1
|
Oda K, Tsutsumi T, Keshavamurthy S, Furuya K, Armentrout PB, Taketsugu T. Dynamically Hidden Reaction Paths in the Reaction of CF 3+ + CO. ACS PHYSICAL CHEMISTRY AU 2022; 2:388-398. [PMID: 36193292 PMCID: PMC9524575 DOI: 10.1021/acsphyschemau.2c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Reaction paths on
a potential energy surface are widely used in
quantum chemical studies of chemical reactions. The recently developed
global reaction route mapping (GRRM) strategy automatically constructs
a reaction route map, which provides a complete picture of the reaction.
Here, we thoroughly investigate the correspondence between the reaction
route map and the actual chemical reaction dynamics for the CF3+ + CO reaction studied by guided ion beam tandem
mass spectrometry (GIBMS). In our experiments, FCO+, CF2+, and CF+ product ions were observed,
whereas if the collision partner is N2, only CF2+ is observed. Interestingly, for reaction with CO, GRRM-predicted
reaction paths leading to the CF+ + F2CO product
channel are found at a barrier height of about 2.5 eV, whereas the
experimentally obtained threshold for CF+ formation was
7.48 ± 0.15 eV. In other words, the ion was not obviously observed
in the GIBMS experiment, unless a much higher collision energy than
the requisite energy threshold was provided. On-the-fly molecular
dynamics simulations revealed a mechanism that hides these reaction
paths, in which a non-statistical energy distribution at the first
collisionally reached transition state prevents the reaction from
proceeding along some reaction paths. Our results highlight the existence
of dynamically hidden reaction paths that may be inaccessible in experiments
at specific energies and hence the importance of reaction dynamics
in controlling the destinations of chemical reactions.
Collapse
Affiliation(s)
- Kohei Oda
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Takuro Tsutsumi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Srihari Keshavamurthy
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India
| | - Kenji Furuya
- Faculty of Arts and Science, Kyushu University, Motooka, Fukuoka 819-0395, Japan
- Department of Molecular and Material Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
- Department of Chemistry, University of Utah, Salt Lake City 84112, United States
| | - P. B. Armentrout
- Department of Chemistry, University of Utah, Salt Lake City 84112, United States
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
2
|
Zheng L, Cuny J, Zamith S, L'Hermite JM, Rapacioli M. Collision-induced dissociation of protonated uracil water clusters probed by molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:27404-27416. [PMID: 34859809 DOI: 10.1039/d1cp03228c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Collision-induced dissociation experiments of hydrated molecular species can provide a wealth of important information. However, they often need a theoretical support to extract chemical information. In the present article, in order to provide a detailed description of recent experimental measurements [Braud et al., J. Chem. Phys., 2019, 150, 014303], collision simulations between low-energy protonated uracil water clusters (H2O)1-7,11,12UH+ and an Ar atom were performed using a quantum mechanics/molecular mechanics formalism based on the self-consistent-charge density-functional based tight-binding method. The theoretical proportion of formed neutral vs. protonated uracil containing clusters, total fragmentation cross sections as well as the mass spectra of charged fragments are consistent with the experimental data which highlights the accuracy of the present simulations. They allow to probe which fragments are formed on the short time scale and rationalize the location of the excess proton on these fragments. We demonstrate that this latter property is highly influenced by the nature of the aggregate undergoing the collision. Analyses of the time evolution of the fragments populations and of their relative abundances demonstrate that, up to 7 water molecules, a direct dissociation mechanism occurs after collision whereas for 11 and 12 water molecules a statistical mechanism is more likely to participate. Although scarce in the literature, the present simulations appear as a useful tool to complement collision-induced dissociation experiments of hydrated molecular species.
Collapse
Affiliation(s)
- Linjie Zheng
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Sébastien Zamith
- Laboratoire Collisions Agrégats Réactivié LCAR/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Jean-Marc L'Hermite
- Laboratoire Collisions Agrégats Réactivié LCAR/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| |
Collapse
|
3
|
Chernicharo FCS, Modesto-Costa L, Borges I. Simulation of the electron ionization mass spectra of the Novichok nerve agent. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4779. [PMID: 34407561 DOI: 10.1002/jms.4779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Novichok is one of the most feared and controversial nerve agents, which existence was confirmed only after the Salisbury attack in 2018. A new attack on August 2020, in Russia, was confirmed. After the 2018 attack, the agent was included in the list of the most dangerous chemicals of the Chemical Weapons Convention (CWC). However, information related to its electron ionization mass spectrometry (EI/MS), essential for unambiguous identification, is scarce. Therefore, investigations about Novichok EI/MS are urgent. In this work, we employed Born-Oppenheimer molecular dynamics through the Quantum Chemistry Electron Ionization Mass Spectrometry (QCEIMS) method to simulate and rationalize the EI/MS spectra and fragmentation pathways of 32 Novichok molecules recently incorporated into the CWC. The comparison of additional simulations with the measured EI spectrum of another Novichok analog is very favorable. A general scheme of the fragmentation pathways derived from simulation results was presented. The present results will be useful for elucidation and prediction of the EI spectra and fragmentation pathways of the dangerous Novichok nerve agent.
