1
|
Friday DM, Jackson NE. Modeling the Interplay of Conformational and Electronic Structure in Conjugated Polyelectrolytes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David M. Friday
- Department of Chemistry, University of Illinois at Urbana−Champaign, 505 S Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nicholas E. Jackson
- Department of Chemistry, University of Illinois at Urbana−Champaign, 505 S Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Cohen AE, Jackson NE, de Pablo JJ. Anisotropic Coarse-Grained Model for Conjugated Polymers: Investigations into Solution Morphologies. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00302] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander E. Cohen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas E. Jackson
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
3
|
Gordievskaya YD, Kramarenko EY. Conformational transitions and helical structures of a dipolar chain in external electric fields. SOFT MATTER 2021; 17:1376-1387. [PMID: 33325981 DOI: 10.1039/d0sm01868f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The conformational behavior of a single dipolar chain in a uniform electric field is investigated by molecular dynamics simulations. The dipolar chain is modeled as a backbone bead-on-spring chain of equally charged beads, each connected by a rigid spring with an oppositely charged side bead that can freely rotate around the backbone bead. In the strong coupling regime, when the dipolar chain is in the globular state due to a strong electrostatic correlational attraction, the application of an electric field causes the chain swelling and elongation along the field direction. In the weak coupling regime, a qualitatively new regime is found when the swollen dipolar chain shrinks along the field direction adopting flattened conformations due to the field-induced anisotropy of the chain rigidity and the head-to-tail attraction of the dipoles orienting along the field lines. A novel helical conformation is detected for low-polar media and strong electric fields. An increasing rigidity of the backbone chain leads to some stabilization of the helical conformation and the formation of double and triple helices as well as flat spread springs. Fine tuning of the interplay between dipolar and volume interactions by external electric fields induces re-orientation of rod-like dipolar chains in dilute solutions. The obtained results can provide new ways to control dipolar polymer conformations and design materials with responsive properties.
Collapse
Affiliation(s)
- Yulia D Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, 119991, Moscow, Russia
| | - Elena Yu Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, 119991, Moscow, Russia
| |
Collapse
|
4
|
Desgranges C, Delhommelle J. Entropy in Molecular Fluids: Interplay between Interaction Complexity and Criticality. J Phys Chem B 2020; 124:11463-11471. [PMID: 33267580 DOI: 10.1021/acs.jpcb.0c08014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using flat-histogram simulations, we calculate the entropy of molecular fluids along the vapor-liquid phase boundary. Our simulation approach is based on the evaluation of the canonical and grand-canonical partition functions, which, in turn, provide access to entropy through the statistical mechanics formalism. The results allow us to determine the critical entropy of molecular fluids and to uncover that the transition occurs symmetrically from an entropic standpoint. This can best be seen through the patterns exhibited by the thermodynamic variables temperature and pressure when plotted against the entropy of the coexisting phases. This behavior is found to hold for apolar, quadrupolar, and dipolar fluids. Finally, we identify functional forms that characterize the relation between thermodynamic variables and entropy along the coexistence curve up to the critical point.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, New York University, New York, New York 10003, United States.,Department of Chemistry & Molecular Simulation of NonEquilibrium Processes (MSNEP), University of North Dakota, Suite 2300, Tech Accelerator, Grand Forks, North Dakota 58202, United States
| | - Jerome Delhommelle
- Department of Chemistry, New York University, New York, New York 10003, United States.,Department of Chemistry & Molecular Simulation of NonEquilibrium Processes (MSNEP), University of North Dakota, Suite 2300, Tech Accelerator, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
5
|
Gordievskaya YD, Kramarenko EY. Effect of the Fraction and Size of Polar Groups on the Formation of Compact Conformations of a Polymer Chain with Variable Stiffness in Low-Polar Media. POLYMER SCIENCE SERIES B 2019. [DOI: 10.1134/s1560090419060046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Gordievskaya YD, Kramarenko EY. Conformational behavior of a semiflexible dipolar chain with a variable relative size of charged groups via molecular dynamics simulations. SOFT MATTER 2019; 15:6073-6085. [PMID: 31310250 DOI: 10.1039/c9sm00909d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The conformational behavior of an isolated semiflexible dipolar chain has been studied by molecular dynamics simulations. The dipolar chain was modeled as a backbone chain of charged beads, each containing an oppositely charged unit connected to it by a rigid spring. The main focus was on the effect of the backbone chain rigidity and the size of the charged groups on the morphology of the collapsed states of the chain formed in low-polar media where the electrostatic interactions are essential. It has been found that the stable globular conformations of the long chain of N = 256 backbone beads are a toroid and an elliptical globule. The macroscopic parameters (such as the radius of gyration and shape factors) as well as the local characteristics of these conformations (radial density distributions of ions, orientational correlations of chain segments, dipoles etc.) are studied depending on the chain stiffness. The regions of stability of a torus and an elliptical globule are found for the dipolar chains with variable dipole length and stiffness, which depend on the strength of electrostatic interactions. It has been shown that a size asymmetry of oppositely charged beads destabilizes globular states favoring elongated chain conformations. A coexistence of various metastable states was demonstrated for shorter chains of N = 128, 64, and 32.
