetic equation. The resulting activation barrier incorporates not only thermodynamic parameters but also dynamical information from the time autocorrelation function of the solute-solvent interaction energy. The theory is applied to the reactions of solvolysis and charge transfer in polar media.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- Center for Biological Physics, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287-1504, USA.
| |
Collapse
|
7
|
Wang H, Lin S, Katilius E, Laser C, Allen JP, Williams JC, Woodbury NW. Unusual Temperature Dependence of Photosynthetic Electron Transfer due to Protein Dynamics. J Phys Chem B 2008; 113:818-24. [DOI: 10.1021/jp807468c] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haiyu Wang
- The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5201, and The Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Su Lin
- The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5201, and The Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Evaldas Katilius
- The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5201, and The Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Christa Laser
- The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5201, and The Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - James P. Allen
- The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5201, and The Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - JoAnn C. Williams
- The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5201, and The Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| | - Neal W. Woodbury
- The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85287-5201, and The Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604
| |
Collapse
|
8
|
LeBard DN, Kapko V, Matyushov DV. Energetics and kinetics of primary charge separation in bacterial photosynthesis. J Phys Chem B 2008; 112:10322-42. [PMID: 18636767 DOI: 10.1021/jp8016503] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the results of molecular dynamics (MD) simulations and formal modeling of the free-energy surfaces and reaction rates of primary charge separation in the reaction center of Rhodobacter sphaeroides. Two simulation protocols were used to produce MD trajectories. Standard force-field potentials were employed in the first protocol. In the second protocol, the special pair was made polarizable to reproduce a high polarizability of its photoexcited state observed by Stark spectroscopy. The charge distribution between covalent and charge-transfer states of the special pair was dynamically adjusted during the simulation run. We found from both protocols that the breadth of electrostatic fluctuations of the protein/water environment far exceeds previous estimates, resulting in about 1.6 eV reorganization energy of electron transfer in the first protocol and 2.5 eV in the second protocol. Most of these electrostatic fluctuations become dynamically frozen on the time scale of primary charge separation, resulting in much smaller solvation contributions to the activation barrier. While water dominates solvation thermodynamics on long observation times, protein emerges as the major thermal bath coupled to electron transfer on the picosecond time of the reaction. Marcus parabolas were obtained for the free-energy surfaces of electron transfer by using the first protocol, while a highly asymmetric surface was obtained in the second protocol. A nonergodic formulation of the diffusion-reaction electron-transfer kinetics has allowed us to reproduce the experimental results for both the temperature dependence of the rate and the nonexponential decay of the population of the photoexcited special pair.
Collapse
Affiliation(s)
- David N LeBard
- Center for Biological Physics, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | | |
Collapse
|
9
|
Jang S, Newton MD. Closed-form expressions of quantum electron transfer rate based on the stationary-phase approximation. J Phys Chem B 2007; 110:18996-9003. [PMID: 16986895 DOI: 10.1021/jp061329v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Closed-form rate expressions are derived on the basis of the stationary-phase approximation for the Fermi golden rule expression of the quantum electron-transfer (ET) rate. First, on the basis of approximate solutions of the stationary-phase points near DeltaG = 0, -lambda, and lambda, where DeltaG is the reaction free energy and lambda is the reorganization energy, three closed-form rate expressions are derived, which are respectively valid near each value of DeltaG. Numerical tests for a model Ohmic spectral density with an exponential cutoff demonstrate good performance of the derived expressions in the respective regions of their validity. In particular, the expression near DeltaG = -lambda, which differs from the semiclassical approximation only by a prefactor quadratic in DeltaG, works substantially better than the latter. Then, a unified formula is suggested, which interpolates the three approximate expressions and serves as a good approximation in all three regions. We have also demonstrated that the interpolation formula can serve as a good quantitative means for understanding the temperature dependence of the quantum ET rate.
Collapse
Affiliation(s)
- Seogjoo Jang
- Department of Chemistry and Biochemistry, Queens College and Graduate Center of the City University of New York, 65-30 Kissena Boulevard, Flushing, New York 11367, USA.
| | | |
Collapse
|
10
|
Kapko V, Matyushov DV. Dynamical Arrest of Electron Transfer in Liquid Crystalline Solvents. J Phys Chem B 2006; 110:13184-94. [PMID: 16805631 DOI: 10.1021/jp0615205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We argue that electron transfer reactions in slowly relaxing solvents proceed in the nonergodic regime, making the reaction activation barrier strongly dependent on the solvent dynamics. For typical dielectric relaxation times of polar nematics, electron transfer reactions in the subnanosecond time scale fall into nonergodic regime in which nuclear solvation energies entering the activation barrier are significantly lower than their thermodynamic values. The transition from isotropic to nematic phase results in weak discontinuities of the solvation energies at the transition point and the appearance of solvation anisotropy weakening with increasing solute size. The theory is applied to analyze experimental kinetic data for the electron transfer kinetics in the isotropic phase of 5CB liquid crystalline solvent. We predict that the energy gap law of electron transfer reactions in slowly relaxing solvents is characterized by regions of fast change of the rate at points where the reaction switches between the ergodic and nonergodic regimes. The dependence of the rate on the donor-acceptor separation may also be affected in a way of producing low values for the exponential falloff parameter.
