1
|
Dahl M, Holderer O, Haverkamp R, Hoffmann I, Wood K, Hübner J, Hellweg T, Wellert S. Confined bicontinuous microemulsions: nanoscale dynamics of the surfactant film. SOFT MATTER 2024; 20:8692-8701. [PMID: 39444350 DOI: 10.1039/d4sm00925h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A confined bicontinuous C10E4-D2O-n-octane microemulsion is studied using neutron spin echo spectroscopy (NSE). Controlled pore glasses serve as confining matrices with pore diameters ranging from 24 to 112 nm. Firstly, the microemulsion in bulk is investigated by NSE and dynamic light scattering, which allows the determination of the unperturbed collective dynamics as well as the observation of the undulation of the surfactant film. In confinement, it is observed that the collective modes are drastically slowed down in all investigated pore sizes. The undulations of the surfactant film in the largest pores are found to be comparable to those of the bulk and decrease with decreasing pore diameter. Fitting procedures of the intermediate scattering function revealed that the long wavelength undulations are cut off from the spectrum of fluctuation modes due to the interactions with the pore walls.
Collapse
Affiliation(s)
- Margarethe Dahl
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany.
| | - Olaf Holderer
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany
| | - René Haverkamp
- Department of Chemistry, Physical and Biophysical Chemistry Group, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Ingo Hoffmann
- Institut Laue-Langevin, 71 avenue des Martyrs, F-38042 Grenoble, France
| | - Kathleen Wood
- Australian Nuclear and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Jessica Hübner
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany.
| | - Thomas Hellweg
- Department of Chemistry, Physical and Biophysical Chemistry Group, University of Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Stefan Wellert
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
2
|
Dahl M, Gommes CJ, Haverkamp R, Wood K, Prévost S, Schröer P, Omasta T, Stank TJ, Hellweg T, Wellert S. Confinement induced change of microemulsion phase structure in controlled pore glass (CPG) monoliths. RSC Adv 2024; 14:28272-28284. [PMID: 39239284 PMCID: PMC11372560 DOI: 10.1039/d4ra04090b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
We use small-angle neutron scattering (SANS) to investigate the structure and phase behavior of a complex fluid within meso- and macroporous matrices. Specifically, bicontinuous microemulsions of the temperature-dependent ternary system C10E4-water-n-octane are investigated in controlled pore glass (CPG) membranes with nominal pore diameters of 10 nm, 20 nm, 50 nm, and 100 nm. The scattering data were analyzed using the Teubner-Strey model and a multiphase generalization of clipped Gaussian-field models. The analysis indicates changes in the phase structure of the bicontinuous microemulsion in the membranes with the smallest pores. This is attributed to a shift in the ternary phase diagram toward a three-phase structure at lower surfactant concentrations. This effect is likely related to a larger internal surface area in the membranes with smaller pores, which enhances surfactant adsorption onto the pore walls.
Collapse
Affiliation(s)
- Margarethe Dahl
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Cedric J Gommes
- Department of Chemical Engineering, University of Liège B6 A 3 Allée du 6 Août B-4000 Liège Belgium
| | - René Haverkamp
- Department of Physical and Biophysical Chemistry, University of Bielefeld, Universitätsstraße 25 33615 Bielefeld Germany
| | - Kathleen Wood
- Australian Nuclear and Technology Organisation New Illawarra Rd Lucas Heights NSW 2234 Australia
| | - Sylvain Prévost
- Institut Laue-Langevin 71 Avenue des Martyrs F-38042 Grenoble France
| | - Pierre Schröer
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Tomáš Omasta
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| | - Tim Julian Stank
- Department of Physical and Biophysical Chemistry, University of Bielefeld, Universitätsstraße 25 33615 Bielefeld Germany
| | - Thomas Hellweg
- Department of Physical and Biophysical Chemistry, University of Bielefeld, Universitätsstraße 25 33615 Bielefeld Germany
| | - Stefan Wellert
- Department of Chemistry, Technische Universität Berlin Straße des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
3
|
Schoen M, Evans R, Gubbins KE, Rabe JP, Thommes M, Jackson G. Gerhard Findenegg (1938–2019). Mol Phys 2021. [DOI: 10.1080/00268976.2021.1953272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Martin Schoen
- Technische Universität Berlin, Fakultät für Mathematik und Naturwissenschaften, Berlin, Germany
| | - Robert Evans
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK
| | - Keith E. Gubbins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jürgen P. Rabe
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Thommes
- Department of Chemical and Bioeengineering, Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - George Jackson
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
4
|
