1
|
Kondrat S, Feng G, Bresme F, Urbakh M, Kornyshev AA. Theory and Simulations of Ionic Liquids in Nanoconfinement. Chem Rev 2023; 123:6668-6715. [PMID: 37163447 PMCID: PMC10214387 DOI: 10.1021/acs.chemrev.2c00728] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 05/12/2023]
Abstract
Room-temperature ionic liquids (RTILs) have exciting properties such as nonvolatility, large electrochemical windows, and remarkable variety, drawing much interest in energy storage, gating, electrocatalysis, tunable lubrication, and other applications. Confined RTILs appear in various situations, for instance, in pores of nanostructured electrodes of supercapacitors and batteries, as such electrodes increase the contact area with RTILs and enhance the total capacitance and stored energy, between crossed cylinders in surface force balance experiments, between a tip and a sample in atomic force microscopy, and between sliding surfaces in tribology experiments, where RTILs act as lubricants. The properties and functioning of RTILs in confinement, especially nanoconfinement, result in fascinating structural and dynamic phenomena, including layering, overscreening and crowding, nanoscale capillary freezing, quantized and electrotunable friction, and superionic state. This review offers a comprehensive analysis of the fundamental physical phenomena controlling the properties of such systems and the current state-of-the-art theoretical and simulation approaches developed for their description. We discuss these approaches sequentially by increasing atomistic complexity, paying particular attention to new physical phenomena emerging in nanoscale confinement. This review covers theoretical models, most of which are based on mapping the problems on pertinent statistical mechanics models with exact analytical solutions, allowing systematic analysis and new physical insights to develop more easily. We also describe a classical density functional theory, which offers a reliable and computationally inexpensive tool to account for some microscopic details and correlations that simplified models often fail to consider. Molecular simulations play a vital role in studying confined ionic liquids, enabling deep microscopic insights otherwise unavailable to researchers. We describe the basics of various simulation approaches and discuss their challenges and applicability to specific problems, focusing on RTIL structure in cylindrical and slit confinement and how it relates to friction and capacitive and dynamic properties of confined ions.
Collapse
Affiliation(s)
- Svyatoslav Kondrat
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Institute
for Computational Physics, University of
Stuttgart, Stuttgart 70569, Germany
| | - Guang Feng
- State
Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Nano
Interface Centre for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fernando Bresme
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, London W12 0BZ,United Kingdom
- Thomas Young
Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- London
Centre for Nanotechnology, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Michael Urbakh
- School
of Chemistry and the Sackler Center for Computational Molecular and
Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexei A. Kornyshev
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, London W12 0BZ,United Kingdom
- Thomas Young
Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Wu J. Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chem Rev 2022; 122:10821-10859. [PMID: 35594506 DOI: 10.1021/acs.chemrev.2c00097] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significant progress has been made in recent years in theoretical modeling of the electric double layer (EDL), a key concept in electrochemistry important for energy storage, electrocatalysis, and multitudes of other technological applications. However, major challenges remain in understanding the microscopic details of the electrochemical interface and charging mechanisms under realistic conditions. This review delves into theoretical methods to describe the equilibrium and dynamic responses of the EDL structure and capacitance for electrochemical systems commonly deployed for capacitive energy storage. Special emphasis is given to recent advances that intend to capture the nonclassical EDL behavior such as oscillatory ion distributions, polarization of nonmetallic electrodes, charge transfer, and various forms of phase transitions in the micropores of electrodes interfacing with an organic electrolyte or ionic liquid. This comprehensive analysis highlights theoretical insights into predictable relationships between materials characteristics and electrochemical performance and offers a perspective on opportunities for further development toward rational design and optimization of electrochemical systems.
Collapse
Affiliation(s)
- Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Hvozd M, Patsahan O, Patsahan T, Holovko M. Fluid-fluid phase behaviour in the explicit hard spherocylinder solvent ionic model confined in a disordered porous medium. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Liu K, Zhang P, Wu J. Does capillary evaporation limit the accessibility of nonaqueous electrolytes to the ultrasmall pores of carbon electrodes? J Chem Phys 2018; 149:234708. [PMID: 30579302 DOI: 10.1063/1.5064360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Porous carbons have been widely utilized as electrode materials for capacitive energy storage. Whereas the importance of pore size and geometry on the device performance has been well recognized, little guidance is available for identification of carbon materials with ideal porous structures. In this work, we study the phase behavior of ionic fluids in slit pores using the classical density functional theory. Within the framework of the restricted primitive model for nonaqueous electrolytes, we demonstrate that the accessibility of micropores depends not only on the ionic diameters (or desolvation) but also on their wetting behavior intrinsically related to the vapor-liquid or liquid-liquid phase separation of the bulk ionic systems. Narrowing the pore size from several tens of nanometers to subnanometers may lead to a drastic reduction in the capacitance due to capillary evaporation. The wettability of micropores deteriorates as the pore size is reduced but can be noticeably improved by raising the surface electrical potential. The theoretical results provide fresh insights into the properties of confined ionic systems beyond electric double layer models commonly employed for rational design/selection of electrolytes and electrode materials.
