1
|
Davis MC, Garrett NR, Fortenberry RC. F12+EOM Quartic Force Fields for Rovibrational Predictions of Electronically Excited States. J Phys Chem A 2023. [PMID: 37235692 DOI: 10.1021/acs.jpca.3c00072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Quartic force fields (QFFs) constructed using a sum of ground-state CCSD(T)-F12b energies with EOM-CCSD excitation energies are proposed for computation of spectroscopic properties of electronically excited states. This is dubbed the F12+EOM approach and is shown to provide similar accuracy to previous methodologies at lower computational cost. Using explicitly correlated F12 approaches instead of canonical CCSD(T), as in the corresponding (T)+EOM approach, allows for 70-fold improvement in computational time. The mean percent difference between the two methods for anharmonic vibrational frequencies is only 0.10%. A similar approach is also developed herein which accounts for core correlation and scalar relativistic effects, named F12cCR+EOM. The F12+EOM and F12cCR+EOM approaches both match to within 2.5% mean absolute error of experimental fundamental frequencies. These new methods should help in clarifying astronomical spectra by assigning features to vibronic and vibrational transitions of small astromolecules when such data are not available experimentally.
Collapse
Affiliation(s)
- Megan C Davis
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Noah R Garrett
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
2
|
Davis MC, Fortenberry RC. (T)+EOM Quartic Force Fields for Theoretical Vibrational Spectroscopy of Electronically Excited States. J Chem Theory Comput 2021; 17:4374-4382. [PMID: 34165980 DOI: 10.1021/acs.jctc.1c00307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(T)+EOM quartic force fields (QFFs) are proposed for ab initio rovibrational properties of electronically excited states of small molecules. The (T)+EOM method is a simple treatment of the potential surface of the excited state using a composite energy from the CCSD(T) energy for the ground-state configuration and the EOM-CCSD excitation energy for the target state. The method is benchmarked with two open-shell species, HOO and HNF, and two closed-shell species, HNO and HCF. A (T)+EOM QFF with a complete basis set extrapolation (C) and corrections for core correlation (cC) and scalar relativity (R), dubbed (T)+EOM/CcCR, achieves a mean absolute error (MAE) as low as 1.6 cm-1 for the à 2A' state of HOO versus an established benchmark QFF with CCSD(T)-F12b/cc-pVTZ-F12 (F12-TZ) for this variationally accessible electronically excited state. The MAE for anharmonic frequencies for (T)+EOM/CcCR versus F12-TZ for HNF is 7.5 cm-1. The closed-shell species are compared directly with the experiment, where a simpler (T)+EOM QFF using the aug-cc-pVTZ basis set compares more favorably than the more costly (T)+EOM/CcCR, suggesting a possible influence of decreasing accuracy with basis set size. Scans along internal coordinates are also provided which show reasonable modeling of the potential surface by (T)+EOM compared to benchmark QFFs computed for variationally accessible electronic states. The agreement between (T)+EOM/CcCR with F12-TZ and CcCR benchmarks is also shown to be quite accurate for rotational constants and geometries, with an MAE of 0.008 MHz for the rotational constants of (T)+EOM/CcCR versus CcCR for à 2A' HOO and agreement within 0.003 Šfor bond lengths.
