1
|
Espinosa-Garcia J, Rangel C, Corchado JC. Role of the Vibrational and Translational Energies in the CN(v)+C 2H 6(ν 1, ν 2, ν 5 and ν 9) Reactions. A Theoretical QCT Study. Chemphyschem 2024; 25:e202300997. [PMID: 38421195 DOI: 10.1002/cphc.202300997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Quasi-classical trajectory (QCT) calculations were conducted on the newly developed full-dimensional potential energy surface, PES-2023, to analyse two critical aspects: the influence of vibrational versus translational energy in promoting reactivity, and the impact of vibrational excitation within similar vibrational modes. The former relates to Polanyi's rules, while the latter concerns mode selectivity. Initially, the investigation revealed that independent vibrational excitation by a single quantum of ethane's symmetric and asymmetric stretching modes (differing by only 15 cm-1) yielded comparable dynamics, reaction cross-sections, HCN(v) vibrational product distributions, and scattering distributions. This observation dismisses any significant mode selectivity. Moreover, an equivalent amount of energy provided as translational energy (at total energies of 9.6 and 20.0 kcal mol-1) gave rise to slightly lower reactivity compared to the same amount of energy provided as vibrational energy. This effect is more evident at low energies, presenting a counterintuitive scenario in an 'early transition state' reaction. These findings challenge the straightforward application of Polanyi's rules in polyatomic systems. Regarding CN(v) vibrational excitation, our calculations reveal that the reaction cross-section remains practically unaffected by this vibrational excitation, suggesting that the CN stretching mode is a spectator mode. The results were rationalized by considering several factors: the strong coupling between different vibrational modes, and between vibrational modes and the reaction coordinate; and a significant vibrational energy redistribution within the ethane reactant before collision. This redistribution creates an unphysical energy flow, resulting in loss of adiabaticity and vibrational memory before the reactants' collision. These theoretical findings require future confirmation through experimental or theoretical quantum mechanical studies, which are currently unavailable.
Collapse
Affiliation(s)
- Joaquin Espinosa-Garcia
- Área de Quimica Fisica and Instituto de Computación Científica Avanzada de Extremadura, Universidad de Extremadura, Badajoz, Spain
| | - Cipriano Rangel
- Área de Quimica Fisica and Instituto de Computación Científica Avanzada de Extremadura, Universidad de Extremadura, Badajoz, Spain
| | - Jose C Corchado
- Área de Quimica Fisica and Instituto de Computación Científica Avanzada de Extremadura, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
2
|
Wang T, Yang T, Xiao C, Yang X. Vibration to Vibration: Product Energy Distribution of F + HD Crossed Molecular Beam Experiments. J Phys Chem A 2024; 128:3180-3185. [PMID: 38626324 DOI: 10.1021/acs.jpca.4c01523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
We investigated the F + HD(v = 1, j = 0) → HF + D reaction using the crossed molecular beam technique combined with the D atom Rydberg tagging time-of-flight spectroscopy. By detecting the products at various scattering angles for different collision energies in the range of 0.8-1.2 kcal/mol, we observed the forward-scattering products of HF(v' = 4) and determined the threshold energy for the opening of this reaction channel. Similar experiments were conducted for the F + HD(v = 0, j = 0) → HF + D reaction within the range of 1.1-1.6 kcal/mol, where forward-scattering products of HF(v' = 3) were observed, and the threshold energy for this reaction channel was determined as well. Furthermore, we measured the differential cross-sections for the F + HD → HF + D reaction in both the vibrational ground state and the excited state of HD and analyzed the vibrational quantum-state distribution of the HF products. It was found that the population of vibrational quantum states of the HF products increases synchronously with the excitation of the reactant HD vibrationally.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tiangang Yang
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Espinosa-Garcia J, Rangel C, Corchado JC. Current Status of the X + C 2H 6 [X ≡ H, F( 2P), Cl( 2P), O( 3P), OH] Hydrogen Abstraction Reactions: A Theoretical Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123773. [PMID: 35744901 PMCID: PMC9228020 DOI: 10.3390/molecules27123773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022]
Abstract