Collapse
Affiliation(s)
- Kun Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Pengfei Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
5
|
Patsahan OV, Patsahan TM, Holovko MF. Vapor-liquid phase behavior of a size-asymmetric model of ionic fluids confined in a disordered matrix: The collective-variables-based approach. Phys Rev E 2018; 97:022109. [PMID: 29548228 DOI: 10.1103/physreve.97.022109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 11/07/2022]
Abstract
We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature T_{c}^{*} and the critical density ρ_{i,c}^{*} become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of T_{c}^{*} and ρ_{i,c}^{*} and even to a disappearance of the phase transition, especially for the case of small matrix particles.
Collapse
Affiliation(s)
- O V Patsahan
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv, Ukraine
| | - T M Patsahan
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv, Ukraine
| | - M F Holovko
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv, Ukraine
| |
Collapse
|
6
|
Holovko M, Patsahan T, Patsahan O. Application of the ionic association concept to the study of the phase behaviour of size-asymmetric ionic fluids in disordered porous media. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Holovko M, Patsahan T, Patsahan O. Effects of disordered porous media on the vapour-liquid phase equilibrium in ionic fluids: application of the association concept. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Yang G, Liu L. A systematic comparison of different approaches of density functional theory for the study of electrical double layers. J Chem Phys 2015; 142:194110. [DOI: 10.1063/1.4921376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Guomin Yang
- Department of Chemical Engineering and Technology, Royal Institute of Technology, S-100 44 Stockholm, Sweden
| | - Longcheng Liu
- Department of Chemical Engineering and Technology, Royal Institute of Technology, S-100 44 Stockholm, Sweden
| |
Collapse
|
9
|
Joubaud R, Bernard O, Delville A, Ern A, Rotenberg B, Turq P. Numerical study of density functional theory with mean spherical approximation for ionic condensation in highly charged confined electrolytes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062302. [PMID: 25019771 DOI: 10.1103/physreve.89.062302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Indexed: 06/03/2023]
Abstract
We investigate numerically a density functional theory (DFT) for strongly confined ionic solutions in the canonical ensemble by comparing predictions of ionic concentration profiles and pressure for the double-layer configuration to those obtained with Monte Carlo (MC) simulations and the simpler Poisson-Boltzmann (PB) approach. The DFT consists of a bulk (ion-ion) and an ion-solid part. The bulk part includes nonideal terms accounting for long-range electrostatic and short-range steric correlations between ions and is evaluated with the mean spherical approximation and the local density approximation. The ion-solid part treats the ion-solid interactions at the mean-field level through the solution of a Poisson problem. The main findings are that ionic concentration profiles are generally better described by PB than by DFT, although DFT captures the nonmonotone co-ion profile missed by PB. Instead, DFT yields more accurate pressure predictions than PB, showing in particular that nonideal effects are important to describe highly confined ionic solutions. Finally, we present a numerical methodology capable of handling nonconvex minimization problems so as to explore DFT predictions when the reduced temperature falls below the critical temperature.
Collapse
Affiliation(s)
- R Joubaud
- ANDRA, DRD/EAP, Parc de la croix blanche, 1,7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France and University Paris-Est, CERMICS (ENPC), 77455 Marne la Vallée cedex 2, France and Department of Mathematics, Imperial College London, SW7 2AZ London, United Kingdom
| | - O Bernard
- Sorbonne Universités, UPMC University Paris 06, UMR 8234 PHENIX, 75005 Paris, France and CNRS, UMR 8234 PHENIX, 75005 Paris, France
| | - A Delville
- CRMD, CNRS-Université d'Orléans, 1B rue de la Férollerie, 45071 Orléans Cedex 02, France
| | - A Ern
- University Paris-Est, CERMICS (ENPC), 77455 Marne la Vallée cedex 2, France
| | - B Rotenberg
- Sorbonne Universités, UPMC University Paris 06, UMR 8234 PHENIX, 75005 Paris, France and CNRS, UMR 8234 PHENIX, 75005 Paris, France
| | - P Turq
- Sorbonne Universités, UPMC University Paris 06, UMR 8234 PHENIX, 75005 Paris, France and CNRS, UMR 8234 PHENIX, 75005 Paris, France
| |
Collapse
|
10
|
Jiang J, Cao D, Henderson D, Wu J. Revisiting density functionals for the primitive model of electric double layers. J Chem Phys 2014; 140:044714. [DOI: 10.1063/1.4862990] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Jiang J, Cao D, Henderson D, Wu J. A contact-corrected density functional theory for electrolytes at an interface. Phys Chem Chem Phys 2014; 16:3934-8. [DOI: 10.1039/c3cp55130j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Pizio O, Sokołowski S, Sokołowska Z. Electric double layer capacitance of restricted primitive model for an ionic fluid in slit-like nanopores: A density functional approach. J Chem Phys 2013; 137:234705. [PMID: 23267496 DOI: 10.1063/1.4771919] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We apply recently developed version of a density functional theory [Z. Wang, L. Liu, and I. Neretnieks, J. Phys.: Condens. Matter 23, 175002 (2011)] to study adsorption of a restricted primitive model for an ionic fluid in slit-like pores in the absence of interactions induced by electrostatic images. At present this approach is one of the most accurate theories for such model electric double layers. The dependencies of the differential double layer capacitance on the pore width, on the electrostatic potential at the wall, bulk fluid density, and temperature are obtained. We show that the differential capacitance can oscillate as a function of the pore width dependent on the values of the above parameters. The number of oscillations and their magnitude decrease for high values of the electrostatic potential. For very narrow pores, close to the ion diameter, the differential capacitance tends to a minimum. The dependence of differential capacitance on temperature exhibits maximum at different values of bulk fluid density and applied electrostatic potential.