Collapse
Affiliation(s)
- Megan C Davis
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, United States
| |
Collapse
|
3
|
Doney KD, Kortyna A, Nesbitt DJ. High-resolution infrared spectroscopy of HCF in the CH stretch region. J Chem Phys 2020; 152:014305. [PMID: 31914765 DOI: 10.1063/1.5133397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present the results from a high-resolution infrared study of jet-cooled singlet monofluorocarbene (HCF) in the CH stretch region near 2600 cm-1. Absorption signals are recorded using near quantum shot noise limited laser absorption methods. The fully resolved absorption spectra of the CH stretch (ν1) fundamental band and a partial progression of transitions of the HCF bend plus CF stretch (ν2 + ν3) combination band are observed and show clear evidence of a strong rovibrational coupling between the ν1Ka ' = 2 and ν2 + ν3Ka ' = 3 manifolds, including the observation of "dark state" transitions. A detailed perturbation analysis of a c-type Coriolis interaction is carried out for these two coupled vibrational states, providing experimental determination of precise rovibrational constants. A combined ground state combination difference fit of the transitions to the ν1 and ν2 + ν3 vibrational states in this study with previously reported LIF Ã(0,0,0) ← X̃(0,0,0) data has been done to increase the accuracy of the ground state rotational constants [M. Kakimoto et al., J. Mol. Spec. 88, 300-310 (1981)]. Moreover, we report, for the first time, hot band (ν1 + ν3 ← ν3) transitions due to vibrationally excited HCF in the CF stretch mode, ν3. The high-resolution results for all vibrational frequencies and rotational constants are in good agreement with and significantly extend the analysis of the rovibrational manifold of HCF. The present ground state and ν3 spectroscopic parameters now permit improved predictions for pure rotational and ν3 fundamental transitions to aid spectral searches for HCF in the laboratory and the interstellar medium.
Collapse
Affiliation(s)
- Kirstin D Doney
- JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309-0440, USA
| | - Andrew Kortyna
- JILA, University of Colorado, Boulder, Colorado 80309-0440, USA
| | - David J Nesbitt
- JILA, University of Colorado, Boulder, Colorado 80309-0440, USA
| |
Collapse
|
4
|
Sun E, Ren T, Shan S, Liu Q, Xu H, Yan B. Multireference configuration interaction study of dichlorocarbene. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.07.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Nyambo S, Karshenas C, Reid SA, Lolur P, Dawes R. Towards a global model of spin-orbit coupling in the halocarbenes. J Chem Phys 2015; 142:214304. [DOI: 10.1063/1.4921466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Silver Nyambo
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, USA
| | - Cyrus Karshenas
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, USA
| | - Scott A. Reid
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, USA
| | - Phalgun Lolur
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| |
Collapse
|
6
|
Sun E, Lv H, Shi D, Wei C, Xu H, Yan B. All-Electron Relativistic Multireference Configuration Interaction Investigation of Fluoroiodo Carbene. J Phys Chem A 2014; 118:2447-52. [DOI: 10.1021/jp411967r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erping Sun
- Institute of Atomic and Molecular
Physics, Jilin University, Changchun 130012, China
| | - Hang Lv
- Institute of Atomic and Molecular
Physics, Jilin University, Changchun 130012, China
| | - Dandan Shi
- Institute of Atomic and Molecular
Physics, Jilin University, Changchun 130012, China
| | - Changli Wei
- Institute of Atomic and Molecular
Physics, Jilin University, Changchun 130012, China
| | - Haifeng Xu
- Institute of Atomic and Molecular
Physics, Jilin University, Changchun 130012, China
| | - Bing Yan
- Institute of Atomic and Molecular
Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Richmond C, Tao C, Mukarakate C, Dawes R, Brown EC, Kable SH, Reid SA. Optical-optical double resonance spectroscopy of the quasi-linear S2 state of CHF and CDF. II. Predissociation and mode-specific dynamics. J Chem Phys 2011; 135:104316. [DOI: 10.1063/1.3633772] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Wu YJ, Chen HF, Chou SL, Lin MY, Cheng BM. Vacuum-ultraviolet photolysis of H3CF in solid neon: Infrared spectra of HCF and CF+. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.07.