This paper is a detailed review of the chemistry of medium-size reactive systems using the following hydrogen abstraction reactions with ethane, X + C2H6 → HX + C2H5; X ≡ H, F(2P), Cl(2P), O(3P) and OH, and focusing attention mainly on the theoretical developments. These bimolecular reactions range from exothermic to endothermic systems and from barrierless to high classical barriers of activation. Thus, the topography of the reactive systems changes from reaction to reaction with the presence or not of stabilized intermediate complexes in the entrance and exit channels. The review begins with some reflections on the inherent problems in the theory/experiment comparison. When one compares kinetics or dynamics theoretical results with experimental measures, one is testing both the potential energy surface describing the nuclei motion and the kinetics or dynamics method used. Discrepancies in the comparison may be due to inaccuracies of the surface, limitations of the kinetics or dynamics methods, and experimental uncertainties that also cannot be ruled out. The paper continues with a detailed review of some bimolecular reactions with ethane, beginning with the reactions with hydrogen atoms. The reactions with halogens present a challenge owing to the presence of stabilized intermediate complexes in the entrance and exit channels and the influence of the spin-orbit states on reactivity. Reactions with O(3P) atoms lead to three surfaces, which is an additional difficulty in the theoretical study. Finally, the reactions with the hydroxyl radical correspond to a reactive system with ten atoms and twenty-four degrees of freedom. Throughout this review, different strategies in the development of analytical potential energy surfaces describing these bimolecular reactions have been critically analyzed, showing their advantages and limitations. These surfaces are fitted to a large number of ab initio calculations, and we found that a huge number of calculations leads to accurate surfaces, but this information does not guarantee that the kinetics and dynamics results match the experimental measurements.
Collapse
|
4
|
Marjollet A, Inhester L, Welsch R. Initial state-selected scattering for the reactions H + CH4/CHD3 and F + CHD3 employing ring polymer molecular dynamics. J Chem Phys 2022; 156:044101. [DOI: 10.1063/5.0076216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. Marjollet
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany
| | - L. Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - R. Welsch
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
5
|
Nagy T, Lendvay G. Beyond the normal mode picture: the importance of the reactant’s intramolecular mode coupling in quasiclassical trajectory simulations. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1939451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tibor Nagy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - György Lendvay
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Zhao B, Manthe U. Eight-Dimensional Wave Packet Dynamics Within the Quantum Transition-State Framework: State-to-State Reactive Scattering for H2 + CH3 ⇆ H + CH4. J Phys Chem A 2020; 124:9400-9412. [DOI: 10.1021/acs.jpca.0c08461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
7
|
Zou W, Tao Y, Kraka E. Describing Polytopal Rearrangements of Fluxional Molecules with Curvilinear Coordinates Derived from Normal Vibrational Modes: A Conceptual Extension of Cremer-Pople Puckering Coordinates. J Chem Theory Comput 2020; 16:3162-3193. [PMID: 32208729 DOI: 10.1021/acs.jctc.9b01274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work a new curvilinear coordinate system is presented for the comprehensive description of polytopal rearrangements of N-coordinate compounds (N = 4-7) and systems containing an N-coordinate subunit. It is based on normal vibrational modes and a natural extension of the Cremer-Pople puckering coordinates ( J. Am. Chem. Soc. 1975, 97, 1354) together with the Zou-Izotov-Cremer deformation coordinates ( J. Phys. Chem. A 2011, 115, 8731) for ring structures to N-coordinate systems. We demonstrate that the new curvilinear coordinates are ideal reaction coordinates describing fluxional rearrangement pathways by revisiting the Berry pseudorotation and the lever mechanism in sulfur tetrafluoride, the Berry pseudorotation and two Muetterties' mechanisms in pentavalent compounds, the chimeric pseudorotation in iodine pentafluoride, Bailar and Ray-Dutt twists in hexacoordinate tris-chelates as well as the Bartell mechanism in iodine heptafluoride. The results of our study reveal that this dedicated curvilinear coordinate system can be applied to most coordination compounds opening new ways for the systematic modeling of fluxional processes.
