1
|
Curotto E, Mella M. Diffusion Monte Carlo simulations of gas phase and adsorbed D 2-(H 2) n clusters. J Chem Phys 2018; 148:102315. [PMID: 29544319 DOI: 10.1063/1.5000372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have computed ground state energies and analyzed radial distributions for several gas phase and adsorbed D2(H2)n and HD(H2)n clusters. An external model potential designed to mimic ionic adsorption sites inside porous materials is used [M. Mella and E. Curotto, J. Phys. Chem. A 121, 5005 (2017)]. The isotopic substitution lowers the ground state energies by the expected amount based on the mass differences when these are compared with the energies of the pure clusters in the gas phase. A similar impact is found for adsorbed aggregates. The dissociation energy of D2 from the adsorbed clusters is always much higher than that of H2 from both pure and doped aggregates. Radial distributions of D2 and H2 are compared for both the gas phase and adsorbed species. For the gas phase clusters, two types of hydrogen-hydrogen interactions are considered: one based on the assumption that rotations and translations are adiabatically decoupled and the other based on nonisotropic four-dimensional potential. In the gas phase clusters of sufficiently large size, we find the heavier isotopomer more likely to be near the center of mass. However, there is a considerable overlap among the radial distributions of the two species. For the adsorbed clusters, we invariably find the heavy isotope located closer to the attractive interaction source than H2, and at the periphery of the aggregate, H2 molecules being substantially excluded from the interaction with the source. This finding rationalizes the dissociation energy results. For D2-(H2)n clusters with n≥12, such preference leads to the desorption of D2 from the aggregate, a phenomenon driven by the minimization of the total energy that can be obtained by reducing the confinement of (H2)12. The same happens for (H2)13, indicating that such an effect may be quite general and impact on the absorption of quantum species inside porous materials.
Collapse
Affiliation(s)
- E Curotto
- Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania 19038-3295, USA
| | - M Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy
| |
Collapse
|
2
|
Sebastianelli F, Xu M, Bačić Z, Lawler R, Turro NJ. Hydrogen Molecules inside Fullerene C70: Quantum Dynamics, Energetics, Maximum Occupancy, And Comparison with C60. J Am Chem Soc 2010; 132:9826-32. [DOI: 10.1021/ja103062g] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francesco Sebastianelli
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China, Department of Chemistry, New York University, New York, New York 10003, Department of Chemistry, Brown University, Providence, Rhode Island 02912, and Department of Chemistry, Columbia University, New York, New York 10027
| | - Minzhong Xu
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China, Department of Chemistry, New York University, New York, New York 10003, Department of Chemistry, Brown University, Providence, Rhode Island 02912, and Department of Chemistry, Columbia University, New York, New York 10027
| | - Zlatko Bačić
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China, Department of Chemistry, New York University, New York, New York 10003, Department of Chemistry, Brown University, Providence, Rhode Island 02912, and Department of Chemistry, Columbia University, New York, New York 10027
| | - Ronald Lawler
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China, Department of Chemistry, New York University, New York, New York 10003, Department of Chemistry, Brown University, Providence, Rhode Island 02912, and Department of Chemistry, Columbia University, New York, New York 10027
| | - Nicholas J. Turro
- State Key Laboratory of Precision Spectroscopy and Department of Physics, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China, Department of Chemistry, New York University, New York, New York 10003, Department of Chemistry, Brown University, Providence, Rhode Island 02912, and Department of Chemistry, Columbia University, New York, New York 10027
| |
Collapse
|
3
|