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Kable SH, Reid SA, Sears TJ. The halocarbenes: model systems for understanding the spectroscopy, dynamics and chemistry of carbenes. INT REV PHYS CHEM 2009. [DOI: 10.1080/01442350903087792] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Shin SK, Dagdigian PJ. Further investigation of the photodissociation dynamics of dichlorocarbene near 248 nm. J Chem Phys 2008; 128:154322. [PMID: 18433224 DOI: 10.1063/1.2908236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A further investigation of the 248 nm photodissociation of CCl(2), which expands upon our original study of this process [S. K. Shin and P. J. Dagdigian, Phys. Chem. Chem. Phys. 8, 3446 (2006)], is presented. The CCl(2) parent molecule and the CCl photofragment were detected by laser fluorescence excitation in a molecular beam experiment. From the dependence of the CCl(2) signals on the photolysis laser fluence, attenuation cross sections of the 0(0), 1(1), and 2(1) vibrational levels were determined; the cross sections for the excited vibrational levels were found to be significantly smaller than those for the ground vibrational level. The previously observed fragment CCl bimodal rotational state distribution was found to arise from the photolysis of more than one parent molecule. At low CHCl(3) mole fractions in the gas supplied to the pyrolysis beam source, it was concluded that CCl(2) is the photolysis precursor for both low-J and high-J CCl fragments. On the basis of the dependence of the CCl signals on the photolysis laser fluence, ground and vibrationally excited CCl(2), respectively, were assigned as the precursors to these two classes of fragments. The photofragment excitation spectra for low-J and high-J CCl fragments from the photolysis of CCl(2) were recorded in the wavelength range around 248 nm; both were found to be structureless. The 248 nm photodissociation dynamics of CCl(2) is discussed in light of our experimental observations and quantum chemical calculations of the CCl(2) excited electronic states.
Collapse
Affiliation(s)
- Seung Keun Shin
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218-2685, USA
| | | |
Collapse
|
11
|
Shin SK, Dagdigian PJ. Formation of the CH fragment in the 193nm photodissociation of CHCl. J Chem Phys 2008; 128:064309. [DOI: 10.1063/1.2837664] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Tao C, Mukarakate C, Reid SA. Single vibronic level emission spectroscopy and fluorescence lifetime of the B∼1A″→X∼1A′ system of CuOH and CuOD. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.10.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Lee EPF, Dyke JM, Mok DKW, Chow WK, Chau FT. Ab initiocalculations on SnCl2 and Franck-Condon factor simulations of its ã-X̃ and B̃-X̃ absorption and single-vibronic-level emission spectra. J Chem Phys 2007; 127:024308. [PMID: 17640129 DOI: 10.1063/1.2749508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Minimum-energy geometries, harmonic vibrational frequencies, and relative electronic energies of some low-lying singlet and triplet electronic states of stannous dichloride, SnCl(2), have been computed employing the complete-active-space self-consistent-field/multireference configuration interaction (CASSCF/MRCI) and/or restricted-spin coupled-cluster single-double plus perturbative triple excitations [RCCSD(T)] methods. The small core relativistic effective core potential, ECP28MDF, was used for Sn in these calculations, together with valence basis sets of up to augmented correlation-consistent polarized-valence quintuple-zeta (aug-cc-pV5Z) quality. Effects of outer core electron correlation on computed geometrical parameters have been investigated, and contributions of off-diagonal spin-orbit interaction to relative electronic energies have been calculated. In addition, RCCSD(T) or CASSCF/MRCI potential energy functions of the X(1)A(1), ã(3)B(1), and B(1)B(1) states of SnCl(2) have been computed and used to calculate anharmonic vibrational wave functions of these three electronic states. Franck-Condon factors between the X (1)A(1) state, and the ã (3)B(1) and B (1)B(1) states of SnCl(2), which include anharmonicity and Duschinsky rotation, were then computed, and used to simulate the ã-X and B-X absorption and corresponding single-vibronic-level emission spectra of SnCl(2) which are yet to be recorded. It is anticipated that these simulated spectra will assist spectroscopic identification of gaseous SnCl(2) in the laboratory and/or will be valuable in in situ monitoring of SnCl(2) in the chemical vapor deposition of SnO(2) thin films in the semiconductor gas sensor industry by laser induced fluorescence and/or ultraviolet absorption spectroscopy, when a chloride-containing tin compound, such as tin dichloride or dimethyldichlorotin, is used as the tin precursor.
