1
|
Bordonhos M, Galvão TLP, Gomes JRB, Gouveia JD, Jorge M, Lourenço MAO, Pereira JM, Pérez‐Sánchez G, Pinto ML, Silva CM, Tedim J, Zêzere B. Multiscale Computational Approaches toward the Understanding of Materials. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marta Bordonhos
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
- CERENA, Department of Chemical Engineering Instituto Superior Técnico University of Lisbon Avenida Rovisco Pais, No. 1 Lisbon 1049‐001 Portugal
| | - Tiago L. P. Galvão
- CICECO ‐ Aveiro Institute of Materials Department of Materials and Ceramic Engineering University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - José R. B. Gomes
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - José D. Gouveia
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Miguel Jorge
- Department of Chemical and Process Engineering University of Strathclyde 75 Montrose Street Glasgow G1 1XJ UK
| | - Mirtha A. O. Lourenço
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - José M. Pereira
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Germán Pérez‐Sánchez
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Moisés L. Pinto
- CERENA, Department of Chemical Engineering Instituto Superior Técnico University of Lisbon Avenida Rovisco Pais, No. 1 Lisbon 1049‐001 Portugal
| | - Carlos M. Silva
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João Tedim
- CICECO ‐ Aveiro Institute of Materials Department of Materials and Ceramic Engineering University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Bruno Zêzere
- CICECO ‐ Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
2
|
Tedim J, Galvão TLP, Yasakau KA, Bastos A, Gomes JRB, Ferreira MGS. Layered double hydroxides for corrosion-related applications—Main developments from 20 years of research at CICECO. Front Chem 2022; 10:1048313. [DOI: 10.3389/fchem.2022.1048313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
This work describes the main advances carried out in the field of corrosion protection using layered double hydroxides (LDH), both as additive/pigment-based systems in organic coatings and as conversion films/pre-treatments. In the context of the research topic “Celebrating 20 years of CICECO”, the main works reported herein are based on SECOP’s group (CICECO) main advances over the years. More specifically, this review describes structure and properties of LDH, delving into the corrosion field with description of pioneering works, use of LDH as additives to organic coatings, conversion layers, application in reinforced concrete and corrosion detection, and environmental impact of these materials. Moreover, the use of computational tools for the design of LDH materials and understanding of ion-exchange reactions is also presented. The review ends with a critical analysis of the field and future perspectives on the use of LDH for corrosion protection. From the work carried out LDH seem very tenable, versatile, and advantageous for corrosion protection applications, although several obstacles will have to be overcome before their use become commonplace.
Collapse
|
3
|
Rad FA, Rezvani Z. Preparation of cubane-1,4-dicarboxylate–Zn–Al layered double hydroxide nanohybrid: comparison of structural and optical properties between experimental and calculated results. RSC Adv 2015. [DOI: 10.1039/c5ra09716a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this work, we report the preparation of cubane-1,4-dicarboxylate–Zn2Al layered double hydroxide (LDH) nanohybrid and understanding of the structural and electronic properties of nanohybrid by periodic density functional theory.