Asare E, Musah AR, Curotto E, Freeman DL, Doll JD. The thermodynamic and ground state properties of the TIP4P water octamer. J Chem Phys 2009; 131:184508. [DOI: 10.1063/1.3259047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
4
|
Sebastianelli F, Xu M, Bačić Z. Quantum dynamics of small H2 and D2 clusters in the large cage of structure II clathrate hydrate: Energetics, occupancy, and vibrationally averaged cluster structures. J Chem Phys 2008; 129:244706. [DOI: 10.1063/1.3049781] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Luan T, Curotto E, Mella M. Importance sampling for quantum Monte Carlo in manifolds: Addressing the time scale problem in simulations of molecular aggregates. J Chem Phys 2008; 128:164102. [DOI: 10.1063/1.2898539] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Szalewicz K. Interplay between theory and experiment in investigations of molecules embedded in superfluid helium nanodroplets†. INT REV PHYS CHEM 2008. [DOI: 10.1080/01442350801933485] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Sebastianelli F, Xu M, Kanan DK, Bacić Z. One and Two Hydrogen Molecules in the Large Cage of the Structure II Clathrate Hydrate: Quantum Translation−Rotation Dynamics Close to the Cage Wall. J Phys Chem A 2007; 111:6115-21. [PMID: 17583332 DOI: 10.1021/jp073259d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have performed a rigorous theoretical study of the quantum translation-rotation (T-R) dynamics of one and two H2 and D2 molecules confined inside the large hexakaidecahedral (5(12)6(4)) cage of the sII clathrate hydrate. For a single encapsulated H2 and D2 molecule, accurate quantum five-dimensional calculations of the T-R energy levels and wave functions are performed that include explicitly, as fully coupled, all three translational and the two rotational degrees of freedom of the hydrogen molecule, while the cage is taken to be rigid. In addition, the ground-state properties, energetics, and spatial distribution of one and two p-H2 and o-D2 molecules in the large cage are calculated rigorously using the diffusion Monte Carlo method. These calculations reveal that the low-energy T-R dynamics of hydrogen molecules in the large cage are qualitatively different from that inside the small cage, studied by us recently. This is caused by the following: (i) The large cage has a cavity whose diameter is about twice that of the small cage for the hydrogen molecule. (ii) In the small cage, the potential energy surface (PES) for H2 is essentially flat in the central region, while in the large cage the PES has a prominent maximum at the cage center, whose height exceeds the T-R zero-point energy of H2/D2. As a result, the guest molecule is excluded from the central part of the large cage, its wave function localized around the off-center global minimum. Peculiar quantum dynamics of the hydrogen molecule squeezed between the central maximum and the cage wall manifests in the excited T-R states whose energies and wave functions differ greatly from those for the small cage. Moreover, they are sensitive to the variations in the hydrogen-bonding topology, which modulate the corrugation of the cage wall.
Collapse
|
8
|
Avilés MW, Curotto E. Stereographic projection diffusion monte carlo (SPDMC) algorithms for molecular condensed matter. J Phys Chem A 2007; 111:2610-8. [PMID: 17388350 DOI: 10.1021/jp066827i] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We develop and test three algorithms for diffusion Monte Carlo simulations in non-Euclidean manifolds. The methods are based on the construction of the "velocity" distribution by rejection techniques and are capable of functioning in a broad class of non-Euclidean spaces generated by holonomic constraints. The formulation of the propagator for non-Euclidean manifolds avoids the use of Lagrange multipliers; it is derived instead from the Feynman quantization in manifolds proposed by DeWitt. The manifolds are mapped onto Rd by using stereographic projection coordinates. Numerical tests are conducted for the particle in a ring of unit radius subjected to a sinusoidal potential, for the electron in the field of an infinitely massive proton, and for a water molecule modeled as an asymmetric top subjected to an external field.