Barsotti E, Saraji S, Tan SP, Piri M. Capillary Condensation of Binary and Ternary Mixtures of n-Pentane-Isopentane-CO 2 in Nanopores: An Experimental Study on the Effects of Composition and Equilibrium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1967-1980. [PMID: 29360363 DOI: 10.1021/acs.langmuir.7b04134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Confinement in nanopores can significantly impact the chemical and physical behavior of fluids. While some quantitative understanding is available for how pure fluids behave in nanopores, there is little such insight for mixtures. This study aims to shed light on how nanoporosity impacts the phase behavior and composition of confined mixtures through comparison of the effects of static and dynamic equilibrium on experimentally measured isotherms and chromatographic analysis of the experimental fluids. To this end, a novel gravimetric apparatus is introduced and validated. Unlike apparatuses that have been previously used to study the confinement-induced phase behavior of fluids, this apparatus employs a gravimetric technique capable of discerning phase transitions in a wide variety of nanoporous media under both static and dynamic conditions. The apparatus was successfully validated against data in the literature for pure carbon dioxide and n-pentane. Then, isotherms were generated for binary mixtures of carbon dioxide and n-pentane using static and flow-through methods. Finally, two ternary mixtures of carbon dioxide, n-pentane, and isopentane were measured using the static method. While the equilibrium time was found important for determination of confined phase transitions, flow rate in the dynamic method was not found to affect the confined phase behavior. For all measurements, the results indicate qualitative transferability of the bulk phase behavior to the confined fluid.
Collapse
Affiliation(s)
- Elizabeth Barsotti
- Department of Petroleum Engineering, University of Wyoming , Laramie, Wyoming 82071, United States
| | - Soheil Saraji
- Department of Petroleum Engineering, University of Wyoming , Laramie, Wyoming 82071, United States
| | - Sugata P Tan
- Department of Petroleum Engineering, University of Wyoming , Laramie, Wyoming 82071, United States
| | - Mohammad Piri
- Department of Petroleum Engineering, University of Wyoming , Laramie, Wyoming 82071, United States
| |
Collapse
|
5
|
Prado JR, Vyazovkin S. Phase separation of triethylamine and water in native and organically modified silica nanopores. J Chem Phys 2017; 147:114508. [PMID: 28938834 DOI: 10.1063/1.5003906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A mixture of triethylamine and water is a lower critical solution temperature system that demixes (separates into individual phases) on heating. Differential scanning calorimetry has been applied to study the process of demixing in native and organically modified silica nanopores whose size varied from 4 to 30 nm. It has been found that in both types of nanopores, the temperature and enthalpy of demixing decrease significantly with decreasing the pore size. Isoconversional kinetic analysis has been utilized to determine the activation energy and pre-exponential factor of the process. It has been demonstrated that the depression of the transition temperature upon nanoconfinement is associated with acceleration of the process due to lowering of the activation energy. Nanoconfinement has also been found to lower the pre-exponential factor of the process that has been linked to a decrease in the molecular mobility.
Collapse
Affiliation(s)
- J Rachel Prado
- Department of Chemistry, University of Alabama at Birmingham, 901 S. 14th Street, Birmingham, Alabama 35294, USA
| | - Sergey Vyazovkin
- Department of Chemistry, University of Alabama at Birmingham, 901 S. 14th Street, Birmingham, Alabama 35294, USA
| |
Collapse
|
6
|
Całus S, Jabłońska B, Busch M, Rau D, Huber P, Kityk AV. Paranematic-to-nematic ordering of a binary mixture of rodlike liquid crystals confined in cylindrical nanochannels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062501. [PMID: 25019799 DOI: 10.1103/physreve.89.062501] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Indexed: 06/03/2023]
Abstract
We explore the optical birefringence of the nematic binary mixtures 6CB_{1-x}7CB_{x} (0 ≤ x ≤ 1) embedded into parallel-aligned nanochannels of mesoporous alumina and silica membranes for channel radii of 3.4 ≤ R ≤ 21.0 nm. The results are compared with the bulk behavior and analyzed with a Landau-de Gennes model. Depending on the channel radius the nematic ordering in the cylindrical nanochannels evolves either discontinuously (subcritical regime, nematic ordering field σ<1/2) or continuously (overcritical regime, σ>1/2), but in both cases with a characteristic paranematic precursor behavior. The strength of the ordering field, imposed by the channel walls, and the magnitude of quenched disorder varies linearly with the mole fraction x and scales inversely proportionally with R for channel radii larger than 4 nm. The critical pore radius, R_{c}, separating a continuous from a discontinuous paranematic-to-nematic evolution varies linearly with x and differs negligibly between the silica and alumina membranes. We find no hints of preferred adsorption of one species at the channels walls. By contrast, a linear variation of the nematic-to-paranematic transition point T_{PN} and of the nematic ordering field σ versus x suggests that the binary mixtures of cyanobiphenyls 6CB and 7CB keep their homogeneous bulk stoichiometry also in nanoconfinement, at least for channel diameters larger than ∼7 nm.
