1
|
Fu W, Mo Y, Xiao Y, Liu C, Zhou F, Wang Y, Zhou J, Zhang YJ. Enhancing Molecular Energy Predictions with Physically Constrained Modifications to the Neural Network Potential. J Chem Theory Comput 2024; 20:4533-4544. [PMID: 38828925 DOI: 10.1021/acs.jctc.3c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Exclusively prioritizing the precision of energy prediction frequently proves inadequate in satisfying multifaceted requirements. A heightened focus is warranted on assessing the rationality of potential energy curves predicted by machine learning-based force fields (MLFFs), alongside evaluating the pragmatic utility of these MLFFs. This study introduces SWANI, an optimized neural network potential stemming from the ANI framework. Through the incorporation of supplementary physical constraints, SWANI aligns more cohesively with chemical expectations, yielding rational potential energy profiles. It also exhibits superior predictive precision compared with that of the ANI model. Additionally, a comprehensive comparison is conducted between SWANI and a prominent graph neural network-based model. The findings indicate that SWANI outperforms the latter, particularly for molecules exceeding the dimensions of the training set. This outcome underscores SWANI's exceptional capacity for generalization and its proficiency in handling larger molecular systems.
Collapse
Affiliation(s)
- Weiqiang Fu
- Beijing StoneWise Technology Co., Ltd., Haidian Street 15, Haidian District, Beijing 100080, China
| | - Yujie Mo
- Beijing StoneWise Technology Co., Ltd., Haidian Street 15, Haidian District, Beijing 100080, China
| | - Yi Xiao
- Beijing StoneWise Technology Co., Ltd., Haidian Street 15, Haidian District, Beijing 100080, China
| | - Chang Liu
- Beijing StoneWise Technology Co., Ltd., Haidian Street 15, Haidian District, Beijing 100080, China
| | - Feng Zhou
- Beijing StoneWise Technology Co., Ltd., Haidian Street 15, Haidian District, Beijing 100080, China
| | - Yang Wang
- Beijing StoneWise Technology Co., Ltd., Haidian Street 15, Haidian District, Beijing 100080, China
| | - Jielong Zhou
- Beijing StoneWise Technology Co., Ltd., Haidian Street 15, Haidian District, Beijing 100080, China
| | - Yingsheng J Zhang
- Beijing StoneWise Technology Co., Ltd., Haidian Street 15, Haidian District, Beijing 100080, China
| |
Collapse
|
2
|
Rask AE, Li L, Zimmerman PM. Kohn-Sham Density in a Slater Orbital Basis Set. J Phys Chem A 2024; 128:3194-3204. [PMID: 38602291 DOI: 10.1021/acs.jpca.3c08303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Finite, atom-centered Slater basis sets are used to determine approximate Kohn-Sham molecular orbitals. This is achieved by minimizing the kinetic energy plus the sum-squared difference between the Kohn-Sham density and the full configuration interaction density. As a result of the finite basis, a weight factor is introduced to balance the two minimization components. Results herein show that this can be done systematically, without sensitive dependence on the choice of scaling factor. In addition, the algorithm is applied to the LiH diatomic for fractional electron counts, where stretching the bond introduces significant reorganization of the electron density. The analysis will show the correct KS orbital structure and reveal the effects of correlation and electron locality on the KS solutions.
Collapse
Affiliation(s)
- Alan E Rask
- SandboxAQ, 780 High Street, Palo Alto, California 94301, United States
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Liying Li
- Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, Michigan 48109, United States
- Department of Mathematics, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Wardzala J, King DS, Ogunfowora L, Savoie B, Gagliardi L. Organic Reactivity Made Easy and Accurate with Automated Multireference Calculations. ACS CENTRAL SCIENCE 2024; 10:833-841. [PMID: 38680571 PMCID: PMC11046455 DOI: 10.1021/acscentsci.3c01559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
In organic reactivity studies, quantum chemical calculations play a pivotal role as the foundation of understanding and machine learning model development. While prevalent black-box methods like density functional theory (DFT) and coupled-cluster theory (e.g., CCSD(T)) have significantly advanced our understanding of chemical reactivity, they frequently fall short in describing multiconfigurational transition states and intermediates. Achieving a more accurate description necessitates the use of multireference methods. However, these methods have not been used at scale due to their often-faulty predictions without expert input. Here, we overcome this deficiency with automated multiconfigurational pair-density functional theory (MC-PDFT) calculations. We apply this method to 908 automatically generated organic reactions. We find 68% of these reactions present significant multiconfigurational character in which the automated multiconfigurational approach often provides a more accurate and/or efficient description than DFT and CCSD(T). This work presents the first high-throughput application of automated multiconfigurational methods to reactivity, enabled by automated active space selection algorithms and the computation of electronic correlation with MC-PDFT on-top functionals. This approach can be used in a black-box fashion, avoiding significant active space inconsistency error in both single- and multireference cases and providing accurate multiconfigurational descriptions when needed.
Collapse
Affiliation(s)
- Jacob
J. Wardzala
- Department
of Chemistry,University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel S. King
- Department
of Chemistry,University of Chicago, Chicago, Illinois 60637, United States
| | - Lawal Ogunfowora
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Brett Savoie
- Davidson
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Laura Gagliardi
- Department
of Chemistry, Pritzker School of Molecular Engineering, James Franck
Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Rodríguez-Jiménez JA, Carreras A, Casanova D. Small-Occupation Density Functional Correlation Energy Correction to Wave Function Approximations. J Chem Theory Comput 2024. [PMID: 38227943 DOI: 10.1021/acs.jctc.3c01067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this work, we introduce a novel hybrid approach, termed WFT-soDFT, designed to seamlessly incorporate DFT correlation into wave function ansatzes. This is achieved through a partitioning of the orbital space, distinguishing between large and small natural occupation numbers associated with wave function theory (WFT) and DFT correlation, respectively. The method uses a novel criterion for partitioning the orbital space and mapping the electron density in natural orbitals with a small occupation with the correlation energy of fast electrons within the homogeneous electron gas. Central to our approach is the introduction of a separation parameter ν, the choice of the WFT approach, and the correlation functional. Here, we combine the RASCI wave function with hole and particle truncation with a local density correlation functional to only account for small-occupation correlation energy. We investigate the performance of the method in the study of small but challenging chemical systems, for which WFT-soDFT demonstrates notable improvements over pristine wave function calculations. These findings collectively highlight the potential of the WFT-soDFT approach as a computationally affordable strategy to improve the accuracy of WFT electronic structure calculations.
Collapse
Affiliation(s)
- José Aarón Rodríguez-Jiménez
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), 20018 Donostia, Euskadi, Spain
| | - Abel Carreras
- Multiverse Computing, 20008 Donostia, Euskadi, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Euskadi, Spain
| |
Collapse
|
5
|
Graf D, Thom AJW. Corrected density functional theory and the random phase approximation: Improved accuracy at little extra cost. J Chem Phys 2023; 159:174106. [PMID: 37921249 DOI: 10.1063/5.0168569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
We recently introduced an efficient methodology to perform density-corrected Hartree-Fock density functional theory [DC(HF)-DFT] calculations and an extension to it we called "corrected" HF DFT [C(HF)-DFT] [Graf and Thom, J. Chem. Theory Comput. 19 5427-5438 (2023)]. In this work, we take a further step and combine C(HF)-DFT, augmented with a straightforward orbital energy correction, with the random phase approximation (RPA). We refer to the resulting methodology as corrected HF RPA [C(HF)-RPA]. We evaluate the proposed methodology across various RPA methods: direct RPA (dRPA), RPA with an approximate exchange kernel, and RPA with second-order screened exchange. C(HF)-dRPA demonstrates very promising performance; for RPA with exchange methods, on the other hand, we often find over-corrections.
