1
|
Voznyuk O, Jochim B, Zohrabi M, Broin A, Averin R, Carnes KD, Ben-Itzhak I, Wells E. Adaptive strong-field control of vibrational population in NO 2+. J Chem Phys 2019; 151:124310. [DOI: 10.1063/1.5115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- O. Voznyuk
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - Bethany Jochim
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - M. Zohrabi
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Adam Broin
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - R. Averin
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| | - K. D. Carnes
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - I. Ben-Itzhak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - E. Wells
- Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
| |
Collapse
|
2
|
Roslund J, Rabitz H. Dynamic dimensionality identification for quantum control. PHYSICAL REVIEW LETTERS 2014; 112:143001. [PMID: 24765949 DOI: 10.1103/physrevlett.112.143001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Indexed: 06/03/2023]
Abstract
The control of quantum systems with shaped laser pulses presents a paradox since the relative ease with which solutions are discovered appears incompatible with the enormous variety of pulse shapes accessible with a standard pulse shaper. Quantum landscape theory indicates that the relevant search dimensionality is not dictated by the number of pulse shaper elements, but rather is related to the number of states participating in the controlled dynamics. The actual dimensionality is encoded within the sensitivity of the observed yield to all of the pulse shaper elements. To investigate this proposition, the Hessian matrix is measured for controlled transitions amongst states of atomic rubidium, and its eigendecomposition reveals a dimensionality consistent with that predicted by landscape theory. Additionally, this methodology furnishes a low-dimensional picture that captures the essence of the light-matter interaction and the ensuing system dynamics.
Collapse
Affiliation(s)
- Jonathan Roslund
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Herschel Rabitz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
3
|
Moore Tibbetts K, Xing X, Rabitz H. Exploring control landscapes for laser-driven molecular fragmentation. J Chem Phys 2013; 139:144201. [DOI: 10.1063/1.4824153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
4
|
Rey-de-Castro R, Leghtas Z, Rabitz H. Manipulating quantum pathways on the fly. PHYSICAL REVIEW LETTERS 2013; 110:223601. [PMID: 23767721 DOI: 10.1103/physrevlett.110.223601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 06/02/2023]
Abstract
The expectation value of a quantum system observable can be written as a sum over interfering pathway amplitudes. In this Letter, we demonstrate for the fist time adaptive manipulation of quantum pathways using the Hamiltonian encoding-observable decoding (HE-OD) technique. The principles of HE-OD are illustrated for population transfer in atomic rubidium using shaped femtosecond laser pulses. The ability to manipulate multiple pathway amplitudes is of fundamental importance in all quantum control applications.
Collapse
|
5
|
Moore Tibbetts K, Xing X, Rabitz H. Optimal control of molecular fragmentation with homologous families of photonic reagents and chemical substrates. Phys Chem Chem Phys 2013; 15:18012-22. [DOI: 10.1039/c3cp52664j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
|
7
|
Ruetzel S, Stolzenberger C, Dimler F, Tannor DJ, Brixner T. Adaptive coherent control using the von Neumann basis. Phys Chem Chem Phys 2011; 13:8627-36. [DOI: 10.1039/c0cp02318c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Ruetzel S, Stolzenberger C, Fechner S, Dimler F, Brixner T, Tannor DJ. Molecular quantum control landscapes in von Neumann time-frequency phase space. J Chem Phys 2010; 133:164510. [DOI: 10.1063/1.3495950] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Comparative study of the dissociative ionization of 1,1,1-trichloroethane using nanosecond and femtosecond laser pulses. Int J Mol Sci 2010; 11:1114-40. [PMID: 20480004 PMCID: PMC2869235 DOI: 10.3390/ijms11031114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 11/22/2022] Open
Abstract
Changes in the laser induced molecular dissociation of 1,1,1-trichloroethane (TCE) were studied using a range of intensities and standard laser wavelengths with nanosecond and femtosecond pulse durations. TCE contains C-H, C-C and C-Cl bonds and selective bond breakage of one or more of these bonds is of scientific interest. Using laser ionization time of flight mass spectrometry, it was found that considerable variation of fragment ion peak heights as well as changes in relative peak ratios is possible by varying the laser intensity (by attenuation), wavelength and pulse duration using standard laser sources. The nanosecond laser dissociation seems to occur via C-Cl bond breakage, with significant fragmentation and only a few large mass ion peaks observed. In contrast, femtosecond laser dissociative ionization results in many large mass ion peaks. Evidence is found for various competing dissociation and ionization pathways. Variation of the nanosecond laser intensity does not change the fragmentation pattern, while at high femtosecond intensities large changes are observed in relative ion peak sizes. The total ionization yield and fragmentation ratios are presented for a range of wavelengths and intensities, and compared to the changes observed due to a linear chirp variation.