Collapse
Affiliation(s)
- Yulia D Gordievskaya
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, 119991, Moscow, Russia
| | - Elena Yu Kramarenko
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory, 1-2, 119991, Moscow, Russia. and A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St., 28, 119991, Moscow, Russia
| |
Collapse
|
7
|
Diagrams of States of Single Flexible-Semiflexible Multi-Block Copolymer Chains: A Flat-Histogram Monte Carlo Study. Polymers (Basel) 2019; 11:polym11050757. [PMID: 31052227 PMCID: PMC6571722 DOI: 10.3390/polym11050757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/16/2023] Open
Abstract
The combination of flexibility and semiflexibility in a single molecule is a powerful design principle both in nature and in materials science. We present results on the conformational behavior of a single multiblock-copolymer chain, consisting of equal amounts of Flexible (F) and Semiflexible (S) blocks with different affinity to an implicit solvent. We consider a manifold of macrostates defined by two terms in the total energy: intermonomer interaction energy and stiffness energy. To obtain diagrams of states (pseudo-phase diagrams), we performed flat-histogram Monte Carlo simulations using the Stochastic Approximation Monte Carlo algorithm (SAMC). We have accumulated two-Dimensional Density of States (2D DoS) functions (defined on the 2D manifold of macrostates) for a SF-multiblock-copolymer chain of length N=64 with block lengths b = 4, 8, 16, and 32 in two different selective solvents. In an analysis of the canonical ensemble, we calculated the heat capacity and determined its maxima and the most probable morphologies in different regions of the state diagrams. These are rich in various, non-trivial morphologies, which are formed without any specific interactions, and depend on the block length and the type of solvent selectivity (preferring S or F blocks, respectively). We compared the diagrams with those for the non-selective solvent and reveal essential changes in some cases. Additionally, we implemented microcanonical analysis in the “conformational” microcanonical (NVU, where U is the potential energy) and the true microcanonical (NVE, where E is the total energy) ensembles with the aim to reveal and classify pseudo-phase transitions, occurring under the change of temperature.
Collapse
|
8
|
Wu J, Cheng C, Liu G, Zhang P, Chen T. The folding pathways and thermodynamics of semiflexible polymers. J Chem Phys 2018; 148:184901. [PMID: 29764123 DOI: 10.1063/1.5018114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inspired by the protein folding and DNA packing, we have systematically studied the thermodynamic and kinetic behaviors of single semiflexible homopolymers by Langevin dynamics simulations. In line with experiments, a rich variety of folding products, such as rod-like bundles, hairpins, toroids, and a mixture of them, are observed in the complete diagram of states. Moreover, knotted structures with a significant population are found in a certain range of bending stiffness in thermal equilibrium. As the solvent quality becomes poorer, the population of the intermediate occurring in the folding process increases, which leads to a severe chevron rollover for the folding arm. However, the population of the intermediates in the unfolding process is very low, insufficient to induce unfolding arm rollover. The total types of folding pathways from the coil state to the toroidal state for a semiflexible polymer chain remain unchanged by varying the solvent quality or temperature, whereas the kinetic partitioning into different folding events can be tuned significantly. In the process of knotting, three types of mechanisms, namely, plugging, slipknotting, and sliding, are discovered. Along the folding evolution, a semiflexible homopolymer chain can knot at any stage of folding upon leaving the extended coil state, and the probability to find a knot increases with chain compactness. In addition, we find rich types of knotted topologies during the folding of a semiflexible homopolymer chain. This study should be helpful in gaining insight into the general principles of biopolymer folding.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Chenqian Cheng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Gaoyuan Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Tao Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| |