Collapse
Affiliation(s)
| | - Lucas Modesto-Costa
- Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, RJ, Brazil
| | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Koopman J, Grimme S. From QCEIMS to QCxMS: A Tool to Routinely Calculate CID Mass Spectra Using Molecular Dynamics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1735-1751. [PMID: 34080847 DOI: 10.1021/jasms.1c00098] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mass spectrometry (MS) is a powerful tool in chemical research and substance identification. For the computational modeling of electron ionization MS, we have developed the quantum-chemical electron ionization mass spectra (QCEIMS) program. Here, we present an extension of QCEIMS to calculate collision-induced dissociation (CID) spectra. The more general applicability is accounted for by the new name QCxMS, where "x" refers to EI or CID. To this end, fragmentation and rearrangement reactions are computed "on-the-fly" in Born-Oppenheimer molecular dynamics (MD) simulations with the semiempirical GFN2-xTB Hamiltonian, which provides an efficient quantum mechanical description of all elements up to Z = 86 (Rn). Through the explicit modeling of multicollision processes between precursor ions and neutral gas atoms as well as temperature-induced decomposition reactions, QCxMS provides detailed insight into the collision kinetics and fragmentation pathways. In combination with the CREST program to determine the preferential protonation sites, QCxMS becomes the first standalone MD-based program that can predict mass spectra based solely on molecular structures as input. We demonstrate this for six organic molecules with masses ranging from 159 to 296 Da, for which QCxMS yields CID spectra in reasonable agreement with experiments.
Collapse
Affiliation(s)
- Jeroen Koopman
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
5
|
Borges R, Colby SM, Das S, Edison AS, Fiehn O, Kind T, Lee J, Merrill AT, Merz KM, Metz TO, Nunez JR, Tantillo DJ, Wang LP, Wang S, Renslow RS. Quantum Chemistry Calculations for Metabolomics. Chem Rev 2021; 121:5633-5670. [PMID: 33979149 PMCID: PMC8161423 DOI: 10.1021/acs.chemrev.0c00901] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 02/07/2023]
Abstract
A primary goal of metabolomics studies is to fully characterize the small-molecule composition of complex biological and environmental samples. However, despite advances in analytical technologies over the past two decades, the majority of small molecules in complex samples are not readily identifiable due to the immense structural and chemical diversity present within the metabolome. Current gold-standard identification methods rely on reference libraries built using authentic chemical materials ("standards"), which are not available for most molecules. Computational quantum chemistry methods, which can be used to calculate chemical properties that are then measured by analytical platforms, offer an alternative route for building reference libraries, i.e., in silico libraries for "standards-free" identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this review will inspire researchers in the field of small-molecule identification to accelerate adoption of in silico methods for generation of reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples.
Collapse
Affiliation(s)
- Ricardo
M. Borges
- Walter
Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Sean M. Colby
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Susanta Das
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Arthur S. Edison
- Departments
of Genetics and Biochemistry and Molecular Biology, Complex Carbohydrate
Research Center and Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, United States
| | - Oliver Fiehn
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
| | - Tobias Kind
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
| | - Jesi Lee
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Amy T. Merrill
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Kenneth M. Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Thomas O. Metz
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Jamie R. Nunez
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Shunyang Wang
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Ryan S. Renslow
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
6
|
Carrà A, Spezia R. In Silico
Tandem Mass Spectrometer: an Analytical and Fundamental Tool. ACTA ACUST UNITED AC 2021. [DOI: 10.1002/cmtd.202000071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Andrea Carrà
- Agilent Technologies Italia Via Piero Gobetti 2/C 20063 Cernusco SN, Milano Italy
| | - Riccardo Spezia
- Laboratoire de Chimie Théorique Sorbonne Université, UMR 7616 CNRS 4, Place Jussieu 75005 Paris France
| |
Collapse
|
7
|
Chernicharo FCS, Modesto-Costa L, Borges I. Molecular dynamics simulation of the electron ionization mass spectrum of tabun. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4513. [PMID: 32212286 DOI: 10.1002/jms.4513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Tabun (ethyl N,N-dimethylphosphoramidocyanidate), or GA, is a chemical warfare nerve agent produced during the World War II. The synthesis of its analogs is rather simple; thus, it is a significant threat. Furthermore, experiments with tabun and other nerve agents are greatly limited by the involved life risks and the severe restrictions imposed by the Chemical Weapons Convention. For these reasons, accurate theoretical assignment of fragmentation pathways can be especially important. In this work, we employ the Quantum Chemistry Electron Ionization Mass Spectra method, which combines molecular dynamics, quantum chemistry methods, and stochastic approaches, to accurately investigate the electron ionization/mass spectrometry (EI/MS) fragmentation spectrum and pathways of the tabun molecule. We found that different rearrangement reactions occur including a McLafferty involving the nitrile group. An essential and characteristic pathway for identification of tabun and analogs, a two-step fragmentation producing the m/z 70 ion, was confirmed. The present results will be also useful to predict EI/MS spectrum and fragmentation pathways of other members of the tabun family, namely, the O-alkyl/cycloalkyl N,N-dialkyl (methyl, ethyl, isopropyl, or propyl) phosphoramidocyanidates.