Collapse
|
10
|
Kuroda DG, Singh CP, Peng Z, Kleiman VD. Mapping Excited-State Dynamics by Coherent Control of a Dendrimer's Photoemission Efficiency. Science 2009; 326:263-7. [DOI: 10.1126/science.1176524] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Mishima K, Yamashita K. Free-time and fixed end-point optimal control theory in dissipative media: application to entanglement generation and maintenance. J Chem Phys 2009; 131:014109. [PMID: 19586098 DOI: 10.1063/1.3159002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We develop monotonically convergent free-time and fixed end-point optimal control theory (OCT) in the density-matrix representation to deal with quantum systems showing dissipation. Our theory is more general and flexible for tailoring optimal laser pulses in order to control quantum dynamics with dissipation than the conventional fixed-time and fixed end-point OCT in that the optimal temporal duration of laser pulses can also be optimized exactly. To show the usefulness of our theory, it is applied to the generation and maintenance of the vibrational entanglement of carbon monoxide adsorbed on the copper (100) surface, CO/Cu(100). We demonstrate the numerical results and clarify how to combat vibrational decoherence as much as possible by the tailored shapes of the optimal laser pulses. It is expected that our theory will be general enough to be applied to a variety of dissipative quantum dynamics systems because the decoherence is one of the quantum phenomena sensitive to the temporal duration of the quantum dynamics.
Collapse
Affiliation(s)
- K Mishima
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | | |
Collapse
|
12
|
Mishima K, Yamashita K. Free-time and fixed end-point optimal control theory in quantum mechanics: application to entanglement generation. J Chem Phys 2009; 130:034108. [PMID: 19173511 DOI: 10.1063/1.3062860] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have constructed free-time and fixed end-point optimal control theory for quantum systems and applied it to entanglement generation between rotational modes of two polar molecules coupled by dipole-dipole interaction. The motivation of the present work is to solve optimal control problems more flexibly by extending the popular fixed time and fixed end-point optimal control theory for quantum systems to free-time and fixed end-point optimal control theory. As a demonstration, the theory that we have constructed in this paper will be applied to entanglement generation in rotational modes of NaCl-NaBr polar molecular systems that are sensitive to the strength of entangling interactions. Our method will significantly be useful for the quantum control of nonlocal interaction such as entangling interaction, which depends crucially on the strength of the interaction or the distance between the two molecules, and other general quantum dynamics, chemical reactions, and so on.
Collapse
Affiliation(s)
- K Mishima
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | | |
Collapse
|
13
|
|
14
|
Marquetand P, Nuernberger P, Brixner T, Engel V. Molecular dump processes induced by chirped laser pulses. J Chem Phys 2008; 129:074303. [DOI: 10.1063/1.2960581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Carroll EC, White JL, Florean AC, Bucksbaum PH, Sension RJ. Multiphoton Control of the 1,3-Cyclohexadiene Ring-Opening Reaction in the Presence of Competing Solvent Reactions. J Phys Chem A 2008; 112:6811-22. [DOI: 10.1021/jp8013404] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Elizabeth C. Carroll
- FOCUS Center, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040
| | - James L. White
- FOCUS Center, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040
| | - Andrei C. Florean
- FOCUS Center, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040
| | - Philip H. Bucksbaum
- FOCUS Center, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040
| | - Roseanne J. Sension
- FOCUS Center, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040
| |
Collapse
|
16
|
Amitay Z, Gandman A, Chuntonov L, Rybak L. Multichannel selective femtosecond coherent control based on symmetry properties. PHYSICAL REVIEW LETTERS 2008; 100:193002. [PMID: 18518449 DOI: 10.1103/physrevlett.100.193002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Indexed: 05/26/2023]
Abstract
We present and implement a new scheme for extended multichannel selective femtosecond coherent control based on symmetry properties of the excitation channels. Here, an atomic nonresonant two-photon absorption channel is coherently incorporated in a resonance-mediated (2+1) three-photon absorption channel. By proper pulse shaping, utilizing the invariance of the two-photon absorption to specific phase transformations of the pulse, the three-photon absorption is tuned independently over an order-of-magnitude yield range for any possible two-photon absorption yield. Noticeable is a set of "two-photon dark pulses" inducing widely tunable three-photon absorption.