Collapse
Affiliation(s)
- Daniel Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| | - Alex J W Thom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| |
Collapse
|
6
|
Yeh CN, Morales MA. Low-Scaling Algorithm for the Random Phase Approximation Using Tensor Hypercontraction with k-point Sampling. J Chem Theory Comput 2023; 19:6197-6207. [PMID: 37624575 DOI: 10.1021/acs.jctc.3c00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
We present a low-scaling algorithm for the random phase approximation (RPA) with k-point sampling in the framework of tensor hypercontraction (THC) for electron repulsion integrals (ERIs). The THC factorization is obtained via a revised interpolative separable density fitting (ISDF) procedure with a momentum-dependent auxiliary basis for generic single-particle Bloch orbitals. Our formulation does not require preoptimized interpolating points or auxiliary bases, and the accuracy is systematically controlled by the number of interpolating points. The resulting RPA algorithm scales linearly with the number of k-points and cubically with the system size without any assumption on sparsity or locality of orbitals. The errors of ERIs and RPA energy show rapid convergence with respect to the size of the THC auxiliary basis, suggesting a promising and robust direction to construct efficient algorithms of higher order many-body perturbation theories for large-scale systems.
Collapse
Affiliation(s)
- Chia-Nan Yeh
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Miguel A Morales
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| |
Collapse
|
7
|
Hellgren M, Baguet L. Strengths and limitations of the adiabatic exact-exchange kernel for total energy calculations. J Chem Phys 2023; 158:2889488. [PMID: 37158324 DOI: 10.1063/5.0146423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
We investigate the adiabatic approximation to the exact-exchange kernel for calculating correlation energies within the adiabatic-connection fluctuation-dissipation framework of time-dependent density functional theory. A numerical study is performed on a set of systems having bonds of different character (H2 and N2 molecules, H-chain, H2-dimer, solid-Ar, and the H2O-dimer). We find that the adiabatic kernel can be sufficient in strongly bound covalent systems, yielding similar bond lengths and binding energies. However, for non-covalent systems, the adiabatic kernel introduces significant errors around equilibrium geometry, systematically overestimating the interaction energy. The origin of this behavior is investigated by studying a model dimer composed of one-dimensional, closed-shell atoms, interacting via soft-Coulomb potentials. The kernel is shown to exhibit a strong frequency dependence at small to intermediate atomic separation that affects both the low-energy spectrum and the exchange-correlation hole obtained from the corresponding diagonal of the two-particle density matrix.
Collapse
Affiliation(s)
- Maria Hellgren
- Sorbonne Université, MNHN, UMR CNRS 7590, IMPMC, 4 place Jussieu, 75005 Paris, France
| | - Lucas Baguet
- CEA, DAM, DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France
| |
Collapse
|
8
|
Simons J. Why Is Quantum Chemistry So Complicated? J Am Chem Soc 2023; 145:4343-4354. [PMID: 36787532 DOI: 10.1021/jacs.2c13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The myriad tools of quantum chemistry are now widely used by a diverse community of chemists, biologists, physicists, and material scientists. The large number of methods (e.g., Hartree-Fock, density functional theory, configuration interaction, perturbation theory, coupled-clusters, equations of motion, Green's functions, and more) and the multitude of atomic orbital basis sets often give rise to consternation and confusion. In this Perspective, I explain why quantum chemistry has so many different methods and why researchers should understand their relative strengths and weaknesses. I explain how chemistry's use of orbitals and the need for wave functions to be antisymmetric causes computational-effort scaling proportional to the cube or higher power of the number of orbitals. I also illustrate how the fact that the Schrödinger equation's energies are extensive makes it difficult to extract intensive properties such as bond and excitation energies, ionization potentials, and electron affinities.
Collapse
Affiliation(s)
- Jack Simons
- Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
9
|
Drontschenko V, Graf D, Laqua H, Ochsenfeld C. Efficient Method for the Computation of Frozen-Core Nuclear Gradients within the Random Phase Approximation. J Chem Theory Comput 2022; 18:7359-7372. [PMID: 36331398 DOI: 10.1021/acs.jctc.2c00774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A method for the evaluation of analytical frozen-core gradients within the random phase approximation is presented. We outline an efficient way to evaluate the response of the density of active electrons arising only when introducing the frozen-core approximation and constituting the main difficulty, together with the response of the standard Kohn-Sham density. The general framework allows to extend the outlined procedure to related electron correlation methods in the atomic orbital basis that require the evaluation of density responses, such as second-order Møller-Plesset perturbation theory or coupled cluster variants. By using Cholesky decomposed densities─which reintroduce the occupied index in the time-determining steps─we are able to achieve speedups of 20-30% (depending on the size of the basis set) by using the frozen-core approximation, which is of similar magnitude as for molecular orbital formulations. We further show that the errors introduced by the frozen-core approximation are practically insignificant for molecular geometries.
Collapse
Affiliation(s)
- Viktoria Drontschenko
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
| | - Daniel Graf
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
| | - Henryk Laqua
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany.,Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| |
Collapse
|
10
|
Wodyński A, Kaupp M. Local Hybrid Functional Applicable to Weakly and Strongly Correlated Systems. J Chem Theory Comput 2022; 18:6111-6123. [PMID: 36170626 DOI: 10.1021/acs.jctc.2c00795] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recent idea (Wodyński, A.; Arbuznikov, A. V.; Kaupp M. J. Chem. Phys. 2021, 155, 144101) to augment local hybrid functionals by a strong-correlation (sc) factor obtained from the adiabatic connection in the spirit of the KP16 model has been extended and applied to generate the accurate sc-corrected local hybrid functional scLH22t. By damping small values of the ratio between nondynamical and dynamical correlation entering the correction factor, it has become possible to avoid double counting of nondynamical correlation for weakly correlated situations and thereby preserve the excellent accuracy of the underlying LH20t local hybrid for such cases almost perfectly. On the other hand, scLH22t improves substantially over LH20t in reducing fractional-spin errors (FSEs), in providing improved spin-restricted bond dissociation curves, and in treating some typical systems with multireference character. The obtained FSEs are similar to those of the KP16/B13 model and slightly larger than for B13, but performance for weakly correlated systems is better than for these two related methods, which are also difficult to use self-consistently. The recent DM21 functional based on the training of a deep neural network still performs somewhat better than scLH22t but allows no physical insights into the origins of reduced FSEs. Examination of local mixing functions (LMFs) for the corrected scLH22t and uncorrected LH20t functionals provides further insights: in weakly correlated situations, the LMF remains essentially unchanged. Strong-correlation effects manifest in a reduction of the LMF values in certain regions of space, even to the extent of producing negative LMF values. It is suggested that this is the mechanism by which also DM21, which may be viewed as a range-separated local hybrid, is able to reduce FSEs.