Collapse
Affiliation(s)
- Wenli Zou
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, Shaanxi 710127, P. R. China.,Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Yunwen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
8
|
Sanches-Neto FO, Coutinho ND, Palazzetti F, Carvalho-Silva VH. Temperature dependence of rate constants for the H(D) + CH4 reaction in gas and aqueous phase: deformed Transition-State Theory study including quantum tunneling and diffusion effects. Struct Chem 2019. [DOI: 10.1007/s11224-019-01437-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
QCT study of the vibrational and translational role in the H + C2H6(ν1, ν2, ν5, ν7, ν9 and ν10) reactions. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Fu B, Zhang DH. Ab Initio Potential Energy Surfaces and Quantum Dynamics for Polyatomic Bimolecular Reactions. J Chem Theory Comput 2018; 14:2289-2303. [DOI: 10.1021/acs.jctc.8b00006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
11
|
Chen WT, Yu SR, Yuan DF, Xie T, Yang JY, Wang SW, Luo C, Tan YX, Miao Y, Zhang WQ, Wu GR, Yang XM, Wang XA. Crossed Molecular Beam Study of H+CH4 and H+CD4 Reactions: Vibrationally Excited CH3/CD3 Product Channels. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1711215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Wen-tao Chen
- Center for Advanced Chemical Physics, (iChEM, Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Sheng-rui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Dao-fu Yuan
- Center for Advanced Chemical Physics, (iChEM, Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Ting Xie
- Center for Advanced Chemical Physics, (iChEM, Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Jia-yue Yang
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023, China
| | - Si-wen Wang
- Center for Advanced Chemical Physics, (iChEM, Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Chang Luo
- Center for Advanced Chemical Physics, (iChEM, Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yu-xin Tan
- Center for Advanced Chemical Physics, (iChEM, Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yue Miao
- Center for Advanced Chemical Physics, (iChEM, Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Wei-qing Zhang
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023, China
| | - Guo-rong Wu
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023, China
| | - Xue-ming Yang
- Center for Advanced Chemical Physics, (iChEM, Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023, China
| | - Xing-an Wang
- Center for Advanced Chemical Physics, (iChEM, Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Fu B, Shan X, Zhang DH, Clary DC. Recent advances in quantum scattering calculations on polyatomic bimolecular reactions. Chem Soc Rev 2017; 46:7625-7649. [DOI: 10.1039/c7cs00526a] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review surveys quantum scattering calculations on chemical reactions of polyatomic molecules in the gas phase published in the last ten years.
Collapse
Affiliation(s)
- Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiao Shan
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - David C. Clary
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|
13
|
Guo H, Liu K. Control of chemical reactivity by transition-state and beyond. Chem Sci 2016; 7:3992-4003. [PMID: 30155041 PMCID: PMC6013787 DOI: 10.1039/c6sc01066k] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/06/2016] [Indexed: 11/21/2022] Open
Abstract
It has been long established that the transition state for an activated reaction controls the overall reactivity, serving as the bottleneck for reaction flux. However, the role of the transition state in regulating quantum state resolved reactivity has only been addressed more recently, thanks to advances in both experimental and theoretical techniques. In this perspective, we discuss some recent advances in understanding mode-specific reaction dynamics in bimolecular reactions, mainly focusing on the X + H2O/CH4 (X = H, F, Cl, and O(3P)) systems, extensively studied in our groups. These advances shed valuable light on the importance of the transition state in mode-specific and steric dynamics of these prototypical reactions. It is shown that many mode-specific phenomena can be understood in terms of a transition-state based model, which assumes in the sudden limit that the ability of a reactant mode for promoting the reaction stems from its coupling with the reaction coordinate at the transition state. Yet, in some cases the long-range anisotropic interactions in the entrance (or exit) valley, which govern how the trajectories reach (or leave) the transition state, also come into play, thus modifying the reactive outcomes.
Collapse
Affiliation(s)
- Hua Guo
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , USA .
| | - Kopin Liu
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 10617 , Taiwan .