Collapse
|
9
|
Williams MJ, Bachmann M. The effect of surface adsorption on tertiary structure formation in helical polymers. J Chem Phys 2017; 147:024902. [DOI: 10.1063/1.4991564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthew J. Williams
- Institute of Engineering, Murray State University, Murray, Kentucky 42071, USA
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
10
|
Silanteva IA, Yurchenko AA, Vorontsov-Velyaminov PN. Structural properties of star-shaped polyions: Entropic sampling. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x17040101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Austin KS, Zierenberg J, Janke W. Interplay of Adsorption and Semiflexibility: Structural Behavior of Grafted Polymers under Poor Solvent Conditions. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kieran S. Austin
- Institut für Theoretische
Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Johannes Zierenberg
- Institut für Theoretische
Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Wolfhard Janke
- Institut für Theoretische
Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| |
Collapse
|
12
|
Coil-helix-globule transition for self-attractive semiflexible ring chains. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Werlich B, Taylor MP, Shakirov T, Paul W. On the Pseudo Phase Diagram of Single Semi-Flexible Polymer Chains: A Flat-Histogram Monte Carlo Study. Polymers (Basel) 2017; 9:E38. [PMID: 30970714 PMCID: PMC6432196 DOI: 10.3390/polym9020038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/10/2023] Open
Abstract
Local stiffness of polymer chains is instrumental in all structure formation processes of polymers, from crystallization of synthetic polymers to protein folding and DNA compactification. We present Stochastic Approximation Monte Carlo simulations-a type of flat-histogram Monte Carlo method-determining the density of states of a model class of single semi-flexible polymer chains, and, from this, their complete thermodynamic behavior. The chains possess a rich pseudo phase diagram as a function of stiffness and temperature, displaying non-trivial ground-state morphologies. This pseudo phase diagram also depends on chain length. Differences to existing pseudo phase diagrams of semi-flexible chains in the literature emphasize the fact that the mechanism of stiffness creation matters.
Collapse
Affiliation(s)
- Benno Werlich
- Institut für Physik, Martin-Luther-Universität, 06099 Halle, Germany.
| | - Mark P Taylor
- Department of Physics, Hiram College, Hiram, OH 44234, USA.
| | - Timur Shakirov
- Institut für Physik, Martin-Luther-Universität, 06099 Halle, Germany.
| | - Wolfgang Paul
- Institut für Physik, Martin-Luther-Universität, 06099 Halle, Germany.
| |
Collapse
|
14
|
Zablotskiy SV, Martemyanova JA, Ivanov VA, Paul W. Stochastic approximation Monte Carlo algorithm for calculation of diagram of states of a single flexible-semiflexible copolymer chain. POLYMER SCIENCE SERIES A 2016. [DOI: 10.1134/s0965545x1606016x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Zierenberg J, Marenz M, Janke W. Dilute Semiflexible Polymers with Attraction: Collapse, Folding and Aggregation. Polymers (Basel) 2016; 8:E333. [PMID: 30974608 PMCID: PMC6432187 DOI: 10.3390/polym8090333] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 02/06/2023] Open
Abstract
We review the current state on the thermodynamic behavior and structural phases of self- and mutually-attractive dilute semiflexible polymers that undergo temperature-driven transitions. In extreme dilution, polymers may be considered isolated, and this single polymer undergoes a collapse or folding transition depending on the internal structure. This may go as far as to stable knot phases. Adding polymers results in aggregation, where structural motifs again depend on the internal structure. We discuss in detail the effect of semiflexibility on the collapse and aggregation transition and provide perspectives for interesting future investigations.