Collapse
Affiliation(s)
- Artur Wodyński
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
11
|
González S, Porras M, Jimbo A, Zambrano CH. Dehydrochlorination of PCDDs on SWCN-Supported Ni10 and Ni13 Clusters, a DFT Study. Molecules 2022; 27:molecules27165074. [PMID: 36014314 PMCID: PMC9414052 DOI: 10.3390/molecules27165074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) are known to be a group of compounds of high toxicity for animals and, particularly, for humans. Given that the most common method to destroy these compounds is by high-temperature combustion, finding other routes to render them less toxic is of paramount importance. Taking advantage of the physisorption properties of nanotubes, we studied the reactions of atomic hydrogen on physisorbed PCDDs using DFT; likewise, we investigated the reaction of molecular hydrogen on PCDDs aided by Ni10 and Ni13 clusters adsorbed on single-wall carbon nanotubes. Because dihydrogen is an easily accessible reactant, we found these reactions to be quite relevant as dehydrohalogenation methods to address PCDD toxicity.
Collapse
Affiliation(s)
- Silvia González
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle Marcelino Champagnat s/n, Loja 110101, Ecuador
- Correspondence: ; Tel.: +593-7-370-1444
| | - Martha Porras
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle Marcelino Champagnat s/n, Loja 110101, Ecuador
- Universidad Técnica de Machala, Av. Panamericana Km. 5 1/2 Vía a Pasaje, Machala 170526, Ecuador
| | - Arianna Jimbo
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle Marcelino Champagnat s/n, Loja 110101, Ecuador
| | - Cesar H. Zambrano
- Departamento de Ingeniería Química, Universidad San Francisco de Quito, Pampite y Robles s/n Cumbayá, Quito 170901, Ecuador
| |
Collapse
|
12
|
Lemke Y, Graf D, Kussmann J, Ochsenfeld C. An assessment of orbital energy corrections for the direct random phase approximation and explicit σ-functionals. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2098862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Yannick Lemke
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich, Germany
| | - Daniel Graf
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich, Germany
| | - Jörg Kussmann
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Munich, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| |
Collapse
|
13
|
Prokopiou G, Hartstein M, Govind N, Kronik L. Optimal Tuning Perspective of Range-Separated Double Hybrid Functionals. J Chem Theory Comput 2022; 18:2331-2340. [PMID: 35369687 PMCID: PMC9009176 DOI: 10.1021/acs.jctc.2c00082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/29/2022]
Abstract
We study the optimal tuning of the free parameters in range-separated double hybrid functionals, based on enforcing the exact conditions of piecewise linearity and spin constancy. We find that introducing the range separation in both the exchange and the correlation terms allows for the minimization of both fractional charge and fractional spin errors for singlet atoms. The optimal set of parameters is system specific, underlining the importance of the tuning procedure. We test the performance of the resulting optimally tuned functionals for the dissociation curves of diatomic molecules. We find that they recover the correct dissociation curve for the one-electron system, H2+, and improve the dissociation curves of many-electron molecules such as H2 and Li2, but they also yield a nonphysical maximum and only converge to the correct dissociation limit at very large distances.
Collapse
Affiliation(s)
- Georgia Prokopiou
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Michal Hartstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Niranjan Govind
- Physical
and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Leeor Kronik
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| |
Collapse
|
14
|
Kirkpatrick J, McMorrow B, Turban DHP, Gaunt AL, Spencer JS, Matthews AGDG, Obika A, Thiry L, Fortunato M, Pfau D, Castellanos LR, Petersen S, Nelson AWR, Kohli P, Mori-Sánchez P, Hassabis D, Cohen AJ. Pushing the frontiers of density functionals by solving the fractional electron problem. Science 2021; 374:1385-1389. [PMID: 34882476 DOI: 10.1126/science.abj6511] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Louis Thiry
- Département d'informatique, ENS, CNRS, PSL University, Paris, France
| | | | - David Pfau
- DeepMind, 6 Pancras Square, London N1C 4AG, UK
| | | | | | | | | | | | | | - Aron J Cohen
- DeepMind, 6 Pancras Square, London N1C 4AG, UK.,Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
Vieira D. Readdressing molecular dissociation within the Kohn–Sham formalism of density-functional theory: simple models and a different point of view. Mol Phys 2021. [DOI: 10.1080/00268976.2021.2008037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daniel Vieira
- Departamento de Física, Programa de Pós-Graduação em Física, Universidade do Estado de Santa Catarina, Joinville, SC, Brazil
| |
Collapse
|
16
|
Wodyński A, Arbuznikov AV, Kaupp M. Local hybrid functionals augmented by a strong-correlation model. J Chem Phys 2021; 155:144101. [PMID: 34654308 DOI: 10.1063/5.0058917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The strong-correlation factor of the recent KP16/B13 exchange-correlation functional has been adapted and applied to the framework of local hybrid (LH) functionals. The expression identifiable as nondynamical (NDC) and dynamical (DC) correlations in LHs is modified by inserting a position-dependent KP16/B13-style strong-correlation factor qAC(r) based on a local version of the adiabatic connection. Different ways of deriving this factor are evaluated for a simple one-parameter LH based on the local density approximation. While the direct derivation from the LH NDC term fails due to known deficiencies, hybrid approaches, where the factor is determined from the B13 NDC term as in KP16/B13 itself, provide remarkable improvements. In particular, a modified B13 NDC expression using Patra's exchange-hole curvature showed promising results. When applied to the simple LH as a first attempt, it reduces atomic fractional-spin errors and deficiencies of spin-restricted bond dissociation curves to a similar extent as the KP16/B13 functional itself while maintaining the good accuracy of the underlying LH for atomization energies and reaction barriers in weakly correlated situations. The performance of different NDC expressions in deriving strong-correlation corrections is analyzed, and areas for further improvements of strong-correlation corrected LHs and related approaches are identified. All the approaches evaluated in this work have been implemented self-consistently into a developers' version of the Turbomole program.
Collapse
Affiliation(s)
- Artur Wodyński
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Alexei V Arbuznikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
17
|
Fauser S, Trushin E, Neiss C, Görling A. Chemical accuracy with σ-functionals for the Kohn-Sham correlation energy optimized for different input orbitals and eigenvalues. J Chem Phys 2021; 155:134111. [PMID: 34624971 DOI: 10.1063/5.0059641] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently, a new type of orbital-dependent functional for the Kohn-Sham (KS) correlation energy, σ-functionals, was introduced. Technically, σ-functionals are closely related to the well-known direct random phase approximation (dRPA). Within the dRPA, a function of the eigenvalues σ of the frequency-dependent KS response function is integrated over purely imaginary frequencies. In σ-functionals, this function is replaced by one that is optimized with respect to reference sets of atomization, reaction, transition state, and non-covalent interaction energies. The previously introduced σ-functional uses input orbitals and eigenvalues from KS calculations with the generalized gradient approximation (GGA) exchange-correlation functional of Perdew, Burke, and Ernzerhof (PBE). Here, σ-functionals using input orbitals and eigenvalues from the meta-GGA TPSS and the hybrid-functionals PBE0 and B3LYP are presented and tested. The number of reference sets taken into account in the optimization of the σ-functionals is larger than in the first PBE based σ-functional and includes sets with 3d-transition metal compounds. Therefore, also a reparameterized PBE based σ-functional is introduced. The σ-functionals based on PBE0 and B3LYP orbitals and eigenvalues reach chemical accuracy for main group chemistry. For the 10 966 reactions from the highly accurate W4-11RE reference set, the B3LYP based σ-functional exhibits a mean average deviation of 1.03 kcal/mol compared to 1.08 kcal/mol for the coupled cluster singles doubles perturbative triples method if the same valence quadruple zeta basis set is used. For 3d-transition metal chemistry, accuracies of about 2 kcal/mol are reached. The computational effort for the post-self-consistent evaluation of the σ-functional is lower than that of a preceding PBE0 or B3LYP calculation for typical systems.