Collapse
Affiliation(s)
- Edmond P F Lee
- Department of Building Services Engineering, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | | | | | | | | |
Collapse
|
14
|
Shin SK, Dagdigian PJ. Internal state distribution of the CF fragment from the 193nm photodissociation of CFCl and CFBr. J Chem Phys 2007; 126:134302. [PMID: 17430027 DOI: 10.1063/1.2713398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The dynamics of the 193 nm photodissociation of the CFCl and CFBr molecules have been investigated in a molecular beam experiment. The CFCl and CFBr parent molecules were generated by pyrolysis of CHFCl2 and CFBr3, respectively, and the CFCl and the CF photofragment were detected by laser fluorescence excitation. The 193 nm attenuation cross section of CFCl was determined from the reduction of the CF photofragment signal as a function of the photolysis laser fluence. The internal state distribution was derived from the analysis of laser fluorescence excitation spectra in the A 2Sigma+-X 2Pi band system. A very low degree of rotational excitation, with essentially equal A' and A" Lambda-doublet populations, and no vibrational excitation were found in the CF photofragment. The energy available to the photofragments is hence predominantly released as translational energy. The CF internal state distribution is consistent with the dissociation of a linear intermediate state. Considerations of CFCl electronic states suggest that a bent Rydberg state is initially excited.
Collapse
Affiliation(s)
- Seung Keun Shin
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | | |
Collapse
|
15
|
Tao C, Deselnicu M, Mukarakate C, Reid SA. Electronic spectroscopy of the ÃA″1↔X̃A′1 system of CDBr. J Chem Phys 2006; 125:094305. [PMID: 16965078 DOI: 10.1063/1.2348639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report fluorescence excitation and single vibronic level emission spectra of jet-cooled CDBr in the 450-750 nm region. A total of 32 cold bands involving the pure bending levels 2(0)n with n=3-10 and combination bands 2(0)n3(0)1 (n=2-10), 2(0)n3(0)2 (n=2-9), 1(0)(1)2(0)n (n=7-10), and 1(0)(1)2(0)n3(0)(1) (n=6,8-9) in the A1A" <-- X1A' system of this carbene were observed; most of these are reported and/or rotationally analyzed here for the first time. Rotational analysis yielded band origins and effective (B) rotational constants for both bromine isotopomers (CD79Br and CD81Br). The derived A1A" vibrational intervals are combined with results of Yu et al. [J. Chem. Phys. 115, 5433 (2001)] to derive barriers to linearity for the 2n, 2n3(1), and 2n3(2) progressions. The A1A" state C-D stretching frequency (2350 cm(-1)) is determined for the first time, in excellent agreement with theory, as are the 79Br-81Br isotope splittings in the excited state. Our emission spectra probe the vibrational structure of the X1A' and a3A" states up to approximately 9000 cm(-1) above the vibrationless level of the X1A' state; the total number of levels observed is around twice that previously reported. Unlike CHBr, where even the lowest bending levels are perturbed by spin-orbit interaction with the triplet origin, the term energy of every level save one below 3000 cm(-1) in CDBr is reproduced by a Dunham expansion to within a standard deviation of 1 cm(-1), and a spin-orbit coupling matrix element of approximately 330 cm(-1) is derived from a deperturbation analysis of the triplet origin. The multireference configuration interaction (MRCI) calculations of Yu et al. [J. Chem. Phys. 115, 5433 (2001)] well reproduce triplet perturbations in the pure bending manifold, and globally, the vibrational frequencies of X1A', a3A", and A1A" are in excellent agreement with theoretical predictions.