Collapse
Affiliation(s)
- Michael W Avilés
- Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania 19038-3295, USA
| | | |
Collapse
|
9
|
Sebastianelli F, Elmatad YS, Jiang H, Bacić Z. HF in clusters of molecular hydrogen: II. Quantum solvation by H2 isotopomers, cluster rigidity, and comparison with CO-doped parahydrogen clusters. J Chem Phys 2006; 125:164313. [PMID: 17092079 DOI: 10.1063/1.2363989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a comprehensive theoretical study of the quantum solvation of the HF molecule by small clusters of the H2 isotopomers, p-H2, HD, and o-D2, with up to 13 hydrogen solvent molecules. This complements our earlier work on the HF-doped parahydrogen clusters [H. Jiang and Z. Bacic, J. Chem. Phys. 122, 244306 (2005)]. The ground-state properties of the clusters are calculated exactly using the diffusion Monte Carlo method. Detailed information is obtained regarding the size and isotopomer dependences of the energetics, vibrationally averaged structures, and their rigidity. The rigidity of these clusters is investigated further by analyzing the distributions of their principal moments of inertia from the diffusion Monte Carlo simulations. The clusters are found to be rather rigid, especially when compared with the pure parahydrogen clusters of the same size. Extensive comparison is made with the quantum Monte Carlo results for the CO-doped parahydrogen clusters and significant differences are observed in the size evolution of certain properties, notably the chemical potential.
Collapse
|
10
|
Choi MY, Douberly GE, Falconer TM, Lewis WK, Lindsay CM, Merritt JM, Stiles PL, Miller RE. Infrared spectroscopy of helium nanodroplets: novel methods for physics and chemistry. INT REV PHYS CHEM 2006. [DOI: 10.1080/01442350600625092] [Citation(s) in RCA: 327] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Jiang H, Sarsa A, Murdachaew G, Szalewicz K, Bacić Z. (HCl)2 and (HF)2 in small helium clusters: Quantum solvation of hydrogen-bonded dimers. J Chem Phys 2005; 123:224313. [PMID: 16375482 DOI: 10.1063/1.2136358] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a rigorous theoretical study of the solvation of (HCl)(2) and (HF)(2) by small ((4)He)(n) clusters, with n=1-14 and 30. Pairwise-additive potential-energy surfaces of He(n)(HX)(2) (X=Cl and F) clusters are constructed from highly accurate four-dimensional (rigid monomer) HX-HX and two-dimensional (rigid monomer) He-HX potentials and a one-dimensional He-He potential. The minimum-energy geometries of these clusters, for n=1-6 in the case of (HCl)(2) and n=1-5 for (HF)(2), correspond to the He atoms in a ring perpendicular to and bisecting the HX-HX axis. The quantum-mechanical ground-state energies and vibrationally averaged structures of He(n)(HCl)(2) (n=1-14 and 30) and He(n)(HF)(2) (n=1-10) clusters are calculated exactly using the diffusion Monte Carlo (DMC) method. In addition, the interchange-tunneling splittings of He(n)(HCl)(2) clusters with n=1-14 are determined using the fixed-node DMC approach, which was employed by us previously to calculate the tunneling splittings for He(n)(HF)(2) clusters, n=1-10 [A. Sarsa et al., Phys. Rev. Lett. 88, 123401 (2002)]. The vibrationally averaged structures of He(n)(HX)(2) clusters with n=1-6 for (HCl)(2) and n=1-5 for (HF)(2) have the helium density localized in an effectively one-dimensional ring, or doughnut, perpendicular to and at the midpoint of the HX-HX axis. The rigidity of the solvent ring varies with n and reaches its maximum for the cluster size at which the ring is filled, n=6 and n=5 for (HCl)(2) and (HF)(2), respectively. Once the equatorial ring is full, the helium density spreads along the HX-HX axis, eventually solvating the entire HX dimer. The interchange-tunneling splitting of He(n)(HCl)(2) clusters hardly varies at all over the cluster size range considered, n=1-14, and is virtually identical to that of the free HCl dimer. This absence of the solvent effect is in sharp contrast with our earlier results for He(n)(HF)(2) clusters, which show a approximately 30% reduction of the tunneling splitting for n=4. A tentative explanation for this difference is proposed. The implications of our results for the interchange-tunneling dynamics of (HCl)(2) in helium nanodroplets are discussed.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|