Collapse
Affiliation(s)
- Johannes Zierenberg
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| | - Martin Marenz
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, Leipzig D-04009, Germany.
| |
Collapse
|
16
|
Zablotskiy SV, Martemyanova JA, Ivanov VA, Paul W. Diagram of states and morphologies of flexible-semiflexible copolymer chains: A Monte Carlo simulation. J Chem Phys 2016; 144:244903. [PMID: 27369540 DOI: 10.1063/1.4946035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A single copolymer chain consisting of multiple flexible (F) and semiflexible (S) blocks has been studied using a continuum bead-spring model by Stochastic Approximation Monte Carlo simulations, which determine the density of states of the model. The only difference between F and S blocks is the intramolecular bending potential, all non-bonded interactions are equal. The state diagrams for this class of models display multiple nematic phases in the collapsed state, characterized through a demixing of the blocks of different stiffness and orientational ordering of the stiff blocks. We observe dumbbell-like morphologies, lamellar phases, and for the larger block lengths also Saturn-like structures with a core of flexible segments and the stiff segments forming a ring around the core.
Collapse
Affiliation(s)
| | | | - Viktor A Ivanov
- Faculty of Physics, Moscow State University, Moscow 119991, Russia
| | - Wolfgang Paul
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale) 06099, Germany
| |
Collapse
|
17
|
Williams MJ, Bachmann M. Significance of bending restraints for the stability of helical polymer conformations. Phys Rev E 2016; 93:062501. [PMID: 27415311 DOI: 10.1103/physreve.93.062501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 01/30/2023]
Abstract
We performed parallel-tempering Monte Carlo simulations to investigate the formation and stability of helical tertiary structures for flexible and semiflexible polymers, employing a generic coarse-grained model. Structural conformations exhibit helical order with tertiary ordering into single helices, multiple helical segments organized into bundles, and disorganized helical arrangements. For both bending-restrained semiflexible and bending-unrestrained flexible helical polymers, the stability of the structural phases is discussed systematically by means of hyperphase diagrams parametrized by suitable order parameters, temperature, and torsion strength. This exploration lends insight into the restricted flexibility of biological polymers such as double-stranded DNA and proteins.
Collapse
Affiliation(s)
- Matthew J Williams
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA
| | - Michael Bachmann
- Soft Matter Systems Research Group, Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA.,Instituto de Física, Universidade Federal de Mato Grosso, Cuiabá (MT), Brazil.,Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte (MG), Brazil
| |
Collapse
|
18
|
Janke W, Paul W. Thermodynamics and structure of macromolecules from flat-histogram Monte Carlo simulations. SOFT MATTER 2016; 12:642-657. [PMID: 26574738 DOI: 10.1039/c5sm01919b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Over the last decade flat-histogram Monte Carlo simulations, especially multi-canonical and Wang-Landau simulations, have emerged as a strong tool to study the statistical mechanics of polymer chains. These investigations have focused on coarse-grained models of polymers on the lattice and in the continuum. Phase diagrams of chains in bulk as well as chains attached to surfaces were studied, for homopolymers as well as for protein-like models. Also, aggregation behavior in solution of these models has been investigated. We will present here the theoretical background for these simulations, explain the algorithms used and discuss their performance and give an overview over the systems studied with these methods in the literature, where we will limit ourselves to studies of coarse-grained model systems. Implementations of these algorithms on parallel computers will be also briefly described. In parallel to the development of these simulation methods, the power of a micro-canonical analysis of such simulations has been recognized, and we present the current state of the art in applying the micro-canonical analysis to phase transitions in nanoscopic polymer systems.
Collapse
Affiliation(s)
- Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, 04009 Leipzig, Germany.
| | | |
Collapse
|
19
|
Chertovich A, Kos P. Crumpled globule formation during collapse of a long flexible and semiflexible polymer in poor solvent. J Chem Phys 2015; 141:134903. [PMID: 25296833 DOI: 10.1063/1.4896701] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
By introducing explicit solvent particles and hydrodynamic interactions we demonstrate that crumpled globules are formed after the collapse of long polymer chains (N = 10(4)) in a poor solvent. During the collapse crumples of all sizes form sequentially, but small crumples are not stable and convert to blobs with Gaussian statistics. The observed effective mean squared distance R(2)(n) ∼ n(0.38) at n > Ne and contact probability index p(n) ∼ n(-0.5) at n ≫ Ne, which is not following either the model of a fractal globule, or the predictions for an equilibrium globule. Polymer chain stiffness pushes the system to form globular crystallite, and this freezes crumpled structure with R(2)(n) ∼ n(0.33) at n > Ne as a stable state. We note that there is some similarity to crumple globule formation and crystallization of polymer melt.