Collapse
Affiliation(s)
- O Pizio
- Instituto de Química, Universidad Nacional Autonoma de México, Circuito Exterior, Ciudad Universitaria, México D.F. 04510, México.
| | | | | |
Collapse
|
13
|
Borówko M, Sokołowski S, Staszewski T, Sokołowska Z, Ilnytskyi JM. Adsorption of ions on surfaces modified with brushes of polyampholytes. J Chem Phys 2012; 137:074707. [DOI: 10.1063/1.4745200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
14
|
Zhou S. How to extend hard sphere density functional approximation to nonuniform nonhard sphere fluids: Applicable to both subcritical and supercritical temperature regions. J Chem Phys 2006; 124:144501. [PMID: 16626208 DOI: 10.1063/1.2181137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A methodology for the formulation of density functional approximation (DFA) for nonuniform nonhard sphere fluids is proposed by following the spirit of a partitioned density functional approximation [Zhou, Phys. Rev. E 68, 061201 (2003)] and mapping the hard core part onto an effective hard sphere whose high order part of the functional perturbation expansion is treated by existing hard sphere DFAs. The resultant density functional theory (DFT) formalism only needs a second order direct correlation function and pressure of the corresponding coexistence bulk fluid as inputs and therefore can be applicable to both supercritical and subcritical temperature cases. As an example, an adjustable parameter-free version of a recently proposed Lagrangian theorem-based DFA is imported into the present methodology; the resultant DFA is applied to Lennard-Jones fluid under the influence of external fields due to a single hard wall, two hard walls separated by a small distance, a large hard sphere, and a spherical cavity with a hard wall. By comparing theoretical predictions with previous simulation data and those recently supplied for coexistence bulk fluid situated at "dangerous" regions, it was found that the present DFA can predict subtle structure change of the density profile and therefore is the most accurate among all existing DFT approaches. A detailed discussion is given as to why so excellent DFA for nonhard sphere fluids can be drawn forth from the present methodology and how the present methodology differs from previous ones. The methodology can be universal, i.e., it can be combined with any other hard sphere DFAs to construct DFA for other nonhard sphere fluids with a repulsive core.
Collapse
Affiliation(s)
- Shiqi Zhou
- Institute of Modern Statistical Mechanics, Zhuzhou Institute of Technology, Wenhua Road, Zhuzhou City 412008, People's Republic of China.
| |
Collapse
|
15
|
Yuet PK. Simulation study of charged nanoparticles confined in a rectangular tube with discrete wall charges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:2979-85. [PMID: 16548546 DOI: 10.1021/la052736l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The development of novel nanomaterials has been a subject of intense interest in recent years. An interesting structure among these materials is the so-called "pea pods" (i.e., nanoparticles confined in nanotubes). To facilitate the development and commercialization of these materials, it is important that we have an in-depth understanding of their behavior. The study of confined charged particles is particularly challenging because of the long-ranged nature of electrostatic interaction, and both interparticle and particle-confinement interactions are likely to play a role in determining the system behavior. The primary objective of this study is to develop a better understanding of the behavior of charged nanoparticles in a charged tubular confinement using Monte Carlo simulation, with particular focus on the effect of electrostatic interactions on the structure of the particles. Simulation results have shown that (i) the structuring of confined particles is associated with the asymmetry of the long-ranged interaction and (ii) factors such as confinement geometry and particle charge and size asymmetry can be manipulated to produce different particle structures. The present study represents the first step in an attempt to gain further insight into the behavior of confined nanosystems, with the ultimate objective of exploiting these characteristics, particularly the interactions between the confined particles and their external environment, in developing novel nanomaterials.
Collapse
Affiliation(s)
- Pak K Yuet
- Department of Chemical Engineering, Dalhousie University, P.O. Box 1000, Halifax, Nova Scotia, Canada B3J 2X4.
| |
Collapse
|
16
|
Reszko-Zygmunt J, Sokolowski S, Pizio O. Temperature dependence of the double-layer capacitance for the restricted primitive model: The effect of chemical association between unlike ions. J Chem Phys 2005; 123:016101. [PMID: 16035873 DOI: 10.1063/1.1949209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|