Collapse
Affiliation(s)
- Francisco C S Chernicharo
- Department of Chemistry, Military Institute of Engineering, Praça Gen Tiburcio, 80, Rio de Janeiro, RJ, Brazil
| | - Lucas Modesto-Costa
- Department of Chemistry, Military Institute of Engineering, Praça Gen Tiburcio, 80, Rio de Janeiro, RJ, Brazil
| | - Itamar Borges
- Department of Chemistry, Military Institute of Engineering, Praça Gen Tiburcio, 80, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Martin Somer A, Macaluso V, Barnes GL, Yang L, Pratihar S, Song K, Hase WL, Spezia R. Role of Chemical Dynamics Simulations in Mass Spectrometry Studies of Collision-Induced Dissociation and Collisions of Biological Ions with Organic Surfaces. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2-24. [PMID: 32881516 DOI: 10.1021/jasms.9b00062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, a perspective is given of chemical dynamics simulations of collisions of biological ions with surfaces and of collision-induced dissociation (CID) of ions. The simulations provide an atomic-level understanding of the collisions and, overall, are in quite good agreement with experiment. An integral component of ion/surface collisions is energy transfer to the internal degrees of freedom of both the ion and the surface. The simulations reveal how this energy transfer depends on the collision energy, incident angle, biological ion, and surface. With energy transfer to the ion's vibration fragmentation may occur, i.e. surface-induced dissociation (SID), and the simulations discovered a new fragmentation mechanism, called shattering, for which the ion fragments as it collides with the surface. The simulations also provide insight into the atomistic dynamics of soft-landing and reactive-landing of ions on surfaces. The CID simulations compared activation by multiple "soft" collisions, resulting in random excitation, versus high energy single collisions and nonrandom excitation. These two activation methods may result in different fragment ions. Simulations provide fragmentation products in agreement with experiments and, hence, can provide additional information regarding the reaction mechanisms taking place in experiment. Such studies paved the way on using simulations as an independent and predictive tool in increasing fundamental understanding of CID and related processes.
Collapse
Affiliation(s)
- Ana Martin Somer
- Departamento de Química, Facultad de Ciencias, Módulo 13 Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, 28049 Madrid, Spain
| | - Veronica Macaluso
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025 Evry, France
| | - George L Barnes
- Department of Chemistry and Biochemistry, Siena College, Loudonville, New York 12211, United States
| | - Li Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China
| | - Subha Pratihar
- Department of Chemistry and Biochemistry Texas Tech University, Lubbock, Texas 79409, United States
| | - Kihyung Song
- Department of Chemistry, Korea National University of Education, Chungbuk 28644, Republic of Korea
| | - William L Hase
- Department of Chemistry and Biochemistry Texas Tech University, Lubbock, Texas 79409, United States
| | - Riccardo Spezia
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, 4, Place Jussieu, Paris, 75252 Cedex 05, France
| |
Collapse
|
9
|
Malik A, Angel LA, Spezia R, Hase WL. Collisional dynamics simulations revealing fragmentation properties of Zn(ii)-bound poly-peptide. Phys Chem Chem Phys 2020; 22:14551-14559. [DOI: 10.1039/d0cp02463e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Collisional simulations show how peptide fragmentation is modified by the presence of Zn(ii).
Collapse
Affiliation(s)
- Abdul Malik
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | | | - Riccardo Spezia
- Laboratoire de Chimie Théorique
- Sorbonne Université
- UMR 7616 CNRS
- 75005 Paris
- France
| | - William L. Hase
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| |
Collapse
|
10
|
Carrà A, Macaluso V, Villalta PW, Spezia R, Balbo S. Fragmentation Spectra Prediction and DNA Adducts Structural Determination. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2771-2784. [PMID: 31696434 DOI: 10.1007/s13361-019-02348-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
In this work, chemical dynamics simulations were optimized and used to predict fragmentation mass spectra for DNA adduct structural determination. O6-methylguanine (O6-Me-G) was used as a simple model adduct to calculate theoretical spectra for comparison with measured high-resolution fragmentation data. An automatic protocol was established to consider the different tautomers accessible at a given energy and obtain final theoretical spectra by insertion of an initial tautomer. In the work reported here, the most stable tautomer was chosen as the initial structure, but in general, any structure could be considered. Allowing for the formation of the various possible tautomers during simulation calculations was found to be important to getting a more complete fragmentation spectrum. The calculated theoretical results reproduce the experimental peaks such that it was possible to determine reaction pathways and product structures. The calculated tautomerization network was crucial to correctly identifying all the observed ion peaks, showing that a mobile proton model holds not only for peptide fragmentation but also for nucleobases. Finally, first principles results were compared to simple machine learning fragmentation models.
Collapse
Affiliation(s)
- Andrea Carrà
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Veronica Macaluso
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Université d'Evry, CEA, CNRS, Université Paris Saclay, Bd. F. Mitterrand, 91025, Evry Cedex, France
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Riccardo Spezia
- Laboratoire de Chimie Théorique, LCT, CNRS, Sorbonne Université, F. 75005, Paris, France.