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
14
|
Jiang B, Yang M, Xie D, Guo H. Quantum dynamics of polyatomic dissociative chemisorption on transition metal surfaces: mode specificity and bond selectivity. Chem Soc Rev 2016; 45:3621-40. [DOI: 10.1039/c5cs00360a] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent advances in quantum dynamical characterization of polyatomic dissociative chemisorption on accurate global potential energy surfaces are critically reviewed.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
- Department of Chemical Physics
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Centre for Magnetic Resonance
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| |
Collapse
|
15
|
Wang Y, Li J, Chen L, Lu Y, Yang M, Guo H. Mode specific dynamics of the H2 + CH3 → H + CH4 reaction studied using quasi-classical trajectory and eight-dimensional quantum dynamics methods. J Chem Phys 2015; 143:154307. [DOI: 10.1063/1.4933240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- School of Chemical and Environmental Engineering, Hubei University for Nationalities, Enshi 445000, China
| | - Jun Li
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Liuyang Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
16
|
Li J, Chen J, Zhao Z, Xie D, Zhang DH, Guo H. A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH4 system. J Chem Phys 2015; 142:204302. [DOI: 10.1063/1.4921412] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhiqiang Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
17
|
Yan P, Wang Y, Li Y, Wang D. A seven-degree-of-freedom, time-dependent quantum dynamics study on the energy efficiency in surmounting the central energy barrier of the OH + CH3 → O + CH4 reaction. J Chem Phys 2015; 142:164303. [DOI: 10.1063/1.4918981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pengxiu Yan
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuping Wang
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yida Li
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Dunyou Wang
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
18
|
Liu L, Bakker HJ. Vibrational excitation induced proton transfer in hydrated Nafion membranes. J Phys Chem B 2015; 119:2628-37. [PMID: 25506744 DOI: 10.1021/jp508862t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We study the energy relaxation and structural relaxation dynamics of hydrated protons in Nafion membranes at different hydration levels using femtosecond infrared transient absorption spectroscopy. At low hydration levels we observe that the excitation of the proton vibration of an Eigen-like proton hydration structure leads to a structural relaxation process in which the Eigen-like structure evolves to a Zundel-like proton hydration structure. This reorganization leads to a transfer of the proton charge and closely follows the mechanism of infrared-induced adiabatic proton transfer that has been proposed by S. Hammes-Schiffer, J. T. Hynes, and others. At high hydration levels, the spectral dynamics are dominated by vibrational energy relaxation and subsequent cooling of the proton hydration structures and the surrounding water molecules. Using a kinetic analysis of the transient spectral data, we determine the rates of proton transfer, vibrational energy relaxation, and cooling as a function of hydration level. We find that infrared-induced proton transfer occurs at all hydration levels but becomes less observable at high hydration levels due to the increasingly dominant influence of the vibrational energy relaxation.
Collapse
Affiliation(s)
- Liyuan Liu
- FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | |
Collapse
|
19
|
Guo H, Jiang B. The sudden vector projection model for reactivity: mode specificity and bond selectivity made simple. Acc Chem Res 2014; 47:3679-85. [PMID: 25393632 DOI: 10.1021/ar500350f] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CONSPECTUS: Mode specificity is defined by the differences in reactivity due to excitations in various reactant modes, while bond selectivity refers to selective bond breaking in a reaction. These phenomena not only shed light on reaction dynamics but also open the door for laser control of reactions. The existence of mode specificity and bond selectivity in a reaction indicates that not all forms of energy are equivalent in promoting the reactivity, thus defying a statistical treatment. They also allow the enhancement of reactivity and control product branching ratio. As a result, they are of central importance in chemistry. This Account discusses recent advances in our understanding of these nonstatistical phenomena. In particular, the newly proposed sudden vector projection (SVP) model and its applications are reviewed. The SVP model is based on the premise that the collision in many direct reactions is much faster than intramolecular vibrational energy redistribution in the reactants. In such a sudden limit, the coupling of a reactant mode with the reaction coordinate at the transition state, which dictates its ability to promote the reaction, is approximately quantified by the projection of the former onto the latter. The SVP model can be considered as a generalization of the venerable Polanyi's rules, which are based on the location of the barrier. The SVP model is instead based on properties of the saddle point and as a result capable of treating the translational, rotational, and multiple vibrational modes in reactions involving polyatomic reactants. In case of surface reactions, the involvement of surface atoms can also be examined. Taking advantage of microscopic reversibility, the SVP model has also been used to predict product energy disposal in reactions. This simple yet powerful rule of thumb has been successfully demonstrated in many reactions including uni- and bimolecular reactions in the gas phase and gas-surface reactions. The success of the SVP model underscores the importance of the transition state in controlling mode-specific and bond-selective chemistry.