Collapse
Affiliation(s)
- Steffen Fauser
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91 058 Erlangen, Germany
| | - Egor Trushin
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91 058 Erlangen, Germany
| | - Christian Neiss
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91 058 Erlangen, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91 058 Erlangen, Germany
| |
Collapse
|
18
|
Drontschenko V, Graf D, Laqua H, Ochsenfeld C. Lagrangian-Based Minimal-Overhead Batching Scheme for the Efficient Integral-Direct Evaluation of the RPA Correlation Energy. J Chem Theory Comput 2021; 17:5623-5634. [PMID: 34431662 DOI: 10.1021/acs.jctc.1c00494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly memory-efficient integral-direct random phase approximation (RPA) method based on our ω-CDGD-RI-RPA method [Graf, D. J. Chem. Theory Comput. 2018, 14, 2505] is presented that completely alleviates the memory bottleneck of storing the multidimensional three-center integral tensor, which severely limited the tractable system sizes. Based on a Lagrangian formulation, we introduce an optimized batching scheme over the auxiliary and basis-function indices, which allows to compute the optimal number of batches for a given amount of system memory, while minimizing the batching overhead. Thus, our optimized batching constitutes the best tradeoff between program runtime and memory demand. Within this batching scheme, the half-transformed three-center integral tensor BiμM is recomputed for each batch of auxiliary and basis functions. This allows the computation of systems that were out of reach before. The largest system within this work consists of a DNA fragment comprising 1052 atoms and 11 230 basis functions calculated on a single node, which emphasizes the new possibilities of our integral-direct RPA method.
Collapse
Affiliation(s)
- Viktoria Drontschenko
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
| | - Daniel Graf
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
| | - Henryk Laqua
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), 81377 Munich, Germany.,Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
| |
Collapse
|
19
|
Lobato A, Salvadó MA, Recio JM, Taravillo M, Baonza VG. Highs and Lows of Bond Lengths: Is There Any Limit? Angew Chem Int Ed Engl 2021; 60:17028-17036. [PMID: 33844880 PMCID: PMC8362100 DOI: 10.1002/anie.202102967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 01/31/2023]
Abstract
Two distinct points on the potential energy curve (PEC) of a pairwise interaction, the zero-energy crossing point and the point where the stretching force constant vanishes, allow us to anticipate the range of possible distances between two atoms in diatomic, molecular moieties and crystalline systems. We show that these bond-stability boundaries are unambiguously defined and correlate with topological descriptors of electron-density-based scalar fields, and can be calculated using generic PECs. Chemical databases and quantum-mechanical calculations are used to analyze a full set of diatomic bonds of atoms from the s-p main block. Emphasis is placed on the effect of substituents in C-C covalent bonds, concluding that distances shorter than 1.14 Å or longer than 2.0 Å are unlikely to be achieved, in agreement with ultra-high-pressure data and transition-state distances, respectively. Presumed exceptions are used to place our model in the correct framework and to formulate a conjecture for chained interactions, which offers an explanation for the multimodal histogram of O-H distances reported for hundreds of chemical systems.
Collapse
Affiliation(s)
- Alvaro Lobato
- Malta-Consolider Team and Departamento de Química FísicaUniversidad Complutense de MadridAv. Complutense s/n28040MadridSpain
| | - Miguel A. Salvadó
- MALTA-Consolider Team and Departamento de Química Física y AnalíticaUniversidad de OviedoAv. Julián Clavería, 833006OviedoSpain
| | - J. Manuel Recio
- MALTA-Consolider Team and Departamento de Química Física y AnalíticaUniversidad de OviedoAv. Julián Clavería, 833006OviedoSpain
| | - Mercedes Taravillo
- Malta-Consolider Team and Departamento de Química FísicaUniversidad Complutense de MadridAv. Complutense s/n28040MadridSpain
| | - Valentín G. Baonza
- Malta-Consolider Team and Departamento de Química FísicaUniversidad Complutense de MadridAv. Complutense s/n28040MadridSpain
- Instituto de Geociencias IGEOCSIC-UCM28040MadridSpain
| |
Collapse
|
20
|
Lobato A, Salvadó MA, Recio JM, Taravillo M, Baonza VG. Highs and Lows of Bond Lengths: Is There Any Limit? Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alvaro Lobato
- Malta-Consolider Team and Departamento de Química Física Universidad Complutense de Madrid Av. Complutense s/n 28040 Madrid Spain
| | - Miguel A. Salvadó
- MALTA-Consolider Team and Departamento de Química Física y Analítica Universidad de Oviedo Av. Julián Clavería, 8 33006 Oviedo Spain
| | - J. Manuel Recio
- MALTA-Consolider Team and Departamento de Química Física y Analítica Universidad de Oviedo Av. Julián Clavería, 8 33006 Oviedo Spain
| | - Mercedes Taravillo
- Malta-Consolider Team and Departamento de Química Física Universidad Complutense de Madrid Av. Complutense s/n 28040 Madrid Spain
| | - Valentín G. Baonza
- Malta-Consolider Team and Departamento de Química Física Universidad Complutense de Madrid Av. Complutense s/n 28040 Madrid Spain
- Instituto de Geociencias IGEO CSIC-UCM 28040 Madrid Spain
| |
Collapse
|
21
|
Bruneval F, Rodriguez-Mayorga M, Rinke P, Dvorak M. Improved One-Shot Total Energies from the Linearized GW Density Matrix. J Chem Theory Comput 2021; 17:2126-2136. [PMID: 33705127 DOI: 10.1021/acs.jctc.0c01264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The linearized GW density matrix (γGW) is an efficient method to improve the static portion of the self-energy compared to that of ordinary perturbative GW while keeping the single-shot simplicity of the calculation. Previous work has shown that γGW gives an improved Fock operator and total energy components that approach the self-consistent GW quality. Here, we test γGW for dimer dissociation for the first time by studying N2, LiH, and Be2. We also calculate a set of self-consistent GW results in identical basis sets for a direct and consistent comparison. γGW approaches self-consistent GW total energies for a starting point based on a high amount of exact exchange. We also compare the accuracy of different total energy functionals, which differ when evaluated with a non-self-consistent density or density matrix. While the errors in total energies among different functionals and starting points are small, the individual energy components show noticeable errors when compared to reference data. The energy component errors of γGW are smaller than functionals of the density and we suggest that the linearized GW density matrix is a route to improving total energy evaluations in the adiabatic connection framework.
Collapse
Affiliation(s)
- Fabien Bruneval
- Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette, France
| | - Mauricio Rodriguez-Mayorga
- Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette, France
| | - Patrick Rinke
- Department of Applied Physics, Aalto University School of Science, 00076 Aalto, Finland
| | - Marc Dvorak
- Department of Applied Physics, Aalto University School of Science, 00076 Aalto, Finland
| |
Collapse
|
22
|
Rodríguez-Jiménez JA, Carreras A, Casanova D. Short-range DFT energy correction to multiconfigurational wave functions for open-shell systems. J Chem Phys 2021; 154:124116. [PMID: 33810663 DOI: 10.1063/5.0046404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Electronic structure methods emerging from the combination of multiconfigurational wave functions and density functional theory (DFT) aim to take advantage of the strengths of the two nearly antagonistic theories. One of the common strategies employed to merge wave function theory (WFT) with DFT relies on the range separation of the Coulomb operator in which DFT functionals take care of the short-distance part, while long-range inter-electronic interactions are evaluated by using the chosen wave function method (WFT-srDFT). In this work, we uncover the limitations of WFT-srDFT in the characterization of open-shell systems. We show that spin polarization effects have a major impact on the (short-range) DFT exchange energy and are of vital importance in order to provide a balanced description between closed and open-shell configurations. We introduce different strategies to account for spin polarization in the short range based on the definition of a spin polarized electron density and with the use of short-range exact exchange. We test the performance of these approaches in the dissociation of the hydrogen molecule, the calculation of energy gaps in spin-triplet atoms and molecular diradicals, and the characterization of low-lying states of the gallium dimer. Our results indicate that the use of short-range DFT correlation in combination with a (full-range) multiconfigurational wave function might be an excellent approach for the study of open-shell molecules and largely improves the performance of WFT and WFT-srDFT.