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Macaluso V, Scuderi D, Crestoni ME, Fornarini S, Corinti D, Dalloz E, Martinez-Nunez E, Hase WL, Spezia R. l-Cysteine Modified by S-Sulfation: Consequence on Fragmentation Processes Elucidated by Tandem Mass Spectrometry and Chemical Dynamics Simulations. J Phys Chem A 2019; 123:3685-3696. [DOI: 10.1021/acs.jpca.9b01779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Veronica Macaluso
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025 Évry, France
| | - Debora Scuderi
- LCP, Laboratoire de Chimie Physique, Université Paris-Sud, Bat. 349, CNRS UMR8000, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Enzo Dalloz
- LCP, Laboratoire de Chimie Physique, Université Paris-Sud, Bat. 349, CNRS UMR8000, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
- Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Roma, Italy
| | - Emilio Martinez-Nunez
- Departamento de Química Física, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Riccardo Spezia
- LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025 Évry, France
- CNRS, Laboratoire de Chimie Théorique, LCT, Sorbonne Université, 4, Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
12
|
A Trajectory-Based Method to Explore Reaction Mechanisms. Molecules 2018; 23:molecules23123156. [PMID: 30513663 PMCID: PMC6321347 DOI: 10.3390/molecules23123156] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 12/02/2022] Open
Abstract
The tsscds method, recently developed in our group, discovers chemical reaction mechanisms with minimal human intervention. It employs accelerated molecular dynamics, spectral graph theory, statistical rate theory and stochastic simulations to uncover chemical reaction paths and to solve the kinetics at the experimental conditions. In the present review, its application to solve mechanistic/kinetics problems in different research areas will be presented. Examples will be given of reactions involved in photodissociation dynamics, mass spectrometry, combustion chemistry and organometallic catalysis. Some planned improvements will also be described.
Collapse
|
13
|
Janesko BG, Li L, Mensing R. Quantum Chemical Fragment Precursor Tests: Accelerating de novo annotation of tandem mass spectra. Anal Chim Acta 2017; 995:52-64. [DOI: 10.1016/j.aca.2017.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 01/23/2023]
|
14
|
Rossich Molina E, Eizaguirre A, Haldys V, Urban D, Doisneau G, Bourdreux Y, Beau J, Salpin J, Spezia R. Characterization of Protonated Model Disaccharides from Tandem Mass Spectrometry and Chemical Dynamics Simulations. Chemphyschem 2017; 18:2812-2823. [DOI: 10.1002/cphc.201700202] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/09/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Estefania Rossich Molina
- LAMBE, Univ Evry, CEA, CNRSUniversité Paris-Saclay F-91025 Evry France
- LAMBE, Université Cergy-PontoiseUniversité Paris-Seine F-91025 Evry France
| | - Ane Eizaguirre
- LAMBE, Univ Evry, CEA, CNRSUniversité Paris-Saclay F-91025 Evry France
- LAMBE, Université Cergy-PontoiseUniversité Paris-Seine F-91025 Evry France
| | - Violette Haldys
- LAMBE, Univ Evry, CEA, CNRSUniversité Paris-Saclay F-91025 Evry France
- LAMBE, Université Cergy-PontoiseUniversité Paris-Seine F-91025 Evry France
| | - Dominique Urban
- ICMMO—SM2B, Univ Paris-SudUniversité Paris-Saclay and CNRS F-91405 Orsay France
| | - Gilles Doisneau
- ICMMO—SM2B, Univ Paris-SudUniversité Paris-Saclay and CNRS F-91405 Orsay France
| | - Yann Bourdreux
- ICMMO—SM2B, Univ Paris-SudUniversité Paris-Saclay and CNRS F-91405 Orsay France
| | - Jean‐Marie Beau
- ICMMO—SM2B, Univ Paris-SudUniversité Paris-Saclay and CNRS F-91405 Orsay France
| | - Jean‐Yves Salpin
- LAMBE, Univ Evry, CEA, CNRSUniversité Paris-Saclay F-91025 Evry France
- LAMBE, Université Cergy-PontoiseUniversité Paris-Seine F-91025 Evry France
| | - Riccardo Spezia
- LAMBE, Univ Evry, CEA, CNRSUniversité Paris-Saclay F-91025 Evry France
- LAMBE, Université Cergy-PontoiseUniversité Paris-Seine F-91025 Evry France
| |
Collapse
|
15
|
Spezia R, Martínez-Nuñez E, Vazquez S, Hase WL. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:20170035. [PMID: 28320909 PMCID: PMC5360905 DOI: 10.1098/rsta.2017.0035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
Collapse
Affiliation(s)
- Riccardo Spezia
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CEA CNRS Université Paris Saclay, 91025 Evry, France
- LAMBE, Université d'Evry, 91025 Evry, France
| | - Emilio Martínez-Nuñez
- Departamento de Química Física and Centro Singular de Investigación en Química, Biológica y Materiales Moleculares (CIQUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Saulo Vazquez
- Departamento de Química Física and Centro Singular de Investigación en Química, Biológica y Materiales Moleculares (CIQUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - William L Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
16
|
Homayoon Z, Pratihar S, Dratz E, Snider R, Spezia R, Barnes GL, Macaluso V, Martin Somer A, Hase WL. Model Simulations of the Thermal Dissociation of the TIK(H+)2 Tripeptide: Mechanisms and Kinetic Parameters. J Phys Chem A 2016; 120:8211-8227. [DOI: 10.1021/acs.jpca.6b05884] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zahra Homayoon
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Subha Pratihar
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | | | | | - Riccardo Spezia
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry Val d’Essonne UMR 8587 CNRS-CEA-UEVE, Bd. F. Mitterrand, 91025 Evry Cedex, France
| | - George L. Barnes
- Department
of Chemistry and Biochemistry, Siena College, Loudonville, New York 12211, United States
| | - Veronica Macaluso
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry Val d’Essonne UMR 8587 CNRS-CEA-UEVE, Bd. F. Mitterrand, 91025 Evry Cedex, France