Collapse
Affiliation(s)
- A Chertovich
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - P Kos
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
20
|
Ivanov VA, Martemyanova JA, Rodionova AS, Stukan MR. Computer simulation of stiff-chain polymers. POLYMER SCIENCE SERIES C 2013. [DOI: 10.1134/s1811238213060039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Taylor MP, Paul W, Binder K. Applications of the Wang-Landau algorithm to phase transitions of a single polymer chain. POLYMER SCIENCE SERIES C 2013. [DOI: 10.1134/s1811238213060040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Seaton DT, Schnabel S, Landau DP, Bachmann M. From flexible to stiff: systematic analysis of structural phases for single semiflexible polymers. PHYSICAL REVIEW LETTERS 2013; 110:028103. [PMID: 23383941 DOI: 10.1103/physrevlett.110.028103] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Indexed: 06/01/2023]
Abstract
Inspired by recent studies revealing unexpected pliability of semiflexible biomolecules like RNA and DNA, we systematically investigate the range of structural phases by means of a simple generic polymer model. Using a two-dimensional variant of Wang-Landau sampling to explore the conformational space in energy and stiffness within a single simulation, we identify the entire diversity of structures existing from the well-studied limit of flexible polymers to that of wormlike chains. We also discuss, in detail, the influence of finite-size effects in the formation of crystalline structures that are virtually inaccessible via conventional computational approaches.
Collapse
Affiliation(s)
- Daniel T Seaton
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | |
Collapse
|
23
|
Dolgushev M, Berezovska G, Blumen A. Maximum entropy principle applied to semiflexible ring polymers. J Chem Phys 2011; 135:094901. [PMID: 21913779 DOI: 10.1063/1.3631943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Based on the success of the maximum entropy principle (MEP) in the study of semiflexible treelike polymers [M. Dolgushev and A. Blumen, J. Chem. Phys. 131, 044905 (2009)], it is of much interest to establish MEP's potential for general semiflexible polymers which contain loops. Here, we embark on this endeavor by considering discrete semiflexible polymer rings in a Rouse-type scheme. Now, for treelike polymers a beads-and-bonds (i.e., a discrete) picture is essential for an easy inclusion of branching points. Moreover, one may envisage (similar to our former work [M. Dolgushev and A. Blumen, J. Chem. Phys. 131, 044905 (2009)]) to impose for each angle between two bonds a distinct stiffness condition. Working in this way leads already for a polymer ring to a complicated problem. Hence, we follow a reduced variational approach as applied earlier to polymer chains, in which a single Lagrange multiplier is used for each set of identical conditions imposed on topologically equivalent bonds and bonds' orientations. In this way, we obtain for the discrete ring an analytically closed form which involves Chebyshev polynomials. This expression turns out to lead to a series of solutions: Apart from the regular solution, several other solutions appear. One may be tempted to discard the other solutions, since for them the potential energy matrix is not positive definite. A more careful analysis based on topological features suggests, however, that such solutions can be assigned to rings displaying knots. Monte Carlo simulations which take excluded volume interactions into account agree with our interpretation.
Collapse
Affiliation(s)
- Maxim Dolgushev
- Theoretical Polymer Physics, University of Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
24
|
Dolgushev M, Berezovska G, Blumen A. Branched Semiflexible Polymers: Theoretical and Simulation Aspects. MACROMOL THEOR SIMUL 2011. [DOI: 10.1002/mats.201100049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Neratova IV, Komarov PV, Pavlov AS, Ivanov VA. Collapse of an AB copolymer single chain with alternating blocks of different stiffness. Russ Chem Bull 2011. [DOI: 10.1007/s11172-011-0038-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Siretskiy A, Elvingson C, Vorontsov-Velyaminov P, Khan MO. Method for sampling compact configurations for semistiff polymers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:016702. [PMID: 21867338 DOI: 10.1103/physreve.84.016702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/06/2011] [Indexed: 05/31/2023]
Abstract
The sampling of compact configurations is crucial when investigating structural properties of semistiff polymers, like proteins and DNA, using Monte Carlo methods. A sampling scheme for a continuous model based on configuration biasing is introduced, tested, and compared with conventional methods. The proposed configuration biased Monte Carlo method, used together with the Wang-Landau sampling scheme, enables us to obtain any thermodynamic property within the statistical ensemble in use. Using the proposed method, it is possible to collect statistical data of interest for a wide range of compactions (from stretched up to several toroid loops) in a single computer experiment. A second-order-like stretched-toroid phase transition is observed for a semistiff polymer, and the critical temperature is estimated.