Collapse
Affiliation(s)
| | - Abel Carreras
- Donostia International Physics Center (DIPC), 20080 Donostia, Euskadi, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20080 Donostia, Euskadi, Spain
| |
Collapse
|
23
|
Zhang S, Li Y, Wang YP, Li J, Li M, Long M. The spin-polarized edge states of blue phosphorene nanoribbons induced by electric field and electron doping. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:105302. [PMID: 33237880 DOI: 10.1088/1361-648x/abcdae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Edge states of various two-dimensional materials such as graphene are intrinsically spin-polarized. In other materials, electric field and charge doping are required for introducing magnetism to their edges. In this work, by using first-principles calculations, we studied the effects of transverse electric field on the edge states of the armchair blue phosphorene nanoribbon (ABPNR), and found that a transverse electric field drives the edge electronic state occupied and at the same time spin-polarized. We also doped electrons to the ABPNR and found that these additional electrons occupy and spin-polarize the electronic states of both edges of the nanoribbon.
Collapse
Affiliation(s)
- Shidong Zhang
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Yun Li
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Yun-Peng Wang
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Jialin Li
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Mingjun Li
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Mengqiu Long
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
- Institute of Low-dimensional Quantum Materials and Devices, School of Physical Science and Technology, Xinjiang University, Urumqi, 830046, People's Republic of China
| |
Collapse
|
24
|
Trushin E, Thierbach A, Görling A. Toward chemical accuracy at low computational cost: Density-functional theory with σ-functionals for the correlation energy. J Chem Phys 2021; 154:014104. [PMID: 33412877 DOI: 10.1063/5.0026849] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce new functionals for the Kohn-Sham correlation energy that are based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem and are named σ-functionals. Like in the well-established direct random phase approximation (dRPA), σ-functionals require as input exclusively eigenvalues σ of the frequency-dependent KS response function. In the new functionals, functions of σ replace the σ-dependent dRPA expression in the coupling-constant and frequency integrations contained in the ACFD theorem. We optimize σ-functionals with the help of reference sets for atomization, reaction, transition state, and non-covalent interaction energies. The optimized functionals are to be used in a post-self-consistent way using orbitals and eigenvalues from conventional Kohn-Sham calculations employing the exchange-correlation functional of Perdew, Burke, and Ernzerhof. The accuracy of the presented approach is much higher than that of dRPA methods and is comparable to that of high-level wave function methods. Reaction and transition state energies from σ-functionals exhibit accuracies close to 1 kcal/mol and thus approach chemical accuracy. For the 10 966 reactions of the W4-11RE reference set, the mean absolute deviation is 1.25 kcal/mol compared to 3.21 kcal/mol in the dRPA case. Non-covalent binding energies are accurate to a few tenths of a kcal/mol. The presented approach is highly efficient, and the post-self-consistent calculation of the total energy requires less computational time than a density-functional calculation with a hybrid functional and thus can be easily carried out routinely. σ-Functionals can be implemented in any existing dRPA code with negligible programming effort.
Collapse
Affiliation(s)
- Egor Trushin
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Adrian Thierbach
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| |
Collapse
|
25
|
Graf D, Ochsenfeld C. A range-separated generalized Kohn-Sham method including a long-range nonlocal random phase approximation correlation potential. J Chem Phys 2020; 153:244118. [PMID: 33380112 DOI: 10.1063/5.0031310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Based on our recently published range-separated random phase approximation (RPA) functional [Kreppel et al., "Range-separated density-functional theory in combination with the random phase approximation: An accuracy benchmark," J. Chem. Theory Comput. 16, 2985-2994 (2020)], we introduce self-consistent minimization with respect to the one-particle density matrix. In contrast to the range-separated RPA methods presented so far, the new method includes a long-range nonlocal RPA correlation potential in the orbital optimization process, making it a full-featured variational generalized Kohn-Sham (GKS) method. The new method not only improves upon all other tested RPA schemes including the standard post-GKS range-separated RPA for the investigated test cases covering general main group thermochemistry, kinetics, and noncovalent interactions but also significantly outperforms the popular G0W0 method in estimating the ionization potentials and fundamental gaps considered in this work using the eigenvalue spectra obtained from the GKS Hamiltonian.
Collapse
Affiliation(s)
- Daniel Graf
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany
| |
Collapse
|
26
|
Rishi V, Perera A, Bartlett RJ. A route to improving RPA excitation energies through its connection to equation-of-motion coupled cluster theory. J Chem Phys 2020; 153:234101. [DOI: 10.1063/5.0023862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Varun Rishi
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ajith Perera
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Rodney J. Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
27
|
Erhard J, Fauser S, Kalaß S, Moerman E, Trushin E, Görling A. Lieb-Oxford bound and pair correlation functions for density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem. Faraday Discuss 2020; 224:79-97. [PMID: 32935700 DOI: 10.1039/d0fd00047g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compliance with the Lieb-Oxford bound for the indirect Coulomb energy and for the exchange-correlation energy is investigated for a number of density-functional methods based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem to treat correlation. Furthermore, the correlation contribution to the pair density resulting from these methods is compared with highly accurate reference values for the helium atom and for the hydrogen molecule at several bond distances. For molecules, the Lieb-Oxford bound is obeyed by all considered methods. For the homogeneous electron gas, it is violated by all methods for low electron densities. The simplest considered ACFD method, the direct random phase approximation (dRPA), violates the Lieb-Oxford bound much earlier than more advanced ACFD methods that, in addition to the simple Hartree kernel, take into account the exchange kernel and an approximate correlation kernel in the calculation of the correlation energy. While the dRPA yields quite poor correlation contributions to the pair density, those from more advanced ACFD methods are physically reasonable but still leave room for improvements, particularly in the case of the stretched hydrogen molecule.
Collapse
Affiliation(s)
- Jannis Erhard
- Lehrstuhl für Theoretische Chemie, Egerlandstraße 3, 91058 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Thierbach A, Görling A. Analytic energy gradients for the self-consistent direct random phase approximation. J Chem Phys 2020; 153:134113. [DOI: 10.1063/5.0021809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Adrian Thierbach
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| |
Collapse
|
29
|
Kühne TD, Iannuzzi M, Del Ben M, Rybkin VV, Seewald P, Stein F, Laino T, Khaliullin RZ, Schütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian MH, Weber V, Borštnik U, Taillefumier M, Jakobovits AS, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter GK, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy CJ, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J Chem Phys 2020; 152:194103. [PMID: 33687235 DOI: 10.1063/5.0007045] [Citation(s) in RCA: 997] [Impact Index Per Article: 249.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post-Hartree-Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.