| | - Ana Martin Somer
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry Val d’Essonne UMR 8587 CNRS-CEA-UEVE, Bd. F. Mitterrand, 91025 Evry Cedex, France
| | - William L. Hase
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
17
|
Bauer CA, Grimme S. How to Compute Electron Ionization Mass Spectra from First Principles. J Phys Chem A 2016; 120:3755-66. [DOI: 10.1021/acs.jpca.6b02907] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christoph Alexander Bauer
- Mulliken Center for Theoretical
Chemistry, Institut für Physikalische und Theoretische Chemie
der Rheinischen Friedrich-Wilhelms, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical
Chemistry, Institut für Physikalische und Theoretische Chemie
der Rheinischen Friedrich-Wilhelms, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
18
|
Spezia R, Martin-Somer A, Macaluso V, Homayoon Z, Pratihar S, Hase WL. Unimolecular dissociation of peptides: statistical vs. non-statistical fragmentation mechanisms and time scales. Faraday Discuss 2016; 195:599-618. [DOI: 10.1039/c6fd00126b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work we have investigated mechanisms of gas phase unimolecular dissociation of a relatively simple dipeptide, the di-proline anion, by means of chemical dynamics simulations, using the PM3 semi-empirical Hamiltonian. In particular, we have considered two activation processes that are representative limits of what occurs in collision induced dissociation experiments: (i) thermal activation, corresponding to several low energy collisions, in which the system is prepared with a microcanonical distribution of energy; (ii) collisional activation where a single shock of hundreds of kcal mol−1 (300 kcal mol−1 in the present case) can transfer sufficient energy to allow dissociation. From these two activation processes we obtained different product abundances, and for one particular fragmentation pathway a clear mechanistic difference for the two activation processes. This mechanism corresponds to the leaving of an OH− group and subsequent formation of water by taking a proton from the remaining molecule. This last reaction is always observed in thermal activation while in collisional activation it is less favoured and the formation of OH− as a final product is observed. More importantly, we show that while in thermal activation unimolecular dissociation follows exponential decay, in collision activation the initial population decays with non-exponential behaviour. Finally, from the thermal activation simulations it was possible to obtain rate constants as a function of temperature that show Arrhenius behaviour. Thus activation energies have also been extracted from these simulations.
Collapse
Affiliation(s)
- Riccardo Spezia
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement
- CEA CNRS
- Université Paris Saclay
- 91025 Evry
- France
| | - Ana Martin-Somer
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement
- CEA CNRS
- Université Paris Saclay
- 91025 Evry
- France
| | - Veronica Macaluso
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement
- CEA CNRS
- Université Paris Saclay
- 91025 Evry
- France
| | - Zahra Homayoon
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Subha Pratihar
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - William L. Hase
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| |
Collapse
|
19
|
Rossich Molina E, Salpin JY, Spezia R, Martínez-Núñez E. On the gas phase fragmentation of protonated uracil: a statistical perspective. Phys Chem Chem Phys 2016; 18:14980-90. [DOI: 10.1039/c6cp01657j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major fragmentation pathways of protonated uracil calculated in this work using statistical methods agree with mass spectrometry experiments.
Collapse
Affiliation(s)
- Estefanía Rossich Molina
- Université d'Evry Val d'Essonne
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement
- Boulevard François Mitterrand
- Evry
- France
| | - Jean-Yves Salpin
- Université d'Evry Val d'Essonne
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement
- Boulevard François Mitterrand
- Evry
- France
| | - Riccardo Spezia
- Université d'Evry Val d'Essonne
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement
- Boulevard François Mitterrand
- Evry
- France
| | - Emilio Martínez-Núñez
- Departamento de Química Física and Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS)
- Campus Vida
- Universidade de Santiago de Compostela
- Santiago de Compostela
- Spain
| |
Collapse
|
20
|
Molina ER, Ortiz D, Salpin JY, Spezia R. Elucidating collision induced dissociation products and reaction mechanisms of protonated uracil by coupling chemical dynamics simulations with tandem mass spectrometry experiments. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1340-51. [PMID: 26634967 DOI: 10.1002/jms.3704] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/28/2015] [Accepted: 09/14/2015] [Indexed: 05/17/2023]
Abstract
In this study we have coupled mixed quantum-classical (quantum mechanics/molecular mechanics) direct chemical dynamics simulations with electrospray ionization/tandem mass spectrometry experiments in order to achieve a deeper understanding of the fragmentation mechanisms occurring during the collision induced dissociation of gaseous protonated uracil. Using this approach, we were able to successfully characterize the fragmentation pathways corresponding to ammonia loss (m/z 96), water loss (m/z 95) and cyanic or isocyanic acid loss (m/z 70). Furthermore, we also performed experiments with isotopic labeling completing the fragmentation picture. Remarkably, fragmentation mechanisms obtained from chemical dynamics simulations are consistent with those deduced from isotopic labeling.