Collapse
Affiliation(s)
- Vitaliy Kapko
- Department of Chemistry and Biochemistry and the Center for the Early Events in Photosynthesis, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, USA
| | | |
Collapse
|
11
|
Ghorai PK, Matyushov DV. Solvent reorganization of electron transitions in viscous solvents. J Chem Phys 2006; 124:144510. [PMID: 16626217 DOI: 10.1063/1.2185102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We develop a model of electron transfer reactions at conditions of nonergodicity when the time of solvent relaxation crosses the observation time window set up by the reaction rate. Solvent reorganization energy of intramolecular electron transfer in a charge-transfer molecule dissolved in water and acetonitrile is studied by molecular dynamics simulations at varying temperatures. We observe a sharp decrease of the reorganization energy at a temperature identified as the temperature of structural arrest due to cage effect, as discussed by the mode-coupling theory. This temperature also marks the onset of the enhancement of translational diffusion relative to rotational relaxation signaling the breakdown of the Stokes-Einstein relation. The change in the reorganization energy at the transition temperature reflects the dynamical arrest of the slow, collective relaxation of the solvent related to the relaxation of the solvent dipolar polarization. An analytical theory proposed to describe this effect agrees well with both the simulations and experimental Stokes shift data. The theory is applied to the analysis of charge-transfer kinetics in a low-temperature glass former. We show that the reorganization energy is substantially lower than its equilibrium value for the low-temperature portion of the data. The theory predicts the possibility of discontinuous changes in the dependence of the electron transfer rate on the free energy gap when the reaction switches between ergodic and nonergodic regimes.
Collapse
Affiliation(s)
- Pradip K Ghorai
- Department of Chemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | | |
Collapse
|
12
|
Ghorai PK, Matyushov DV. Reorganization Energy of Electron Transfer in Viscous Solvents above the Glass Transition. J Phys Chem B 2006; 110:1866-71. [PMID: 16471757 DOI: 10.1021/jp055235h] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a molecular-dynamics study of the solvent reorganization energy of electron transfer in supercooled water. We observe a sharp decrease of the reorganization energy at a temperature identified as the temperature of structural arrest due to cage effect as discussed by the mode coupling theory. Both the heat capacity and dielectric susceptibility of the pure water show sharp drops at about the same temperature. This temperature also marks the onset of the enhancement of translational diffusion relative to rotational relaxation signaling the breakdown of the Stokes-Einstein relation. The change in the reorganization energy at the transition temperature reflects the dynamical arrest of the slow, collective relaxation of the solvent related to Debye relaxation of the solvent dipolar polarization.
Collapse
Affiliation(s)
- Pradip K Ghorai
- Department of Chemistry and Biochemistry and the Center for the Early Events in Photosynthesis, Arizona State University, P.O. Box 871604, Tempe, Arizona 85287-1604, USA
| | | |
Collapse
|
13
|
Gudowska-Nowak E, Bochenek K, Jurlewicz A, Weron K. Hopping models of charge transfer in a complex environment: coupled memory continuous-time random walk approach. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:061101. [PMID: 16485925 DOI: 10.1103/physreve.72.061101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 05/13/2005] [Indexed: 05/06/2023]
Abstract
Charge transport processes in disordered complex media are accompanied by anomalously slow relaxation for which usually a broad distribution of relaxation times is adopted. To account for those properties of the environment, a standard kinetic approach in description of the system is addressed either in the framework of continuous-time random walks (CTRWs) or fractional diffusion. In this paper the power of the CTRW approach is illustrated by use of the probabilistic formalism and limit theorems that allow one to rigorously predict the limiting distributions of the paths traversed by charges and to derive effective relaxation properties of the entire system of interest. In particular, the standard CTRW scenario is generalized to a new class of coupled memory CTRWs that effectively can lead to the well known Havriliak-Negami response. Application of the method is discussed for nonexponential electron-transfer processes controlled by dynamics of the surrounding medium.
Collapse
Affiliation(s)
- Ewa Gudowska-Nowak
- Marian Smoluchowski Institute of Physics Jagellonian University, ul. Reymonta 4, 30-059 Kraków, Poland
| | | | | | | |
Collapse
|
14
|
Ghorai PK, Matyushov DV. Dynamical Arrest of Electron Transfer Reorganization in Super-Cooled Water. J Am Chem Soc 2005; 127:16390-1. [PMID: 16305214 DOI: 10.1021/ja0535920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper reports the results of Molecular Dynamics (MD) simulations of the solvent reorganization energy of electron transfer (ET) reactions in low-temperature solvents. Simulations are carried out for a model charge-transfer optical dye (p-nitroaniline) in SPC/E water in a range of temperatures down to the point of solvent ideal glass transition. We show a significant departure of the solvent reorganization energy, measured on a given time window, from its thermodynamic limit obtained by averaging over long simulation trajectories. Our results thus indicate that optical solvatochromism and activation parameters of ET reactions measured in viscous solvents will be significantly affected by the dynamical arrest of nuclear solvation when the experimental time scale becomes comparable to the characteristic relaxation time of the solvent.
Collapse
Affiliation(s)
- Pradip K Ghorai
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, PO Box 871604, Tempe, Arizona 85287-1604, USA
| | | |
Collapse
|