Collapse
Affiliation(s)
- Hua Guo
- Department
of Chemistry and
Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Bin Jiang
- Department
of Chemistry and
Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
20
|
Zhou Y, Zhang DH. Eight-dimensional quantum reaction rate calculations for the H+CH4 and H2+CH3 reactions on recent potential energy surfaces. J Chem Phys 2014; 141:194307. [DOI: 10.1063/1.4902005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yong Zhou
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
21
|
Zhang Z, Zhang DH. Effects of reagent rotational excitation on the H + CHD3 → H2 + CD3 reaction: A seven dimensional time-dependent wave packet study. J Chem Phys 2014; 141:144309. [DOI: 10.1063/1.4897308] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
22
|
Xu X, Chen J, Zhang DH. Global Potential Energy Surface for the H+CH4↔H2+CH3 Reaction using Neural Networks. CHINESE J CHEM PHYS 2014. [DOI: 10.1063/1674-0068/27/04/373-379] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
23
|
Wang Y, Li J, Guo H, Yang M. A comparison study of the H + CH4 and H + SiH4 reactions with eight-dimensional quantum dynamics: normal mode versus local mode in the reactant molecule vibration. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1555-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Liu R, Wang F, Jiang B, Czakó G, Yang M, Liu K, Guo H. Rotational mode specificity in the Cl + CHD3 → HCl + CD3 reaction. J Chem Phys 2014; 141:074310. [DOI: 10.1063/1.4892598] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Liu L, Bakker HJ. Infrared-activated proton transfer in aqueous nafion proton-exchange-membrane nanochannels. PHYSICAL REVIEW LETTERS 2014; 112:258301. [PMID: 25014832 DOI: 10.1103/physrevlett.112.258301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Indexed: 06/03/2023]
Abstract
We report on the observation of a strong reorganization of the proton hydration structure in hydrated Nafion membranes following single-quantum excitation of a proton vibration with ∼4 μm light pulses. The reorganization takes place with a time constant of 170 ± 20 fs and leads to a strong red shift of the excited proton vibration and the rise of new waterlike O-H stretch absorption bands. These observations can be explained from a vibrational-excitation-induced change of the proton-hydration structure that involves transfer of the proton charge. The results are consistent with recent quantum molecular dynamics simulations of proton transfer in Nafion membranes.
Collapse
Affiliation(s)
- Liyuan Liu
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Huib J Bakker
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
26
|
Zhang Z, Chen J, Liu S, Zhang DH. Accuracy of the centrifugal sudden approximation in the H + CHD3 → H2 + CD3 reaction. J Chem Phys 2014; 140:224304. [DOI: 10.1063/1.4881517] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
27
|
Jiang B, Guo H. Mode Specificity, Bond Selectivity, and Product Energy Disposal in X + CH4/CHD3(X=H, F, O(3P), Cl, and OH) Hydrogen Abstraction Reactions: Perspective from Sudden Vector Projection Model. J CHIN CHEM SOC-TAIP 2014. [DOI: 10.1002/jccs.201400158] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Pan H, Yang J, Zhang D, Shuai Q, Dai D, Wu G, Jiang B, Yang X. Effect of antisymmetric C–H stretching excitation on the dynamics of O(1D) + CH4 → OH + CH3. J Chem Phys 2014. [DOI: 10.1063/1.4871135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Pan H, Yang J, Shuai Q, Zhang D, Zhang W, Wu G, Dai D, Jiang B, Zhang D, Yang X. Velocity Map Imaging Study of the Reaction Dynamics of the H + CH4 → H2 + CH3 Reaction: The Isotope Effects. J Phys Chem A 2014; 118:2426-30. [DOI: 10.1021/jp501681h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huilin Pan
- State
Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiayue Yang
- State
Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Quan Shuai
- State
Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Dong Zhang
- State
Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Weiqing Zhang
- State
Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guorong Wu
- State
Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dongxu Dai
- State
Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bo Jiang
- State
Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Donghui Zhang
- State
Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xueming Yang
- State
Key Laboratory
of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
Wang T, Chen J, Yang T, Xiao C, Sun Z, Huang L, Dai D, Yang X, Zhang DH. Dynamical Resonances Accessible Only by Reagent Vibrational Excitation in the F + HD→HF + D Reaction. Science 2013; 342:1499-502. [DOI: 10.1126/science.1246546] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tao Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Tiangang Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Long Huang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Dongxu Dai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
- Center for Advanced Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| |