Collapse
Affiliation(s)
- Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Mauro Del Ben
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Vladimir V Rybkin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick Seewald
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Frederick Stein
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Teodoro Laino
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | - Rustam Z Khaliullin
- Department of Chemistry, McGill University, CH-801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Ole Schütt
- Department of Materials, ETH Zürich, CH-8092 Zürich, Switzerland
| | | | - Dorothea Golze
- Department of Applied Physics, Aalto University, Otakaari 1, FI-02150 Espoo, Finland
| | - Jan Wilhelm
- Institute of Theoretical Physics, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sergey Chulkov
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | | | - Valéry Weber
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | | | | | | | | | - Hans Pabst
- Intel Extreme Computing, Software and Systems, Zürich, Switzerland
| | - Tiziano Müller
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Robert Schade
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Manuel Guidon
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Samuel Andermatt
- Integrated Systems Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Nico Holmberg
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Gregory K Schenter
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Anna Hehn
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Augustin Bussy
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Fabian Belleflamme
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Gloria Tabacchi
- Department of Science and High Technology, University of Insubria and INSTM, via Valleggio 9, I-22100 Como, Italy
| | - Andreas Glöß
- BASF SE, Carl-Bosch-Straße 38, D-67056 Ludwigshafen am Rhein, Germany
| | - Michael Lass
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Iain Bethune
- Hartree Centre, Science and Technology Facilities Council, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Christopher J Mundy
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Christian Plessl
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Matt Watkins
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | - Joost VandeVondele
- Swiss National Supercomputing Centre (CSCS), ETH Zürich, Zürich, Switzerland
| | - Matthias Krack
- Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
30
|
Zhang S, Cao C, Zeng B, Long M. The effects of strain and electric field on the half-metallicity of pristine and O-H/C-N-decorated zigzag graphene nanoribbons. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:175302. [PMID: 31918423 DOI: 10.1088/1361-648x/ab699f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In zigzag graphene nanoribbons (ZGNRs), the spin polarized edge states play a significant role in the electronic structure. The two ferromagnetically ordered edges anti-ferromagnetically coupled with each other, which would result in the half-metallicity under electric field. Given that the strain, external electric field, and edge decorations are the main means of tuning the magnetism and electronic property of one-dimentional materials. It motivates us to study the combine effects on ZGNRs of these methods. So, in present work, the corporate influences of the tensile strain, transverse electric field, and asymmetric edge decoration by -OH and -CN groups on the magnetism and electronic property of 8-ZGNR have been studied using the density functional theory. The calculational results indicate that the arising strain can modulate the response of electronic and magnetic properties to external electric field, improving the magnetism and extending the electric field range in which the ZGNR presents half-metallicity. In addition, the O-H/C-N groups decorated ZGNR possesses a lower critic electric field and a larger electric field range for realizing half-metallicity comparing with the unstrained pristine ZGNR.
Collapse
Affiliation(s)
- Shidong Zhang
- Hunan Key laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Thierbach A, Görling A. Analytic energy gradients for the exact exchange Kohn–Sham method. J Chem Phys 2020; 152:114113. [DOI: 10.1063/1.5142711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Adrian Thierbach
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| |
Collapse
|
32
|
Mezei PD, Ruzsinszky A, Kállay M. Reducing the Many-Electron Self-Interaction Error in the Second-Order Screened Exchange Method. J Chem Theory Comput 2019; 15:6607-6616. [DOI: 10.1021/acs.jctc.9b00672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pál D. Mezei
- Department of Chemistry, University of Basel, Basel 4056, Switzerland
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
33
|
Thierbach A, Schmidtel D, Görling A. Robust and accurate hybrid random-phase-approximation methods. J Chem Phys 2019; 151:144117. [DOI: 10.1063/1.5120587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Adrian Thierbach
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Daniel Schmidtel
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| | - Andreas Görling
- Lehrstuhl für Theoretische Chemie, Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany
| |
Collapse
|
34
|
Mordovina U, Reinhard TE, Theophilou I, Appel H, Rubio A. Self-Consistent Density-Functional Embedding: A Novel Approach for Density-Functional Approximations. J Chem Theory Comput 2019; 15:5209-5220. [PMID: 31490684 PMCID: PMC6785802 DOI: 10.1021/acs.jctc.9b00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 11/29/2022]
Abstract
In the present work, we introduce a self-consistent density-functional embedding technique, which leaves the realm of standard energy-functional approaches in density functional theory and targets directly the density-to-potential mapping that lies at its heart. Inspired by the density matrix embedding theory, we project the full system onto a set of small interacting fragments that can be solved accurately. Based on the rigorous relation of density and potential in density functional theory, we then invert the fragment densities to local potentials. Combining these results in a continuous manner provides an update for the Kohn-Sham potential of the full system, which is then used to update the projection. We benchmark our approach for molecular bond stretching in one and two dimensions and show that, in these cases, the scheme converges to accurate approximations for densities and Kohn-Sham potentials. We demonstrate that the known steps and peaks of the exact exchange-correlation potential are reproduced by our method with remarkable accuracy.
Collapse
Affiliation(s)
- Uliana Mordovina
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Teresa E. Reinhard
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Iris Theophilou
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Heiko Appel
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United
States
| |
Collapse
|
35
|
Ludovicy J, Mood KH, Lüchow A. Full Wave Function Optimization with Quantum Monte Carlo—A Study of the Dissociation Energies of ZnO, FeO, FeH, and CrS. J Chem Theory Comput 2019; 15:5221-5229. [DOI: 10.1021/acs.jctc.9b00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jil Ludovicy
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52062 Aachen, Germany
| | - Kaveh Haghighi Mood
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52062 Aachen, Germany
| | - Arne Lüchow
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52062 Aachen, Germany
| |
Collapse
|
36
|
Graf D, Beuerle M, Ochsenfeld C. Low-Scaling Self-Consistent Minimization of a Density Matrix Based Random Phase Approximation Method in the Atomic Orbital Space. J Chem Theory Comput 2019; 15:4468-4477. [PMID: 31368702 DOI: 10.1021/acs.jctc.9b00444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An efficient minimization of the random phase approximation (RPA) energy with respect to the one-particle density matrix in the atomic orbital space is presented. The problem of imposing full self-consistency on functionals depending on the potential itself is bypassed by approximating the RPA Hamiltonian on the basis of the well-known Hartree-Fock Hamiltonian making our self-consistent RPA method completely parameter-free. It is shown that the new method not only outperforms post-Kohn-Sham RPA in describing noncovalent interactions but also gives accurate dipole moments demonstrating the high quality of the calculated densities. Furthermore, the main drawback of atomic orbital based methods, in increasing the prefactor as compared to their canonical counterparts, is overcome by introducing Cholesky decomposed projectors allowing the use of large basis sets. Exploiting the locality of atomic and/or Cholesky orbitals enables us to present a self-consistent RPA method which shows asymptotically quadratic scaling opening the door for calculations on large molecular systems.
Collapse
Affiliation(s)
- Daniel Graf
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , D-81377 Munich , Germany
| | - Matthias Beuerle
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , D-81377 Munich , Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , D-81377 Munich , Germany
| |
Collapse
|
37
|
Duchemin I, Blase X. Separable resolution-of-the-identity with all-electron Gaussian bases: Application to cubic-scaling RPA. J Chem Phys 2019; 150:174120. [PMID: 31067912 DOI: 10.1063/1.5090605] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We explore a separable resolution-of-the-identity (RI) formalism built on quadratures over limited sets of real-space points designed for all-electron calculations. Our implementation preserves, in particular, the use of common atomic orbitals and their related auxiliary basis sets. The setup of the present density fitting scheme, i.e., the calculation of the system specific quadrature weights, scales cubically with respect to the system size. Extensive accuracy tests are presented for the Fock exchange and MP2 correlation energies. We finally demonstrate random phase approximation (RPA) correlation energy calculations with a scaling that is cubic in terms of operations, quadratic in memory, with a small crossover with respect to our standard RI-RPA implementation.