Collapse
Affiliation(s)
- Zohar Amitay
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | |
Collapse
|
17
|
Lozovoy VV, Zhu X, Gunaratne TC, Harris DA, Shane JC, Dantus M. Control of Molecular Fragmentation Using Shaped Femtosecond Pulses. J Phys Chem A 2008; 112:3789-812. [DOI: 10.1021/jp071691p] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vadim V. Lozovoy
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| | - Xin Zhu
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| | - Tissa C. Gunaratne
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| | - D. Ahmasi Harris
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| | - Janelle C. Shane
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| | - Marcos Dantus
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
18
|
Pearson BJ, Nichols SR, Weinacht T. Molecular fragmentation driven by ultrafast dynamic ionic resonances. J Chem Phys 2007; 127:131101. [DOI: 10.1063/1.2790419] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
|
20
|
Montgomery MA, Meglen RR, Damrauer NH. General Method for Reducing Adaptive Laser Pulse-Shaping Experiments to a Single Control Variable. J Phys Chem A 2007; 111:5126-9. [PMID: 17530749 DOI: 10.1021/jp073132o] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adaptive laser pulse shaping has proven to be expeditious for discovering laser pulse shapes capable of manipulating complex systems. However, if adaptive control is to be a valuable interrogative technique that informs physical and chemical research, methods that make it possible to infer mechanistic information from experimental results must be developed. Here, we demonstrate multivariate statistical analysis to extract a single control variable from results of a 137-parameter adaptive laser pulse-shaping optimization of multiphoton electronic excitation in a ruthenium(II) coordination complex in solution. We show that this single variable can be used to linearly manipulate the observed fitness, which is determined by the ratio of molecular emission to second harmonic generation of the laser pulse, over the range explored during the adaptive optimization. Further, manipulation of this variable reveals the latent control mechanism. For this system, that mechanism entails focusing the second harmonic power spectrum of the laser field in a spectral region where the probability of two-photon absorption by the molecule is also large. The statistical tools developed are general and will help elucidate control mechanisms in future adaptive pulse-shaping experiments.
Collapse
Affiliation(s)
- Matthew A Montgomery
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | |
Collapse
|
21
|
Montgomery MA, Damrauer NH. Elucidation of Control Mechanisms Discovered during Adaptive Manipulation of [Ru(dpb)3](PF6)2 Emission in the Solution Phase. J Phys Chem A 2007; 111:1426-33. [PMID: 17269753 DOI: 10.1021/jp065962s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To design methodologies that will allow researchers to directly correlate the results of adaptive control experiments with physiochemical control pathways in arbitrary complex molecular systems it is imperative that prototype systems are developed and that exigent control pathways are understood. We have been interested in the results of adaptive control experiments in our laboratory involving the maximization of a ratio of two experimental observables: (1) the thermalized emission from the solution-phase coordination complex [Ru(dpb)3](PF6)2 and (2) the second harmonic signal (a purely intensity-dependent phenomenon) of the shaped laser fields. Using a rational pulse shaping strategy, we have made a measurement of the ratio spectrum (in essence the two-photon absorption cross section) for the molecule [Ru(dpb)3](PF6)2 in a room temperature solution of acetonitrile. This spectrum is highly varied across the accessible two-photon power spectrum of our broad-band laser pulses and demonstrates the existence of a control pathway wherein a shaped laser field can manipulate excited-state population (with respect to SHG) by conforming to the second-order spectral response of the molecule in solution. We show that our adaptive control algorithm is capable of taking advantage of these control pathways using simulated adaptive control experiments. Finally, we measure second-harmonic spectra of shaped laser fields discovered during an adaptive control experiment and show that these agree with simulation. These results suggest that our adaptive control experiment can be understood in the context of the elucidated spectral control pathway.