Collapse
Affiliation(s)
- Alexey Siretskiy
- Department of Physical and Analytical Chemistry, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
27
|
Li T, Yang X, Nies E. A Replica Exchange Molecular Dynamics Simulation of a Single Polyethylene Chain: Temperature Dependence of Structural Properties and Chain Conformational Study at the Equilibrium Melting Temperature. J Chem Theory Comput 2011; 7:188-202. [PMID: 26606232 DOI: 10.1021/ct100513y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conformational properties of a finite length polyethylene chain were explored over a wide range of temperatures using a replica exchange molecular dynamics simulation providing high quality simulation data representative for the equilibrium behavior of the chain molecule. The radial distribution function (RDF) and the structure factor S(q) of the chain as a function of temperature are analyzed in detail. The different characteristic peaks in the RDF and S(q) were assigned to specific distances in the chain and structural changes occurring with the temperature. In S(q), a peak characteristic for the order in the solid state was found and used to determine the equilibrium melting temperature. A detailed scaling analysis of the structure factor covering the full q range was performed according to the work of Hammouda. In the Θ region, a quantitative analysis of the full structure factor was done using the equivalent Kuhn chain, which enabled us to assign the Θ region of our chain and to demonstrate, in our particular case, the failure of the Gaussian chain approach. The chain conformational properties at the equilibrium melting temperature are discussed using conformational distribution functions, using the largest principal component of the radius of gyration and shape parameters as order parameters. We demonstrate that for the system studied here, the Landau free energy expression based on this conformational distribution information leads to erroneous conclusions concerning the thermodynamic transition behavior. Finally, we focus on the instantaneous conformational properties at the equilibrium melting temperature and give a detailed analysis of the conformational shapes using different shape parameters and a simulation snapshot. We show that the chain does not only take the lamellar rod-like and globular conformational shapes, typical of the solid and liquid states, but can also explore many other conformational states, including the toroidal conformational state. It is the first demonstration that a flexible molecule like PE can also take a toroidal conformational state, which is normally linked to stiffer chains.
Collapse
Affiliation(s)
- Ting Li
- Polymer Research Division, Department of Chemistry, The Leuven Mathematical Modeling and Computational Science Centre (LMCC) and the Leuven Materials Research Centre (LMRC), Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium, State Key Laboratory of Polymer Physics & Chemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100080, Peoples' Republic of China, Laboratory of Polymer Technology, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Xiaozhen Yang
- Polymer Research Division, Department of Chemistry, The Leuven Mathematical Modeling and Computational Science Centre (LMCC) and the Leuven Materials Research Centre (LMRC), Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium, State Key Laboratory of Polymer Physics & Chemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100080, Peoples' Republic of China, Laboratory of Polymer Technology, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Erik Nies
- Polymer Research Division, Department of Chemistry, The Leuven Mathematical Modeling and Computational Science Centre (LMCC) and the Leuven Materials Research Centre (LMRC), Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium, State Key Laboratory of Polymer Physics & Chemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100080, Peoples' Republic of China, Laboratory of Polymer Technology, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
28
|
Dolgushev M, Berezovska G, Blumen A. Cospectral polymers: Differentiation via semiflexibility. J Chem Phys 2010; 133:154905. [DOI: 10.1063/1.3505147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Li T, Jiang Z, Yan D, Nies E. A polyethylene chain investigated with replica exchange molecular dynamics simulation: Equilibrium lamellar thickness and melting point, ordering and free energy. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Ivanov VA, Martemyanova JA, Müller M, Paul W, Binder K. Conformational Changes of a Single Semiflexible Macromolecule Near an Adsorbing Surface: A Monte Carlo Simulation. J Phys Chem B 2008; 113:3653-68. [DOI: 10.1021/jp806348y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. A. Ivanov
- Faculty of Physics, Moscow State University, 119992 Moscow, Russia, Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany, and Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany
| | - J. A. Martemyanova
- Faculty of Physics, Moscow State University, 119992 Moscow, Russia, Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany, and Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany
| | - M. Müller
- Faculty of Physics, Moscow State University, 119992 Moscow, Russia, Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany, and Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany
| | - W. Paul
- Faculty of Physics, Moscow State University, 119992 Moscow, Russia, Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany, and Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany
| | - K. Binder
- Faculty of Physics, Moscow State University, 119992 Moscow, Russia, Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany, and Institut für Physik, Johannes-Gutenberg-Universität Mainz, Staudinger Weg 7, 55099 Mainz, Germany
| |
Collapse
|
31
|
Shew CY, Higuchi Y, Yoshikawa K. Elucidation of conformational hysteresis on a giant DNA. J Chem Phys 2007; 127:085103. [PMID: 17764302 DOI: 10.1063/1.2759925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The conformational behavior of a giant DNA mediated by condensing agents in the bulk solution has been investigated through experimental and theoretical approaches. Experimentally, a pronounced conformational hysteresis is observed for folding and unfolding processes, by increasing and decreasing the concentration of condensing agent (polyethylene glycol) (PEG), respectively. To elucidate the observed hysteresis, a semiflexible chain model is studied by using Monte Carlo simulations for the coil-globule transition. In the simulations, the hysteresis loop emerges for stiff enough chains, indicating distinct pathways for folding and unfolding processes. Also, our results show that globular state is thermodynamically more stable than coiled state in the hysteresis loop. Our findings suggest that increasing chain stiffness may reduce the chain conformations relevant to the folding pathway, which impedes the folding process.
Collapse
Affiliation(s)
- Chwen-Yang Shew
- Department of Chemistry, College of Staten Island and Graduate Center, City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, USA.
| | | | | |
Collapse
|
32
|
Hancock R. Packing of the polynucleosome chain in interphase chromosomes: evidence for a contribution of crowding and entropic forces. Semin Cell Dev Biol 2007; 18:668-75. [PMID: 17904880 DOI: 10.1016/j.semcdb.2007.08.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 08/22/2007] [Indexed: 11/23/2022]
Abstract
In the crowded intranuclear environment, entropic depletion forces between macromolecules are expected to be strong. A review of simulations of linear polymers leads to several predictions about probable conformations of a polynucleosome chain in these conditions. These include a globular conformation, variable compaction due to different local rigidity or curvature of the mosaic of isochores, satellite sequences, and nucleosomes containing different histone variants, and the possibility that chromosomes represent separate phases like those seen in heterogeneous particle mixtures by experiment and simulation. Experimental results which show that macromolecular crowding alone, in the absence of exogenous cations, can stabilise interphase chromosomes and cause self-association of polynucleosome chains are presented. Together, these considerations suggest that macromolecular crowding and entropic forces are major factors in packing polynucleosome chains in vivo.
Collapse
Affiliation(s)
- Ronald Hancock
- Laval University Cancer Research Centre, Hôtel-Dieu Hospital, 9 rue MacMahon, Québec, QC, Canada G1R 2J6.
| |
Collapse
|
33
|
Ivanov VA, An EA, Spirin LA, Stukan MR, Müller M, Paul W, Binder K. Equation of state for macromolecules of variable flexibility in good solvents: a comparison of techniques for Monte Carlo simulations of lattice models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:026702. [PMID: 17930169 DOI: 10.1103/physreve.76.026702] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Indexed: 05/25/2023]
Abstract
The osmotic equation of state for the athermal bond fluctuation model on the simple cubic lattice is obtained from extensive Monte Carlo simulations. For short macromolecules (chain length N=20 ) we study the influence of various choices for the chain stiffness on the equation of state. Three techniques are applied and compared in order to critically assess their efficiency and accuracy: the "repulsive wall" method, the thermodynamic integration method (which rests on the feasibility of simulations in the grand canonical ensemble), and the recently advocated sedimentation equilibrium method, which records the density profile in an external (e.g., gravitationlike) field and infers, via a local density approximation, the equation of state from the hydrostatic equilibrium condition. We confirm the conclusion that the latter technique is far more efficient than the repulsive wall method, but we find that the thermodynamic integration method is similarly efficient as the sedimentation equilibrium method. For very stiff chains the onset of nematic order enforces the formation of an isotropic-nematic interface in the sedimentation equilibrium method leading to strong rounding effects and deviations from the true equation of state in the transition regime.