Collapse
|
31
|
Monge-Palacios M, Espinosa-Garcia J. Role of Vibrational and Translational Energy in the OH + NH3 Reaction: A Quasi-Classical Trajectory Study. J Phys Chem A 2013; 117:5042-51. [DOI: 10.1021/jp403571y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Monge-Palacios
- Departamento de Química
Física, Universidad de Extremadura, 06071 Badajoz, Spain
| | - J. Espinosa-Garcia
- Departamento de Química
Física, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
32
|
CHENG DAHAI, YANG TIANGANG, CHEN MAODU. STEREODYNAMICS STUDY OF THE ABSTRACTION REACTION H + CD4 → HD + CD3. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s021963361250109x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new London–Eyring–Polanyi–Sato (LEPS) potential energy surface (PES) is employed in this work to study the stereo properties for the abstraction reaction of hydrogen with methane at its rovibrationally ground state using the quasiclassical trajectory method (QCT). A "quasi-triatomic" approximation is used to treat the CD3 group of CD4 as a pseudoatom. The calculated excitation function of the title reaction can give a good agreement to most experimental and theoretical data at collision energies (Ec =1.5 ~ 2.5 eV ). Further investigation of the product HD in reaction H + CD4 (v = 0, j = 0) → HD + CD3 and D + CH4 (v = 0, j = 0) → HD + CH3 shows the dependence of the product rotational polarization on collision energies and mass factor, but P(θr) is not sensitive to both the collision energies and the mass factor.
Collapse
Affiliation(s)
- DAHAI CHENG
- School of Physics and Optoelectronic Technology, and College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - TIANGANG YANG
- School of Physics and Optoelectronic Technology, and College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - MAODU CHEN
- School of Physics and Optoelectronic Technology, and College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
33
|
The abstraction reaction of H and C–H stretch excited CHD3: A QCT study on an ab initio based potential energy surface. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2012.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Liu S, Chen J, Zhang Z, Zhang DH. Communication: A six-dimensional state-to-state quantum dynamics study of the H + CH4 → H2 + CH3 reaction (J = 0). J Chem Phys 2013; 138:011101. [DOI: 10.1063/1.4774116] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
35
|
Monge-Palacios M, Espinosa-Garcia J. Bond and mode selectivity in the OH + NH2D reaction: a quasi-classical trajectory calculation. Phys Chem Chem Phys 2013; 15:19180-90. [DOI: 10.1039/c3cp52809j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Liu R, Xiong H, Yang M. An eight-dimensional quantum mechanical Hamiltonian for X + YCZ3 system and its applications to H + CH4 reaction. J Chem Phys 2012; 137:174113. [DOI: 10.1063/1.4764358] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Kraka E, Zou W, Freindorf M, Cremer D. Energetics and Mechanism of the Hydrogenation of XHn for Group IV to Group VII Elements X. J Chem Theory Comput 2012; 8:4931-43. [DOI: 10.1021/ct300631s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elfi Kraka
- CATCO Group, Department
of Chemistry, Southern Methodist
University, 3215 Daniel Ave, Dallas, Texas 75275-0314, United States
| | - Wenli Zou
- CATCO Group, Department
of Chemistry, Southern Methodist
University, 3215 Daniel Ave, Dallas, Texas 75275-0314, United States
| | - Marek Freindorf
- CATCO Group, Department
of Chemistry, Southern Methodist
University, 3215 Daniel Ave, Dallas, Texas 75275-0314, United States
| | - Dieter Cremer
- CATCO Group, Department
of Chemistry, Southern Methodist
University, 3215 Daniel Ave, Dallas, Texas 75275-0314, United States
| |
Collapse
|
38
|
Constructing Potential Energy Surfaces for Polyatomic Systems: Recent Progress and New Problems. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/164752] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Different methods of constructing potential energy surfaces in polyatomic systems are reviewed, with the emphasis put on fitting, interpolation, and analytical (defined by functional forms) approaches, based on quantum chemistry electronic structure calculations. The different approaches are reviewed first, followed by a comparison using the benchmark H + CH4 and the H + NH3 gas-phase hydrogen abstraction reactions. Different kinetics and dynamics properties are analyzed for these reactions and compared with the available experimental data, which permits one to estimate the advantages and disadvantages of each method. Finally, we analyze different problems with increasing difficulty in the potential energy construction: spin-orbit coupling, molecular size, and more complicated reactions with several maxima and minima, which test the soundness and general applicability of each method. We conclude that, although the field of small systems, typically atom-diatom, is mature, there still remains much work to be done in the field of polyatomic systems.