Collapse
Affiliation(s)
- Matthew A Montgomery
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
22
|
Nuernberger P, Vogt G, Brixner T, Gerber G. Femtosecond quantum control of molecular dynamics in the condensed phase. Phys Chem Chem Phys 2007; 9:2470-97. [PMID: 17508081 DOI: 10.1039/b618760a] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the progress in controlling quantum dynamical processes in the condensed phase with femtosecond laser pulses. Due to its high particle density the condensed phase has both high relevance and appeal for chemical synthesis. Thus, in recent years different methods have been developed to manipulate the dynamics of condensed-phase systems by changing one or multiple laser pulse parameters. Single-parameter control is often achieved by variation of the excitation pulse's wavelength, its linear chirp or its temporal subpulse separation in case of pulse sequences. Multiparameter control schemes are more flexible and provide a much larger parameter space for an optimal solution. This is realized in adaptive femtosecond quantum control, in which the optimal solution is iteratively obtained through the combination of an experimental feedback signal and an automated learning algorithm. Several experiments are presented that illustrate the different control concepts and highlight their broad applicability. These fascinating achievements show the continuous progress on the way towards the control of complex quantum reactions in the condensed phase.
Collapse
Affiliation(s)
- Patrick Nuernberger
- Universität Würzburg, Physikalisches Institut, Am Hubland, 97074 Würzburg, Germany
| | | | | | | |
Collapse
|
23
|
Shane JC, Lozovoy VV, Dantus M. Search Space Mapping: Getting a Picture of Coherent Laser Control. J Phys Chem A 2006; 110:11388-91. [PMID: 17020246 DOI: 10.1021/jp0639997] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Search space mapping is a method for quickly visualizing the experimental parameters that can affect the outcome of a coherent control experiment. We demonstrate experimental search space mapping for the selective fragmentation and ionization of para-nitrotoluene and show how this method allows us to gather information about the dominant trends behind our achieved control.
Collapse
Affiliation(s)
- Janelle C Shane
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
24
|
Shen Z, Hsieh M, Rabitz H. Quantum optimal control: Hessian analysis of the control landscape. J Chem Phys 2006; 124:204106. [PMID: 16774318 DOI: 10.1063/1.2198836] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Seeking an effective quantum control entails searching over a landscape defined as the objective as a functional of the control field. This paper considers the problem of driving a state-to-state transition in a finite level quantum system, and analyzes the local topology of the landscape of the final transition probability in terms of the variables specifying the control field. Numerical calculation of the eigenvalues of the Hessian of the transition probability with respect to the control field variables reveals systematic structure in the spectra reflecting the existence of a generic and simple control landscape topology. An illustration shows that the number of nonzero Hessian eigenvalues is determined by the number of quantum states in the system. The Hessian eigenvectors associated with its nonzero eigenvalues are shown to give insight into the cooperative roles of the control variables. The practical consequences of these findings for quantum control are discussed.
Collapse
Affiliation(s)
- Zhenwen Shen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
25
|
Montgomery MA, Meglen RR, Damrauer NH. General Method for the Dimension Reduction of Adaptive Control Experiments. J Phys Chem A 2006; 110:6391-4. [PMID: 16706392 DOI: 10.1021/jp061160l] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adaptive femtosecond control experiments are expanding the possibilities for using laser pulses as photophysical and photochemical reagents. However, because of the large number of variables necessary to perform these experiments (usually 100-200), it has proven difficult to elucidate the underlying control mechanisms from the optimized pulse shapes. If adaptive control is to become a widespread tool for examining chemical dynamics, methods must be developed that reveal latent control mechanisms. This manuscript presents a generally applicable method for dimension reduction of adaptive control experiments based on partial least squares regression analysis (PLS) of the normalized covariance matrix of the total data set. When applied to experimental results obtained in our laboratory, it shows that only seven fundamental dimensions from an original 208-dimension search space are needed to account for approximately 90% of the variance in the observed fitness of 11,700 laser-pulse shapes explored during the optimization experiment. Furthermore, the seven dimensions have a remarkable regularity in their functional form. It is anticipated that this work will facilitate theoretical treatments directly linking the optimal fields to control mechanisms, allow quantitative comparisons of independent control results, and suggest new experimental methods for rapid adaptive searches.
Collapse
|