Collapse
Affiliation(s)
- Chong Tao
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | | | | | | |
Collapse
|
16
|
Tao C, Mukarakate C, Reid SA. Fluorescence excitation and single vibronic level emission spectroscopy of the ÃA″1←X̃A′1 system of CHCl. J Chem Phys 2006; 124:224314. [PMID: 16784281 DOI: 10.1063/1.2204916] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We report new fluorescence excitation and single vibronic level emission spectra of the A (1)A(")<-->X (1)A(') system of CHCl. A total of 21 cold bands involving the pure bending levels 2(0) (n) with n=1-7 and combination bands 2(0) (n)3(0) (1)(n=4-7), 2(0) (n)3(0) (2)(n=4-6), 1(0) (1)2(0) (n)(n=5-7), 1(0) (1)2(0) (n)3(0) (1)(n=4-6), and 1(0) (1)2(0) (n)3(0) (2)(n=4) were observed in the 450-750 nm region; around half of these are reported and/or rotationally analyzed here for the first time. Spectra were measured under jet-cooled conditions using a pulsed discharge source, and rotational analysis typically yielded band origins and rotational constants for both isotopomers (CH(35)Cl,CH(37)Cl). The derived A (1)A(") vibrational intervals are combined with results of Chang and Sears to determine the excited state barrier to linearity [V(b)=1920(50) cm(-1)]. The A (1)A(") state C-H stretching frequency is determined here for the first time, in excellent agreement with ab initio predictions. Following our observation of new bands in this system, we obtained the single vibronic level (SVL) emission spectra which probe the vibrational structure of the X (1)A(') state up to approximately 9000 cm(-1) above the vibrationless level. The total number of X (1)A(') levels observed is around three times than that previously reported, and we observe five new a (3)A(") state levels, including all three fundamentals. The results of a Dunham expansion fit of the ground state vibrational term energies, and comparisons with the previous experimental and recent high level ab initio studies, are reported. Our data confirm the previous assignment of the a (3)A(") origin, and our value for T(00)(a-X)=2172(2) cm(-1) is in excellent agreement with theory. By exploiting SVL spectra from excited state levels with K(a) (')=1, we determine the effective rotational constant (A-B) of the triplet origin, also in good agreement with theory. Our results shed new light on the vibrational structure of the X (1)A('), A (1)A("), and a (3)A(") states of CHCl, and, more generally, spin-orbit coupling in the monohalocarbenes.
Collapse
Affiliation(s)
- Chong Tao
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | | | | |
Collapse
|
17
|
Deselnicu M, Tao C, Mukarakate C, Reid SA. Fluorescence excitation and emission spectroscopy of the ÃA″1←X̃A′1 system of CHBr. J Chem Phys 2006; 124:134302. [PMID: 16613450 DOI: 10.1063/1.2183302] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report fluorescence excitation and emission spectra of CHBr in the 450-750 nm region. A total of 30 cold bands involving the pure bending levels 2(0)(n) with n=2-8 and combination bands 2(0)(n)3(0)(1)(n=1-8), 2(0) (n)3(0)(2)(n=1-6), 2(0)(n)3(0)(3)(n=1-2), 1(0)(1)2(0)(n)(n=5-7), 1(0)(1)2(0)(n)3(0)(1)(n=4-6), and 1(0)(1)2(0)(n)3(0)(2)(n=5) in the A (1)A(")<--X (1)A(') system were observed, in addition to a number of hot bands. The majority of these are reported and/or rotationally analyzed here for the first time. Spectra were measured under jet-cooled conditions using a pulsed discharge source, and rotational analysis yielded band origins and rotational constants for both bromine isotopomers (CH (79)Br,CH (81)Br). The derived A (1)A(") vibrational intervals are combined with results of [Yu et al. J. Chem. Phys. 115, 5433 (2001)] to derive barriers to linearity for the 2(n), 2(n)3(1), and 2(n)3(2) progressions. The A (1)A(") state C-H stretching frequency is determined here for the first time, and the observed nu(3) dependence of the (79)Br-(81)Br isotope splitting in the A(1)A(") state is in good agreement with theoretical expectations. Our dispersed fluorescence spectra probe the vibrational structure of the X(1)A(') state up to approximately 9000 cm(-1) above the vibrationless level; the total number of levels observed is more than twice that previously reported. As first reported by [Chen et al. J. Mol. Spectrosc. 209, 254 (2001)], these spectra reveal numerous perturbations due to spin-orbit interaction with the low-lying a(3)A(") state. The results of a Dunham expansion fit of the ground state vibrational term energies, and comparisons with previous experimental and theoretical studies, are reported. Our results lead to several revised assignments, including the X (1)A(') C-H stretching fundamental. Globally, the vibrational frequencies of X(1)A('), a(3)A("), and A(1)A(") are in excellent agreement with theoretical predictions.