Collapse
Affiliation(s)
- Ivan Duchemin
- Laboratoire de Simulation Atomistique, Université Grenoble Alpes, CEA, 38054 Grenoble, France
| | - Xavier Blase
- Institut NEEL, Université Grenoble Alpes, CNRS, F-38042 Grenoble, France
| |
Collapse
|
38
|
Hait D, Rettig A, Head-Gordon M. Well-behaved versus ill-behaved density functionals for single bond dissociation: Separating success from disaster functional by functional for stretched H2. J Chem Phys 2019; 150:094115. [DOI: 10.1063/1.5080122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Adam Rettig
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
39
|
Vogiatzis KD, Polynski MV, Kirkland JK, Townsend J, Hashemi A, Liu C, Pidko EA. Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chem Rev 2019; 119:2453-2523. [PMID: 30376310 PMCID: PMC6396130 DOI: 10.1021/acs.chemrev.8b00361] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 12/28/2022]
Abstract
Computational chemistry provides a versatile toolbox for studying mechanistic details of catalytic reactions and holds promise to deliver practical strategies to enable the rational in silico catalyst design. The versatile reactivity and nontrivial electronic structure effects, common for systems based on 3d transition metals, introduce additional complexity that may represent a particular challenge to the standard computational strategies. In this review, we discuss the challenges and capabilities of modern electronic structure methods for studying the reaction mechanisms promoted by 3d transition metal molecular catalysts. Particular focus will be placed on the ways of addressing the multiconfigurational problem in electronic structure calculations and the role of expert bias in the practical utilization of the available methods. The development of density functionals designed to address transition metals is also discussed. Special emphasis is placed on the methods that account for solvation effects and the multicomponent nature of practical catalytic systems. This is followed by an overview of recent computational studies addressing the mechanistic complexity of catalytic processes by molecular catalysts based on 3d metals. Cases that involve noninnocent ligands, multicomponent reaction systems, metal-ligand and metal-metal cooperativity, as well as modeling complex catalytic systems such as metal-organic frameworks are presented. Conventionally, computational studies on catalytic mechanisms are heavily dependent on the chemical intuition and expert input of the researcher. Recent developments in advanced automated methods for reaction path analysis hold promise for eliminating such human-bias from computational catalysis studies. A brief overview of these approaches is presented in the final section of the review. The paper is closed with general concluding remarks.
Collapse
Affiliation(s)
| | | | - Justin K. Kirkland
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jacob Townsend
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ali Hashemi
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Chong Liu
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A. Pidko
- TheoMAT
group, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
- Inorganic
Systems Engineering group, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
40
|
Lin Z, Van Voorhis T. Triplet Tuning: A Novel Family of Non-Empirical Exchange–Correlation Functionals. J Chem Theory Comput 2019; 15:1226-1241. [DOI: 10.1021/acs.jctc.8b00853] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Zhou Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Jana S, Patra B, Myneni H, Samal P. On the many-electron self-interaction error of the semilocal exchange hole based meta-GGA level range-separated hybrid with the B88 hybrids. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Dorner F, Sukurma Z, Dellago C, Kresse G. Melting Si: Beyond Density Functional Theory. PHYSICAL REVIEW LETTERS 2018; 121:195701. [PMID: 30468598 DOI: 10.1103/physrevlett.121.195701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 06/09/2023]
Abstract
The melting point of silicon in the cubic diamond phase is calculated using the random phase approximation (RPA). The RPA includes exact exchange as well as an approximate treatment of local as well as nonlocal many body correlation effects of the electrons. We predict a melting temperature of about 1735 and 1640 K without and with core polarization effects, respectively. Both values are within 3% of the experimental melting temperature of 1687 K. In comparison, the commonly used gradient approximation to density functional theory predicts a melting point that is 200 K too low, and hybrid functionals overestimate the melting point by 150 K. We correlate the predicted melting point with the energy difference between cubic diamond and the beta-tin phase of silicon, establishing that this energy difference is an important benchmark for the development of approximate functionals. The current results demonstrate that the RPA can be used to predict accurate finite temperature properties and underlines the excellent predictive properties of the RPA for condensed matter.
Collapse
Affiliation(s)
- Florian Dorner
- University of Vienna, Faculty of Physics and Center for Computational Materials Sciences, Sensengasse 8/12, 1090 Wien, Austria
| | - Zoran Sukurma
- University of Vienna, Faculty of Physics and Center for Computational Materials Sciences, Sensengasse 8/12, 1090 Wien, Austria
| | - Christoph Dellago
- University of Vienna, Faculty of Physics and Center for Computational Materials Sciences, Sensengasse 8/12, 1090 Wien, Austria
| | - Georg Kresse
- University of Vienna, Faculty of Physics and Center for Computational Materials Sciences, Sensengasse 8/12, 1090 Wien, Austria
| |
Collapse
|
43
|
Yan L, Sun Y, Yamamoto Y, Kasamatsu S, Hamada I, Sugino O. Hydrogen adsorption on Pt(111) revisited from random phase approximation. J Chem Phys 2018; 149:164702. [PMID: 30384717 DOI: 10.1063/1.5050830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hydrogen adsorption on Pt(111) has been actively studied using semilocal approximations within the density functional theory featuring simultaneous adsorption of hydrogen on multiple sites, i.e., fcc, atop, and hcp. Considering the accuracy needed to detail the feature, we revisit this problem with the help of higher level of theory, the adiabatic connection fluctuation dissipation theorem within the random phase approximation. Our simulation emphasizes important roles played by the equilibrium lattice parameter of the surface, mass of the hydrogen isotope, and hydrogen coverage. The insight acquired in this study provides a way to consistently interpret electrochemical and spectroscopic data.
Collapse
Affiliation(s)
- Lei Yan
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Yang Sun
- Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Yoshiyuki Yamamoto
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Shusuke Kasamatsu
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Ikutaro Hamada
- Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Osamu Sugino
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
44
|
Chen GP, Agee MM, Furche F. Performance and Scope of Perturbative Corrections to Random-Phase Approximation Energies. J Chem Theory Comput 2018; 14:5701-5714. [PMID: 30240213 DOI: 10.1021/acs.jctc.8b00777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been suspected since the early days of the random-phase approximation (RPA) that corrections to RPA correlation energies result mostly from short-range correlation effects and are thus amenable to perturbation theory. Here we test this hypothesis by analyzing formal and numerical results for the most common beyond-RPA perturbative corrections, including the bare second-order exchange (SOX), second-order screened exchange (SOSEX), and approximate exchange kernel (AXK) methods. Our analysis is facilitated by efficient and robust algorithms based on the resolution-of-the-identity (RI) approximation and numerical frequency integration, which enable benchmark beyond-RPA calculations on medium- and large-size molecules with size-independent accuracy. The AXK method systematically improves upon RPA, SOX, and SOSEX for reaction barrier heights, reaction energies, and noncovalent interaction energies of main-group compounds. The improved accuracy of AXK compared with SOX and SOSEX is attributed to stronger screening of bare SOX in AXK. For reactions involving transition-metal compounds, particularly 3d transition-metal dimers, the AXK correction is too small and can even have the wrong sign. These observations are rationalized by a measure α̅ of the effective coupling strength for beyond-RPA correlation. When the effective coupling strength increases beyond a critical α̅ value of approximately 0.5, the RPA errors increase rapidly and perturbative corrections become unreliable. Thus, perturbation theory can systematically correct RPA but only for systems and properties qualitatively well captured by RPA, as indicated by small α̅ values.