Collapse
Affiliation(s)
- Estefanía Rossich Molina
- Université d'Evry Val d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Boulevard François Mitterrand, 91025, Evry, France
- CNRS-UMR 8587, Evry, France
| | - Daniel Ortiz
- Institut Rayonnement Matière de Saclay, NIMBE/CEA, LIONS, Bât. 546, F-91191, Gif-sur-Yvette Cedex, France
- CNRS-UMR 3685, Gif-sur-Yvette Cedex, France
| | - Jean-Yves Salpin
- Université d'Evry Val d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Boulevard François Mitterrand, 91025, Evry, France
- CNRS-UMR 8587, Evry, France
| | - Riccardo Spezia
- Université d'Evry Val d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Boulevard François Mitterrand, 91025, Evry, France
- CNRS-UMR 8587, Evry, France
| |
Collapse
|
21
|
Martín-Sómer A, Gaigeot MP, Yáñez M, Spezia R. A RRKM study and a DFT assessment on gas-phase fragmentation of formamide-M(2+) (M = Ca, Sr). Phys Chem Chem Phys 2015; 16:14813-25. [PMID: 24921953 DOI: 10.1039/c4cp01756k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A kinetic study of the unimolecular reactivity of formamide-M(2+) (M = Ca, Sr) systems was carried out by means of RRKM statistical theory using high-level DFT. The results predict M(2+), [M(NH2)](+) and [HCO](+) as the main products, together with an intermediate that could eventually evolve to produce [M(NH3)](2+) and CO, for high values of internal energy. In this framework, we also evaluated the influence of the external rotational energy on the reaction rate constants. In order to find a method to perform reliable electronic structure calculations for formamide-M(2+) (M = Ca, Sr) at a relatively low computational cost, an assessment of different methods was performed. In the first assessment twenty-one functionals, belonging to different DFT categories, and an MP2 wave function method using a small basis set were evaluated. CCSD(T)/cc-pWCVTZ single point calculations were used as reference. A second assessment has been performed on geometries and energies. We found BLYP/6-31G(d) and G96LYP/6-31+G(d,p) as the best performing methods, for formamide-Ca(2+) and formamide-Sr(2+), respectively. Furthermore, a detailed assessment was done on RRKM reactivity and G96LYP/6-31G(d) provided results in agreement with higher level calculations. The combination of geometrical, energetics and kinetics (RRKM) criteria to evaluate DFT functionals is rather unusual and provides an original assessment procedure. Overall, we suggest using G96LYP as the best performing functional with a small basis set for both systems.
Collapse
Affiliation(s)
- Ana Martín-Sómer
- Departamento de Química, Facultad de Ciencias, Módulo 13. Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, E-28049 Madrid, Spain.
| | | | | | | |
Collapse
|
22
|
Martín-Sómer A, Yáñez M, Gaigeot MP, Spezia R. Unimolecular Fragmentation Induced By Low-Energy Collision: Statistically or Dynamically Driven? J Phys Chem A 2014; 118:10882-93. [DOI: 10.1021/jp5076059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Martín-Sómer
- Departamento
de Química, Facultad de Ciencias, Módulo
13. Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC. Cantoblanco, E-28049 Madrid, Spain
- Université d’Evry Val d’Essonne, UMR 8587 LAMBE, Boulevard F. Mitterrand, 91025 Evry Cedex, France
| | - Manuel Yáñez
- Departamento
de Química, Facultad de Ciencias, Módulo
13. Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC. Cantoblanco, E-28049 Madrid, Spain
| | - Marie-Pierre Gaigeot
- Université d’Evry Val d’Essonne, UMR 8587 LAMBE, Boulevard F. Mitterrand, 91025 Evry Cedex, France
- CNRS, Laboratoire Analyse
et Modélisation pour la Biologie et
l’Environnement, UMR 8587, Boulevard
F. Mitterrand, 91025 Evry Cedex, France
- Institut Universitaire de France (IUF), 103 Blvd St Michel, 75005 Paris, France
| | - Riccardo Spezia
- Université d’Evry Val d’Essonne, UMR 8587 LAMBE, Boulevard F. Mitterrand, 91025 Evry Cedex, France
- CNRS, Laboratoire Analyse
et Modélisation pour la Biologie et
l’Environnement, UMR 8587, Boulevard
F. Mitterrand, 91025 Evry Cedex, France
| |
Collapse
|
23
|
West B, Sit A, Mohamed S, Joblin C, Blanchet V, Bodi A, Mayer PM. Dissociation of the anthracene radical cation: a comparative look at iPEPICO and collision-induced dissociation mass spectrometry results. J Phys Chem A 2014; 118:9870-8. [PMID: 25245634 DOI: 10.1021/jp505438f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dissociation of the anthracene radical cation has been studied using two different methods: imaging photoelectron photoion coincidence spectrometry (iPEPCO) and atmospheric pressure chemical ionization-collision induced dissociation mass spectrometry (APCI-CID). Four reactions were investigated: (R1) C14H10(+•) → C14H9(+) + H, (R2) C14H9(+) → C14H8(+•) + H, (R3) C14H10(+•) → C12H8(+•) + C2H2 and (R4) C14H10(+•) → C10H8(+•) + C4H2. An attempt was made to assign structures to each fragment ion, and although there is still room for debate whether for the C12H8(+•) fragment ion is a cyclobuta[b]naphthalene or a biphenylene cation, our modeling results and calculations appear to suggest the more likely structure is cyclobuta[b]naphthalene. The results from the iPEPICO fitting of the dissociation of ionized anthracene are E0 = 4.28 ± 0.30 eV (R1), 2.71 ± 0.20 eV (R2), and 4.20 ± 0.30 eV (average of reaction R3) whereas the Δ(‡)S values (in J K(-1) mol(-1)) are 12 ± 15 (R1), 0 ± 15 (R2), and either 7 ± 10 (using cyclobuta[b]naphthalene ion fragment in reaction R3) or 22 ± 10 (using the biphenylene ion fragment in reaction R3). Modeling of the APCI-CID breakdown diagrams required an estimate of the postcollision internal energy distribution, which was arbitrarily assumed to correspond to a Boltzmann distribution in this study. One goal of this work was to determine if this assumption yields satisfactory energetics in agreement with the more constrained and theoretically vetted iPEPICO results. In the end, it did, with the APCI-CID results being similar.