Collapse
Affiliation(s)
- V A Ivanov
- Faculty of Physics, Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | | | |
Collapse
|
34
|
Varshney V, Carri GA. How does the coupling of secondary and tertiary interactions control the folding of helical macromolecules? J Chem Phys 2007; 126:044906. [PMID: 17286508 DOI: 10.1063/1.2428298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The authors study how the simultaneous presence of short-range secondary and long-range tertiary interactions controls the folding and collapse behavior of a helical macromolecule. The secondary interactions stabilize the helical conformation of the chain, while the tertiary interactions govern its overall three-dimensional shape. The authors have carried out Monte Carlo simulations to study the effect of chain length on the folding and collapse behavior of the chain. They have calculated state diagrams for four chain lengths and found that the physics is very rich with a plethora of stable conformational states. In addition to the helix-coil and coil-globule transitions, their model describes the coupling between them which takes place at low temperatures. Under these conditions, their model predicts a cascade of continuous, conformational transitions between states with an increase in the strength of the tertiary interactions. During each transition the chain shrinks, i.e., collapses, in a rapid and specific manner. In addition, the number of the transitions increases with increasing chain length. They have also found that the low-temperature regions of the state diagram between the transition lines cannot be associated with specific structures of the chain, but rather, with ensembles of various configurations of the chain with similar characteristics. Based on these results the authors propose a mechanism for the folding and collapse of helical macromolecules which is further supported by the analysis of configurational, configurational, and thermodynamic properties of the chain.
Collapse
Affiliation(s)
- Vikas Varshney
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, USA
| | | |
Collapse
|
35
|
Ishimoto Y, Kikuchi N. Low-energy states of a semiflexible polymer chain with attraction and the whip-toroid transitions. J Chem Phys 2006; 125:074905. [PMID: 16942378 DOI: 10.1063/1.2335455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We establish a general model for the whip-toroid transitions of a semiflexible homopolymer chain using the path integral method and the O3 nonlinear sigma model on a line segment with the local inextensibility constraint. We exactly solve the energy levels of classical solutions and show that some of its classical configurations exhibit toroidal forms, and the system has phase transitions from a whip to toroidal states with a conformation parameter c = (W2l)(L2pi)2. We also discuss the stability of the toroid states and propose the low-energy effective Green's function. Finally, with the finite size effect on the toroid states, predicted toroidal properties are successfully compared to experimental results of DNA condensation.
Collapse
Affiliation(s)
- Y Ishimoto
- Theoretical Physics Laboratory, RIKEN, Wako 351-0198, Japan.
| | | |
Collapse
|
36
|
Gus’kova OA, Pavlov AS, Khalatur PG. Complexes based on rigid-chain polyelectrolytes: Computer simulation. POLYMER SCIENCE SERIES A 2006. [DOI: 10.1134/s0965545x06070145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Stukan MR, An EA, Ivanov VA, Vinogradova OI. Stability of toroid and rodlike globular structures of a single stiff-chain macromolecule for different bending potentials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:051804. [PMID: 16802960 DOI: 10.1103/physreve.73.051804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Indexed: 05/10/2023]
Abstract
We study the effect of the bending potential on the stability of toroidal and rodlike globules which are typical collapsed conformations of a single stiff-chain macromolecule. We perform numerical calculations in the framework of the bead-stick model of a polymer chain. The intrinsic structure of globules is also analyzed. It was shown that the bending potential affects the packing geometry of bundles in a toroidal globule in the ground state. This potential also influences the bends at the ends of a rodlike globule: both the shape of the loops and the number of bonds in each loop have been investigated numerically as well as by Monte Carlo computer simulations performed for a separate loop. Our main results are (1) the shape of the bending potential could be possibly seen from the geometry of a globule; (2) toroidal globules are always more favorable than the rodlike ones.
Collapse
Affiliation(s)
- Mikhail R Stukan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
38
|
Rampf F, Binder K, Paul W. The phase diagram of a single polymer chain: New insights from a new simulation method. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/polb.20908] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Rissanou AN, Anastasiadis SH, Bitsanis IA. Monte Carlo study of the coil-to-globule transition of a model polymeric system. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/polb.21024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|