Collapse
|
39
|
Monge-Palacios M, Corchado JC, Espinosa-Garcia J. Quasi-classical trajectory study of the role of vibrational and translational energy in the Cl(2P) + NH3 reaction. Phys Chem Chem Phys 2012; 14:7497-508. [DOI: 10.1039/c2cp40786h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Balomenou I, Kaloudi-Chantzea A, Karakostas N, Yannakopoulou K, Mavridis IM, Pistolis G. Controlling the stereospecificity of a volume-conserving adiabatic photoisomerization within a nanotubular self-assembled cage: a reversible light-heat torque converter. J Phys Chem B 2011; 115:10665-81. [PMID: 21812460 DOI: 10.1021/jp2037608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present herein a host-guest supramolecular system by which we were able to obtain precise control of the stereospecificity of a new and unusual adiabatic photoisomerization reaction capable of restoring reversibly the original configuration. The host-guest system is composed of (a) a naphthalene ring linked centrosymmetrically-via sp(2) hybridized oxygen atoms-with methoxytriethyleneglycol chains (1) and (b) a nanotubular cage formed by four self-assembled face-to-face β-cyclodextrins threaded onto the long "axle" of 1. The compound 1 can exist in distinct cis,cis, cis,trans, and trans,trans conformations that are spectrally distinguishable (see Scheme 1 ). Spectroscopic and kinetic manifestations of the torsional isomerization of 1 in the lowest excited singlet state both in solution and within the tubular cage were investigated. The results provide clear evidence that the compact cavity completely blocks the photoisomerization pathway manifested in common solution (cis,cis* → cis,trans*), allowing observation of stereospecific, volume-conserving turning of the naphthalene ring about the two "quasidouble" bonds C(Naph)-O by φ ≈ 180° (cis,cis* → trans,trans*). The photoisomerization is purely adiabatic, and the encaged molecule restores its original configuration by generating torque thermally, when relaxing to the ground state.
Collapse
Affiliation(s)
- Ioanna Balomenou
- NCSR Demokritos Institute of Physical Chemistry, 153 10 Athens, Greece
| | | | | | | | | | | |
Collapse
|
41
|
Influence of initial parent vibrational excitation in promoting two-photon absorption in HOOH and CH3OOH. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.06.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Zhou Y, Wang C, Zhang DH. Effects of reagent vibrational excitation on the dynamics of the H + CHD3 → H2 + CD3 reaction: A seven-dimensional time-dependent wave packet study. J Chem Phys 2011; 135:024313. [DOI: 10.1063/1.3609923] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Zhou Y, Fu B, Wang C, Collins MA, Zhang DH. Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction. J Chem Phys 2011; 134:064323. [DOI: 10.1063/1.3552088] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Bowman JM, Czakó G, Fu B. High-dimensional ab initio potential energy surfaces for reaction dynamics calculations. Phys Chem Chem Phys 2011; 13:8094-111. [DOI: 10.1039/c0cp02722g] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Mann JE, Xie Z, Savee JD, Bowman JM, Continetti RE. Dissociation Dynamics of Isotopologs of CH5 Studied by Charge Exchange of CH5+ with Cs and Quasiclassical Trajectory Calculations. J Phys Chem A 2010; 114:11408-16. [DOI: 10.1021/jp105119v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jennifer E. Mann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States, and Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Zhen Xie
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States, and Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - John D. Savee
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States, and Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Joel M. Bowman
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States, and Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Robert E. Continetti
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States, and Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
46
|