Collapse
Affiliation(s)
- Mihaela Deselnicu
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | | | | | | |
Collapse
|
18
|
Wang Z, Bird RG, Yu HG, Sears TJ. Hot bands in jet-cooled and ambient temperature spectra of chloromethylene. J Chem Phys 2006; 124:74314. [PMID: 16497043 DOI: 10.1063/1.2172238] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rotationally resolved spectra of several bands lying to the red of the origin of the A(1)A" - X (1)A' band system of chloromethylene (HCCl), were recorded by laser absorption spectroscopy in ambient temperature and jet-cooled samples. The radical was made by excimer laser photolysis of dibromochloromethane, diluted in inert gas, at 193 nm. The jet-cooled sample showed efficient rotational but less vibrational cooling. Analysis showed that the observed bands originate in the (upsilon(1),upsilon(2),upsilon(3)) = (010), (001), and (011) vibrational levels of the ground electronic state of the radical, while the upper-state levels involved were (000), (010), (001), and (011). Vibrational energies and rotational constants describing the rotational levels in the lower-state vibrational levels were determined by fitting to combination differences. The analysis also resulted in a reevaluation of the C-Cl stretching frequency in the excited state and we find E(001)' = 13 206.57 or 926.17 cm(-1) above the A(1)A" (000) rotationless level for HC(35)Cl. Scaled ab initio potential energy surfaces for the A and X states were used to compute the transition moment surface and thereby the relative intensities of different vibronic transitions, providing additional support for the assignments and permitting the prediction of the shorter wavelength spectrum. All the observed upper state levels showed some degree of perturbation in their rotational energy levels, particularly in K(a) = 1, presumably due to coupling with near-resonant vibrationally excited levels of the ground electronic state. Transitions originating in the low-lying a(3)A" were also predicted to occur in the same wavelength region, but could not be identified in the spectra.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | | | | | | |
Collapse
|
19
|
Tao C, Deselnicu M, Fan H, Mukarakate C, Ionescu I, Reid SA. Electronic spectroscopy of the Ã1A″← X̃1A′ system of CDF. Phys Chem Chem Phys 2006; 8:707-13. [PMID: 16482310 DOI: 10.1039/b514826j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To further investigate the Renner-Teller (RT) effect and barriers to linearity and dissociation in the simplest singlet carbene, we recorded fluorescence excitation spectra of bands involving the pure bending levels 2(n)(0) with n = 0-9 and the combination states 1(1)(0)2(n)(0) with n = 1-8 and 2(n)(0)3(1)(0) with n = 0-5 in the A(1)A''<-- X(1)A' system of CDF, in addition to some weak hot bands. The spectra were measured under jet-cooled conditions using a pulsed discharge source, and rotationally analyzed to yield precise values for the band origins and rotational constants; fluorescence lifetimes were also measured to probe for lifetime lengthening effects due to the RT interaction. The derived A state parameters are compared with previous results for CHF and with predictions of ab initio electronic structure theory. The approach to linearity in the A state is evidenced in a sharp increase in the A rotational constant with bending excitation, and a minimum in the vibrational intervals near 2(9). A fit of the vibrational intervals for the pure bending levels yields an A state barrier to linearity in good agreement both with that previously derived for CHF and ab initio predictions. From the spectra and lifetime measurements, the onset of extensive RT perturbations is found to occur at a higher energy than in CHF, consistent with the smaller A constant.
Collapse
Affiliation(s)
- Chong Tao
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881, USA
| | | | | | | | | | | |
Collapse
|