Collapse
Affiliation(s)
- Farzad Arjomandi Rad
- Department of Chemistry
- Faculty of Basic Sciences
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| | - Zolfaghar Rezvani
- Department of Chemistry
- Faculty of Basic Sciences
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| |
Collapse
|
4
|
Nicotera I, Kosma V, Simari C, D’Urso C, Aricò AS, Baglio V. Methanol and proton transport in layered double hydroxide and smectite clay-based composites: influence on the electrochemical behavior of direct methanol fuel cells at intermediate temperatures. J Solid State Electrochem 2014. [DOI: 10.1007/s10008-014-2701-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Xu SM, Zhang ST, Shi WY, Ning FY, Fu Y, Yan H. Understanding the thermal motion of the luminescent dyes in the dye–surfactant cointercalated ZnAl-layered double hydroxides: a molecular dynamics study. RSC Adv 2014. [DOI: 10.1039/c4ra08299k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
6
|
Zhang H, Ouyang D, Murthy V, Wong Y, Xu Z, Smith SC. Hydrotalcite Intercalated siRNA: Computational Characterization of the Interlayer Environment. Pharmaceutics 2012; 4:296-313. [PMID: 24300233 PMCID: PMC3834912 DOI: 10.3390/pharmaceutics4020296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 11/16/2022] Open
Abstract
Using molecular dynamics (MD) simulations, we explore the structural and dynamical properties of siRNA within the intercalated environment of a Mg:Al 2:1 Layered Double Hydroxide (LDH) nanoparticle. An ab initio force field (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies: COMPASS) is used for the MD simulations of the hybrid organic-inorganic systems. The structure, arrangement, mobility, close contacts and hydrogen bonds associated with the intercalated RNA are examined and contrasted with those of the isolated RNA. Computed powder X-ray diffraction patterns are also compared with related LDH-DNA experiments. As a method of probing whether the intercalated environment approximates the crystalline or rather the aqueous state, we explore the stability of the principle parameters (e.g., the major groove width) that differentiate both A- and A'- crystalline forms of siRNA and contrast this with recent findings for the same siRNA simulated in water. We find the crystalline forms remain structurally distinct when intercalated, whereas this is not the case in water. Implications for the stability of hybrid LDH-RNA systems are discussed.
Collapse
Affiliation(s)
- Hong Zhang
- Centre for Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Qld 4072, Brisbane, Australia;
- ARC Centre for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Qld 4072, Brisbane, Australia;
| | - Defang Ouyang
- School of Life & Health Science, Aston University, Birmingham, B4 7ET, UK;
| | - Vinuthaa Murthy
- School of Environmental and Life Sciences, Charles Darwin University, Darwin NT 0909, Australia;
| | - Yunyi Wong
- School of Chemical & Life Sciences, Singapore Polytechnic, 500 Dover Road, Singapore 139651;
| | - Zhiping Xu
- ARC Centre for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Qld 4072, Brisbane, Australia;
| | - Sean C. Smith
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN 37831-6496, USA
- Author to whom correspondence should be addressed; ; Tel.: +1- 865-574-5081; Fax: +1-865-574-1753
| |
Collapse
|
7
|
Kovár P, Pospísil M, Káfunková E, Lang K, Kovanda F. Mg-Al layered double hydroxide intercalated with porphyrin anions: molecular simulations and experiments. J Mol Model 2009; 16:223-33. [PMID: 19575247 DOI: 10.1007/s00894-009-0537-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 06/10/2009] [Indexed: 11/25/2022]
Abstract
Molecular modeling in combination with powder X-ray diffraction (XRD) provided new information on the organization of the interlayer space of Mg-Al layered double hydroxide (LDH) containing intercalated porphyrin anions [5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS)]. Anion-exchange and rehydration procedures were used for the preparation of TPPS-containing LDH with an Mg/Al molar ratio of 2. Molecular modeling was carried out in the Cerius(2) and Materials Studio modeling environment. Three types of models were created in order to simulate the experimental XRD patterns of LDH intercalates with a TPPS loading of 70-80% with respect to the theoretical anion exchange capacity (AEC). The models represent single-phase systems with a 100% TPPS loading in the interlayer space (Type 1) and models represent the coexistence of two phases corresponding to the total exchange from 75 to 92% (Type 2). To cover other possible arrangements, models with the coexistence of both TPPS and NO(3)(-) anions in the same interlayer space were calculated (Type 3). The models are described and compared with experimental data. In all cases, guest TPPS anions are tilted with respect to the hydroxide layers, and are horizontally shifted to each other by up to one-half of the TPPS diameter. According to the energy characteristics and simulated XRD, the most probable arrangement is of Type 2, where some layers are saturated with TPPS anions and others are filled with original NO(3)(-) anions.