Collapse
Affiliation(s)
- Guo P Chen
- University of California, Irvine , Department of Chemistry , 1102 Natural Sciences II , Irvine , California 92697-2025 , United States
| | - Matthew M Agee
- University of California, Irvine , Department of Chemistry , 1102 Natural Sciences II , Irvine , California 92697-2025 , United States
| | - Filipp Furche
- University of California, Irvine , Department of Chemistry , 1102 Natural Sciences II , Irvine , California 92697-2025 , United States
| |
Collapse
|
45
|
Ghosh S, Verma P, Cramer CJ, Gagliardi L, Truhlar DG. Combining Wave Function Methods with Density Functional Theory for Excited States. Chem Rev 2018; 118:7249-7292. [PMID: 30044618 DOI: 10.1021/acs.chemrev.8b00193] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We review state-of-the-art electronic structure methods based both on wave function theory (WFT) and density functional theory (DFT). Strengths and limitations of both the wave function and density functional based approaches are discussed, and modern attempts to combine these two methods are presented. The challenges in modeling excited-state chemistry using both single-reference and multireference methods are described. Topics covered include background, combining density functional theory with single-configuration wave function theory, generalized Kohn-Sham (KS) theory, global hybrids, range-separated hybrids, local hybrids, using KS orbitals in many-body theory (including calculations of the self-energy and the GW approximation), Bethe-Salpeter equation, algorithms to accelerate GW calculations, combining DFT with multiconfigurational WFT, orbital-dependent correlation functionals based on multiconfigurational WFT, building multiconfigurational wave functions from KS configurations, adding correlation functionals to multiconfiguration self-consistent-field (MCSCF) energies, combining DFT with configuration-interaction singles by means of time-dependent DFT, using range separation to combine DFT with MCSCF, embedding multiconfigurational WFT in DFT, and multiconfiguration pair-density functional theory.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Pragya Verma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
46
|
Graf D, Beuerle M, Schurkus HF, Luenser A, Savasci G, Ochsenfeld C. Accurate and Efficient Parallel Implementation of an Effective Linear-Scaling Direct Random Phase Approximation Method. J Chem Theory Comput 2018; 14:2505-2515. [PMID: 29658715 DOI: 10.1021/acs.jctc.8b00177] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An efficient algorithm for calculating the random phase approximation (RPA) correlation energy is presented that is as accurate as the canonical molecular orbital resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective linear-scaling behavior (instead of quartic) for large systems due to a formulation in the local atomic orbital space. The high accuracy is achieved by utilizing optimized minimax integration schemes and the local Coulomb metric attenuated by the complementary error function for the RI approximation. The memory bottleneck of former atomic orbital (AO)-RI-RPA implementations ( Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016 , 144 , 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory Comput. 2017 , 13 , 1647 - 1655 ) is addressed by precontraction of the large 3-center integral matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of [Formula: see text]. Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems, where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.
Collapse
Affiliation(s)
- Daniel Graf
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , D-81377 Munich , Germany
| | - Matthias Beuerle
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , D-81377 Munich , Germany
| | - Henry F Schurkus
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , D-81377 Munich , Germany
| | - Arne Luenser
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , D-81377 Munich , Germany
| | - Gökcen Savasci
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , D-81377 Munich , Germany.,Max Planck Institute for Solid State Research , Heisenbergstraße 1 , 70569 Stuttgart , Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry , University of Munich (LMU) , D-81377 Munich , Germany.,Max Planck Institute for Solid State Research , Heisenbergstraße 1 , 70569 Stuttgart , Germany
| |
Collapse
|
47
|
Bates JE, Sengupta N, Sensenig J, Ruzsinszky A. Adiabatic Connection without Coupling Constant Integration. J Chem Theory Comput 2018; 14:2979-2990. [DOI: 10.1021/acs.jctc.8b00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jefferson E. Bates
- Department of Chemistry, Appalachian State University, Boone, North Carolina 28607, United States
| | - Niladri Sengupta
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jonathon Sensenig
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
48
|
Beuerle M, Ochsenfeld C. Short-range second order screened exchange correction to RPA correlation energies. J Chem Phys 2017; 147:204107. [DOI: 10.1063/1.4998647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Matthias Beuerle
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany and Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5–13, D-81377 München, Germany
| | - Christian Ochsenfeld
- Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany and Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr. 5–13, D-81377 München, Germany
| |
Collapse
|
49
|
Bokdam M, Lahnsteiner J, Ramberger B, Schäfer T, Kresse G. Assessing Density Functionals Using Many Body Theory for Hybrid Perovskites. PHYSICAL REVIEW LETTERS 2017; 119:145501. [PMID: 29053325 DOI: 10.1103/physrevlett.119.145501] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 05/18/2023]
Abstract
Which density functional is the "best" for structure simulations of a particular material? A concise, first principles, approach to answer this question is presented. The random phase approximation (RPA)-an accurate many body theory-is used to evaluate various density functionals. To demonstrate and verify the method, we apply it to the hybrid perovskite MAPbI_{3}, a promising new solar cell material. The evaluation is done by first creating finite temperature ensembles for small supercells using RPA molecular dynamics, and then evaluating the variance between the RPA and various approximate density functionals for these ensembles. We find that, contrary to recent suggestions, van der Waals functionals do not improve the description of the material, whereas hybrid functionals and the strongly constrained appropriately normed (SCAN) density functional yield very good agreement with the RPA. Finally, our study shows that in the room temperature tetragonal phase of MAPbI_{3}, the molecules are preferentially parallel to the shorter lattice vectors but reorientation on ps time scales is still possible.
Collapse
Affiliation(s)
- Menno Bokdam
- University of Vienna, Faculty of Physics and Center for Computational Materials Sciences, Sensengasse 8/12, A-1090 Vienna, Austria
| | - Jonathan Lahnsteiner
- University of Vienna, Faculty of Physics and Center for Computational Materials Sciences, Sensengasse 8/12, A-1090 Vienna, Austria
| | - Benjamin Ramberger
- University of Vienna, Faculty of Physics and Center for Computational Materials Sciences, Sensengasse 8/12, A-1090 Vienna, Austria
| | - Tobias Schäfer
- University of Vienna, Faculty of Physics and Center for Computational Materials Sciences, Sensengasse 8/12, A-1090 Vienna, Austria
| | - Georg Kresse
- University of Vienna, Faculty of Physics and Center for Computational Materials Sciences, Sensengasse 8/12, A-1090 Vienna, Austria
| |
Collapse
|
50
|
Libisch F, Marsman M, Burgdörfer J, Kresse G. Embedding for bulk systems using localized atomic orbitals. J Chem Phys 2017; 147:034110. [DOI: 10.1063/1.4993795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- F. Libisch
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria, EU
| | - M. Marsman
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Vienna, Austria, EU
| | - J. Burgdörfer
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria, EU
| | - G. Kresse
- Faculty of Physics and Center for Computational Materials Science, University of Vienna, Sensengasse 8/12, A-1090 Vienna, Austria, EU
| |
Collapse
|