Zhang W, Zhou Y, Wu G, Lu Y, Pan H, Fu B, Shuai Q, Liu L, Liu S, Zhang L, Jiang B, Dai D, Lee SY, Xie Z, Braams BJ, Bowman JM, Collins MA, Zhang DH, Yang X. Depression of reactivity by the collision energy in the single barrier H + CD4 -> HD + CD3 reaction. Proc Natl Acad Sci U S A 2010; 107:12782-5. [PMID: 20615988 PMCID: PMC2919926 DOI: 10.1073/pnas.1006910107] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crossed molecular beam experiments and accurate quantum scattering calculations have been carried out for the polyatomic H + CD(4) --> HD + CD(3) reaction. Unprecedented agreement has been achieved between theory and experiments on the energy dependence of the integral cross section in a wide collision energy region that first rises and then falls considerably as the collision energy increases far over the reaction barrier for this simple hydrogen abstraction reaction. Detailed theoretical analysis shows that at collision energies far above the barrier the incoming H-atom moves so quickly that the heavier D-atom on CD(4) cannot concertedly follow it to form the HD product, resulting in the decline of reactivity with the increase of collision energy. We propose that this is also the very mechanism, operating in many abstraction reactions, which causes the differential cross section in the backward direction to decrease substantially or even vanish at collision energies far above the barrier height.
Collapse
Affiliation(s)
- Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Yong Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Yunpeng Lu
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616
| | - Huilin Pan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Quan Shuai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Lan Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Liling Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616
| | - Bo Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Dongxu Dai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Soo-Ying Lee
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616
| | - Zhen Xie
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
| | - Bastiaan J. Braams
- International Atomic Energy Agency, Division of Physical and Chemical Sciences, P.O. Box 100, Wagramerstrasse 5, A-1400 Vienna, Austria
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, GA 30322; and
| | - Michael A. Collins
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| |
Collapse
|
47
|
Rose RA, Greaves SJ, Orr-Ewing AJ. Velocity map imaging the dynamics of the reactions of Cl atoms with neopentane and tetramethylsilane. J Chem Phys 2010; 132:244312. [DOI: 10.1063/1.3447378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Huarte-Larrañaga F, Manthe U. Thermal Rate Constants for Polyatomic Reactions: First Principles Quantum Theory. ACTA ACUST UNITED AC 2009. [DOI: 10.1524/zpch.2007.221.2.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The truly accurate knowledge of molecular dynamics phenomena is generally achieved through a combination of detailed experiments and first principle theory. The complexity of such a level of description had until recently restricted accurate studies to rather small systems. However, the sophistication of theoretical methods and massive technological developments have provided remarkable progress in the detailed knowledge of reactive events during the past three decades. Moreover, significant progress towards the detailed understanding of polyatomic reaction has been made in recent years. Detailed experimental and accurate theoretical studies of reactions involving more than only three or four atoms are becoming increasingly available. In this work, aspects of the theoretical work aiming at the accurate description of polyatomic reactions are reviewed.
The present article focuses on the development of the first principle theory of reaction rates. It reviews theoretical developments and benchmark applications to reactions as CH4 + H → CH3 + H2 and CH4 + O → CH3 + OH. The importance of quantum effects for the thermal rate constants in different temperature regimes is discussed in detail. The accuracy of the classical transition state theory and of different approximate quantum theories is investigated in detail. A quantum transition state concept which facilitates accurate reaction rate calculations for polyatomic reaction is described. Benchmark results for the CH4 + H → CH3 + H2 reaction are shown which demonstrate that the accuracy of thermal rate constants calculated by first principle theory can rival the accuracy of available experimental data. The perspectives offered by these developments are discussed.
Collapse
|
49
|
Espinosa-García J. Quasiclassical trajectory calculations analyzing the role of vibrational and translational energy in the F+CH2D2 reaction. J Chem Phys 2009; 130:054305. [PMID: 19206971 DOI: 10.1063/1.3069632] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joaquín Espinosa-García
- Departamento de Química Física, Facultad de Ciencias, Universidad de Extremadura, Badajoz 06071, Spain.
| |
Collapse
|
50
|
|