Collapse
Affiliation(s)
- Brandi West
- Chemistry Department, University of Ottawa , Ottawa, Canada K1N 6N5
| | | | | | | | | | | | | |
Collapse
|
24
|
Conte R, Houston PL, Bowman JM. Trajectory Study of Energy Transfer and Unimolecular Dissociation of Highly Excited Allyl with Argon. J Phys Chem A 2014; 118:7742-57. [DOI: 10.1021/jp5062013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Riccardo Conte
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Paul L. Houston
- School
of Chemistry and Biochemistry Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department
of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14852, United States
| | - Joel M. Bowman
- Department
of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
25
|
Conte R, Houston PL, Bowman JM. Classical Trajectory Study of Energy Transfer in Collisions of Highly Excited Allyl Radical with Argon. J Phys Chem A 2013; 117:14028-41. [DOI: 10.1021/jp410315r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Riccardo Conte
- Department of Chemistry and Cherry L. Emerson
Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Paul L. Houston
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joel M. Bowman
- Department of Chemistry and Cherry L. Emerson
Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
26
|
Rodríguez-Fernández R, Vázquez SA, Martínez-Núñez E. Collision-induced dissociation mechanisms of [Li(uracil)]+. Phys Chem Chem Phys 2013; 15:7628-37. [DOI: 10.1039/c3cp50564b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
Spezia R, Cimas A, Gaigeot MP, Salpin JY, Song K, Hase WL. Collision induced dissociation of doubly-charged ions: Coulomb explosion vs. neutral loss in [Ca(urea)]2+ gas phase unimolecular reactivity via chemical dynamics simulations. Phys Chem Chem Phys 2012; 14:11724-36. [PMID: 22828785 DOI: 10.1039/c2cp41379e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we report different theoretical approaches to study the gas-phase unimolecular dissociation of the doubly-charged cation [Ca(urea)](2+), in order to rationalize recent experimental findings. Quantum mechanical plus molecular mechanical (QM/MM) direct chemical dynamics simulations were used to investigate collision induced dissociation (CID) and rotational-vibrational energy transfer for Ar + [Ca(urea)](2+) collisions. For the picosecond time-domain of the simulations, both neutral loss and Coulomb explosion reactions were found and the differences in their mechanisms elucidated. The loss of neutral urea subsequent to collision with Ar occurs via a shattering mechanism, while the formation of two singly-charged cations follows statistical (or almost statistical) dynamics. Vibrational-rotational energy transfer efficiencies obtained for trajectories that do not dissociate during the trajectory integration were used in conjunction with RRKM rate constants to approximate dissociation pathways assuming complete intramolecular vibrational energy redistribution (IVR) and statistical dynamics. This statistical limit predicts, as expected, that at long time the most stable species on the potential energy surface (PES) dominate. These results, coupled with experimental CID from which both neutral loss and Coulomb explosion products were obtained, show that the gas phase dissociation of this ion occurs by multiple mechanisms leading to different products and that reactivity on the complicated PES is dynamically complex.
Collapse
Affiliation(s)
- Riccardo Spezia
- Université d'Evry Val d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, UMR 8587 CNRS-CEA-UEVE, Evry, France.