Collapse
Affiliation(s)
- Petr Kovár
- Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
8
|
Rajabbeigi N, Elyassi B, Tsotsis TT, Sahimi M. Molecular pore-network model for nanoporous materials. I: Application to adsorption in silicon-carbide membranes. J Memb Sci 2009. [DOI: 10.1016/j.memsci.2009.02.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Anderson RL, Greenwell HC, Suter JL, Coveney PV, Thyveetil MA. Determining materials properties of natural composites using molecular simulation. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b909119j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Yan D, Lu J, Wei M, Ma J, Evans DG, Duan X. A combined study based on experiment and molecular dynamics: perylene tetracarboxylate intercalated in a layered double hydroxide matrix. Phys Chem Chem Phys 2009; 11:9200-9. [DOI: 10.1039/b907366c] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Kim N, Harale A, Tsotsis TT, Sahimi M. Atomistic simulation of nanoporous layered double hydroxide materials and their properties. II. Adsorption and diffusion. J Chem Phys 2007; 127:224701. [PMID: 18081408 DOI: 10.1063/1.2799985] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nanoporous layered double hydroxide (LDH) materials have wide applications, ranging from being good adsorbents for gases (particularly CO(2)) and liquid ions to membranes and catalysts. They also have applications in medicine, environmental remediation, and electrochemistry. Their general chemical composition is [M(1-x)(II)M(x)(III)(OH(-))(2)](x+)[X(nm)(m-)nH(2)O], where M represents a metallic cation (of valence II or III), and X(nm)(m-) is an m-valence inorganic, or heteropolyacid, or organic anion. We study diffusion and adsorption of CO(2) in a particular LDH with M(II)=Mg, M(III)=Al, and x approximately = 0.71, using an atomistic model developed based on energy minimization and molecular dynamics simulations, together with a modified form of the consistent-valence force field. The adsorption isotherms and self-diffusivity of CO(2) in the material are computed over a range of temperature, using molecular simulations. The computed diffusivities are within one order of magnitude of the measured ones at lower temperatures, while agreeing well with the data at high temperatures. The measured and computed adsorption isotherms agree at low loadings, but differ by about 25% at high loadings. Possible reasons for the differences between the computed properties and the experimental data are discussed, and a model for improving the accuracy of the computed properties is suggested. Also studied are the material's hydration and swelling properties. As water molecules are added to the pore space, the LDH material swells to some extent, with the hydration energy exhibiting interesting variations with the number of the water molecules added. The implications of the results are discussed.
Collapse
Affiliation(s)
- Nayong Kim
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| | | | | | | |
Collapse
|
12
|
Lim SY, Sahimi M, Tsotsis TT, Kim N. Molecular dynamics simulation of diffusion of gases in a carbon-nanotube-polymer composite. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:011810. [PMID: 17677487 DOI: 10.1103/physreve.76.011810] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 04/23/2007] [Indexed: 05/16/2023]
Abstract
Extensive molecular dynamics (MD) simulations were carried out to compute the solubilities and self-diffusivities of CO2 and CH4 in amorphous polyetherimide (PEI) and mixed-matrix PEI generated by inserting single-walled carbon nanotubes into the polymer. Atomistic models of PEI and its composites were generated using energy minimizations, MD simulations, and the polymer-consistent force field. Two types of polymer composite were generated by inserting (7,0) and (12,0) zigzag carbon nanotubes into the PEI structure. The morphologies of PEI and its composites were characterized by their densities, radial distribution functions, and the accessible free volumes, which were computed with probe molecules of different sizes. The distributions of the cavity volumes were computed using the Voronoi tessellation method. The computed self-diffusivities of the gases in the polymer composites are much larger than those in pure PEI. We find, however, that the increase is not due to diffusion of the gases through the nanotubes which have smooth energy surfaces and, therefore, provide fast transport paths. Instead, the MD simulations indicate a squeezing effect of the nanotubes on the polymer matrix that changes the composite polymers' free-volume distributions and makes them more sharply peaked. The presence of nanotubes also creates several cavities with large volumes that give rise to larger diffusivities in the polymer composites. This effect is due to the repulsive interactions between the polymer and the nanotubes. The solubilities of the gases in the polymer composites are also larger than those in pure PEI, hence indicating larger gas permeabilities for mixed-matrix PEI than PEI itself.
Collapse
Affiliation(s)
- Seong Y Lim
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, California 90089-1211, USA
| | | | | | | |
Collapse
|