Collapse
Affiliation(s)
- Sylwia Całus
- Faculty of Electrical Engineering, Czestochowa University of Technology, 42-200 Czestochowa, Poland
| | - Beata Jabłońska
- Faculty of Environmental Engineering and Biotechnology, Czestochowa University of Technology, 42-200 Czestochowa, Poland
| | - Mark Busch
- Materials Physics and Technology, Hamburg University of Technology (TUHH), D-21073 Hamburg-Harburg, Germany
| | - Daniel Rau
- FR 7.2 Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Patrick Huber
- Materials Physics and Technology, Hamburg University of Technology (TUHH), D-21073 Hamburg-Harburg, Germany and FR 7.2 Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Andriy V Kityk
- Faculty of Electrical Engineering, Czestochowa University of Technology, 42-200 Czestochowa, Poland
| |
Collapse
|
7
|
Gommes CJ. Three-dimensional reconstruction of liquid phases in disordered mesopores usingin situsmall-angle scattering. J Appl Crystallogr 2013. [DOI: 10.1107/s0021889813003816] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Small-angle scattering of X-rays (SAXS) or neutrons is one of the few experimental methods currently available for thein situanalysis of phenomena in mesoporous materials at the mesoscopic scale. In the case of disordered mesoporous materials, however, the main difficulty of the method lies in the data analysis. A stochastic model is presented, which enables one to reconstruct the three-dimensional nanostructure of liquids confined in disordered mesopores starting from small-angle scattering data. This so-called plurigaussian model is a multi-phase generalization of clipped Gaussian random field models. Its potential is illustrated through the synchrotron SAXS analysis of a gel permeated with a critical nitrobenzene/hexane solution that is progressively cooled below its consolute temperature. The reconstruction brings to light a wetting transition whereby the nanostructure of the pore-filling liquids passes from wetting layers that uniformly cover the solid phase of the gel to plugs that locally occlude the pores. Using the plurigaussian model, the dewetting phenomenon is analyzed quantitatively at the nanometre scale in terms of changing specific interface areas, contact angle and specific length of the triple line.
Collapse
|
8
|
Lefort R, Duvail JL, Corre T, Zhao Y, Morineau D. Phase separation of a binary liquid in anodic aluminium oxide templates: a structural study by small angle neutron scattering. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2011; 34:71. [PMID: 21779985 DOI: 10.1140/epje/i2011-11071-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
The radial nanostructure of the binary liquid triethylamine/water confined in 60 nm diameter independent cylindrical pores of anodic aluminium oxide membranes is studied by small angle neutron scattering. It is shown that composition inhomogeneities are present in the confined mixtures well below the bulk critical point. An analysis of the neutron scattering form factor reveals the existence of an adsorbed water layer of a few nanometers at the liquid/alumina interface, coexisting with a TEA-rich phase in the core.
Collapse
Affiliation(s)
- R Lefort
- Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, Rennes, France.
| | | | | | | | | |
Collapse
|
9
|
Structure and Dynamics of Fluids in Microporous and Mesoporous Earth and Engineered Materials. NEUTRON APPLICATIONS IN EARTH, ENERGY AND ENVIRONMENTAL SCIENCES 2009. [DOI: 10.1007/978-0-387-09416-8_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Kittaka S, Kuranishi M, Ishimaru S, Umahara O. Phase separation of acetonitrile-water mixtures and minimizing of ice crystallites from there in confinement of MCM-41. J Chem Phys 2007; 126:091103. [PMID: 17362095 DOI: 10.1063/1.2712432] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The effect of confinement of an acetonitrile-water mixture, whose correlation length was comparable to the pore size of the mesopores of MCM-41 (d=2.4-3.6 nm), on the phase changes was studied. Used techniques were low temperature differential scanning calorimetry and Fourier transform infrared spectroscopy, where the phase separation, lowering of the freezing and melting temperatures, and phase transitions of the acetonitrile were detected. The latter occurred in the mesopores at temperatures similar to that of the pure liquid, while the melting temperature of the water in the mesopores<3.1 nm decreased markedly at higher acetonitrile contents, suggesting a marked lowering of ice crystallite size.
Collapse
Affiliation(s)
- Shigeharu Kittaka
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005, Japan.
| | | | | | | |
Collapse
|