| | | | | | | | | | | |
Collapse
|
28
|
Schweigert IV, Dunlap BI. Shattering dissociation in high-energy molecular collisions between nitrate esters. J Chem Phys 2011; 135:114306. [DOI: 10.1063/1.3640000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Mayer PM, Martineau E. Gas-phase binding energies for non-covalent Aβ-40 peptide/small molecule complexes from CID mass spectrometry and RRKM theory. Phys Chem Chem Phys 2011; 13:5178-86. [DOI: 10.1039/c0cp02149k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Knyazev VD, Stein SE. Monte Carlo/RRKM/Classical Trajectories Modeling of Collisional Excitation and Dissociation of n-Butylbenzene Ion in Multipole Collision Cells of Tandem Mass Spectrometers. J Phys Chem A 2010; 114:6384-93. [DOI: 10.1021/jp101526m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vadim D. Knyazev
- Chemical and Biochemical Reference Data Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, and Research Center for Chemical Kinetics, Department of Chemistry, The Catholic University of America, Washington, D.C. 20064
| | - Stephen E. Stein
- Chemical and Biochemical Reference Data Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, and Research Center for Chemical Kinetics, Department of Chemistry, The Catholic University of America, Washington, D.C. 20064
| |
Collapse
|
31
|
Knyazev VD, Stein SE. Classical trajectories and RRKM modeling of collisional excitation and dissociation of benzylammonium and tert-butyl benzylammonium ions in a quadrupole-hexapole-quadrupole tandem mass spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:425-439. [PMID: 20060316 DOI: 10.1016/j.jasms.2009.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 11/24/2009] [Accepted: 11/24/2009] [Indexed: 05/28/2023]
Abstract
Collision-induced dissociation of the benzylammonium and the 4-tert-butyl benzylammonium ions was studied experimentally in an electrospray ionization quadrupole-hexapole-quadrupole tandem mass spectrometer. Ion fragmentation efficiencies were determined as functions of the kinetic energy of ions and the collider gas (argon) pressure. A theoretical Monte Carlo model of ion collisional excitation, scattering, and decomposition was developed. The model includes simulation of the trajectories of the parent and the product ions flight through the hexapole collision cell, quasiclassical trajectory modeling of collisional activation and scattering of ions, and Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the parent ion decomposition. The results of modeling demonstrate a general agreement between calculations and experiment. Calculated values of ion fragmentation efficiency are sensitive to initial vibrational excitation of ions, scattering of product ions from the collision cell, and distribution of initial ion velocities orthogonal to the axis of the collision cell. Three critical parameters of the model were adjusted to reproduce the experimental data on the dissociation of the benzylammonium ion: reaction enthalpy and initial internal and translational temperatures of the ions. Subsequent application of the model to decomposition of the t-butyl benzylammonium ion required adjustment of the internal ion temperature only. Energy distribution functions obtained in modeling depend on the average numbers of collisions between the ion and the atoms of the collider gas and, in general, have non-Boltzmann shapes.
Collapse
Affiliation(s)
- Vadim D Knyazev
- National Institute of Standards and Technology, Physical and Chemical Properties Division, Gaithersburg, Maryland, USA.
| | | |
Collapse
|
32
|
Spezia R, Salpin JY, Gaigeot MP, Hase WL, Song K. Protonated Urea Collision-Induced Dissociation. Comparison of Experiments and Chemical Dynamics Simulations. J Phys Chem A 2009; 113:13853-62. [DOI: 10.1021/jp906482v] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Riccardo Spezia
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Bd. F. Mitterrand, 91025 Evry Cedex, France, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, and Department of Chemistry, Korea National University of Education, Chungbuk, 363-791 South Korea
| | - Jean-Yves Salpin
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Bd. F. Mitterrand, 91025 Evry Cedex, France, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, and Department of Chemistry, Korea National University of Education, Chungbuk, 363-791 South Korea
| | - Marie-Pierre Gaigeot
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Bd. F. Mitterrand, 91025 Evry Cedex, France, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, and Department of Chemistry, Korea National University of Education, Chungbuk, 363-791 South Korea
| | - William L. Hase
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Bd. F. Mitterrand, 91025 Evry Cedex, France, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, and Department of Chemistry, Korea National University of Education, Chungbuk, 363-791 South Korea
| | - Kihyung Song
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, CNRS UMR 8587, Université d’Evry-Val-d’Essonne, Bd. F. Mitterrand, 91025 Evry Cedex, France, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, Texas 79409, and Department of Chemistry, Korea National University of Education, Chungbuk, 363-791 South Korea
| |
Collapse
|
33
|
Mayer PM, Poon C. The mechanisms of collisional activation of ions in mass spectrometry. MASS SPECTROMETRY REVIEWS 2009; 28:608-639. [PMID: 19326436 DOI: 10.1002/mas.20225] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This article is a review of the mechanisms responsible for collisional activation of ions in mass spectrometers. Part I gives a general introduction to the processes occurring when a projectile ion and neutral target collide. The theoretical background to the physical phenomena of curve-crossing excitation (for electronic and vibrational excitation), impulsive collisions (for direct translational to vibrational energy transfer), and the formation of long-lived collision intermediates is presented. Part II highlights the experimental and computational investigations that have been made into collisional activation for four experimental conditions: high (>100 eV) and intermediate (1-100 eV) center-of-mass collision energies, slow heating collisions (multiple low-energy collisions) and collisions with surfaces. The emphasis in this section is on the derived post-collision internal energy distributions that have been found to be typical for projectile ions undergoing collisions in these regimes.
Collapse
Affiliation(s)
- Paul M Mayer
- Chemistry Department, University of Ottawa, Ottawa, Canada K1N 6N5.
| | | |
Collapse
|
34
|
Tasić U, Alexeev Y, Vayner G, Crawford TD, Windus TL, Hase WL. Ab initio and analytic intermolecular potentials for Ar–CH3OH. Phys Chem Chem Phys 2006; 8:4678-84. [PMID: 17047766 DOI: 10.1039/b609743j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar-CH(3)OH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH(3)OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar-C, Ar-O, Ar-H(C), and Ar-H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol(-1), and adding an additional r(-n) term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar-CH(3)OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. The structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol(-1) with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol(-1) smaller than this value. The well depths of the other two minima are within 0.16 kcal mol(-1) of the global minimum. The analytic Ar-CH(3)OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol(-1) of the ab initio values. Combining this Ar-CH(3)OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.
Collapse
Affiliation(s)
- Uros Tasić
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, USA
| | | | | | | | | | | |
Collapse
|