1
|
Formulation of temperature dependent effective Hartree potential incorporating quadratic over linear molecular DOFs-surface modes couplings and its effect on quantum dynamics of D2 (v = 0, j = 0)/D2 (v = 0, j = 2) on Cu(111) metal surface. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
|
3
|
Liu T, Fu B, Zhang DH. Six-dimensional potential energy surfaces for the dissociative chemisorption of HCl on rigid Ag(100) and Ag(110) surfaces. J Chem Phys 2019; 151:144707. [DOI: 10.1063/1.5122218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tianhui Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
4
|
Smeets EF, Füchsel G, Kroes GJ. Quantum Dynamics of Dissociative Chemisorption of H 2 on the Stepped Cu(211) Surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:23049-23063. [PMID: 31565113 PMCID: PMC6757508 DOI: 10.1021/acs.jpcc.9b06539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Reactions on stepped surfaces are relevant to heterogeneous catalysis, in which a reaction often takes place at the edges of nanoparticles where the edges resemble steps on single-crystal stepped surfaces. Previous results on H2 + Cu(211) showed that, in this system, steps do not enhance the reactivity and raised the question of whether this effect could be, in any way, related to the neglect of quantum dynamical effects in the theory. To investigate this, we present full quantum dynamical molecular beam simulations of sticking of H2 on Cu(211), in which all important rovibrational states populated in a molecular beam experiment are taken into account. We find that the reaction of H2 with Cu(211) is very well described with quasi-classical dynamics when simulating molecular beam sticking experiments, in which averaging takes place over a large number of rovibrational states and over translational energy distributions. Our results show that the stepped Cu(211) surface is distinct from its component Cu(111) terraces and Cu(100) steps and cannot be described as a combination of its component parts with respect to the reaction dynamics when considering the orientational dependence. Specifically, we present evidence that, at translational energies close to the reaction threshold, vibrationally excited molecules show a negative rotational quadrupole alignment parameter on Cu(211), which is not found on Cu(111) and Cu(100). The effect arises because these molecules react with a site-specific reaction mechanism at the step, that is, inelastic rotational enhancement, which is only effective for molecules with a small absolute value of the magnetic rotation quantum number. From a comparison to recent associative desorption experiments as well as Born-Oppenheimer molecular dynamics calculations, it follows that the effects of surface atom motion and electron-hole pair excitation on the reactivity fall within chemical accuracy, that is, modeling these effect shifts extracted reaction probability curves by less than 1 kcal/mol translational energy. We found no evidence in our fully state-resolved calculations for the "slow" reaction channel that was recently reported for associative desorption of H2 from Cu(111) and Cu(211), but our results for the fast channel are in good agreement with the experiments on H2 + Cu(211).
Collapse
Affiliation(s)
- Egidius
W. F. Smeets
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gernot Füchsel
- Institut
für Chemie und Biochemie - Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Geert-Jan Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
5
|
Ghassemi EN, Smeets EWF, Somers MF, Kroes GJ, Groot IMN, Juurlink LBF, Füchsel G. Transferability of the Specific Reaction Parameter Density Functional for H 2 + Pt(111) to H 2 + Pt(211). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:2973-2986. [PMID: 30792827 PMCID: PMC6376921 DOI: 10.1021/acs.jpcc.8b11018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/20/2018] [Indexed: 05/25/2023]
Abstract
The accurate description of heterogeneously catalyzed reactions may require chemically accurate evaluation of barriers for reactions of molecules at the edges of metal nanoparticles. It was recently shown that a semiempirical density functional describing the interaction of a molecule dissociating on a flat metal surface (CHD3 + Pt(111)) is transferable to the same molecule reacting on a stepped surface of the same metal (Pt(211)). However, validation of the method for additional systems is desirable. To address the question whether the specific reaction parameter (SRP) functional that describes H2 + Pt(111) with chemical accuracy is also capable of accurately describing H2 + Pt(211), we have performed molecular beam simulations with the quasi-classical trajectory (QCT) method, using the SRP functional developed for H2 + Pt(111). Our calculations used the Born-Oppenheimer static surface model. The accuracy of the QCT method was assessed by comparison with quantum dynamics results for reaction of the ro-vibrational ground state of H2. The theoretical results for sticking of H2 and D2 on Pt(211) are in quite good agreement with the experiment, but uncertainties remain because of a lack of accuracy of the QCT simulations at low incidence energies and possible inaccuracies in the reported experimental incidence energies at high energies. We also investigated the nonadiabatic effect of electron-hole pair excitation on the reactivity using the molecular dynamics with the electron friction (MDEF) method, employing the local density friction approximation (LDFA). Only small effects of electron-hole pair excitation on sticking are found.
Collapse
Affiliation(s)
- Elham Nour Ghassemi
- Leiden Institute of Chemistry, Gorlaeus Laboratories,
Leiden University, P.O. Box 9502, 2300 RA Leiden,
The Netherlands
| | - Egidius W. F. Smeets
- Leiden Institute of Chemistry, Gorlaeus Laboratories,
Leiden University, P.O. Box 9502, 2300 RA Leiden,
The Netherlands
| | - Mark F. Somers
- Leiden Institute of Chemistry, Gorlaeus Laboratories,
Leiden University, P.O. Box 9502, 2300 RA Leiden,
The Netherlands
| | - Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories,
Leiden University, P.O. Box 9502, 2300 RA Leiden,
The Netherlands
| | - Irene M. N. Groot
- Leiden Institute of Chemistry, Gorlaeus Laboratories,
Leiden University, P.O. Box 9502, 2300 RA Leiden,
The Netherlands
| | - Ludo B. F. Juurlink
- Leiden Institute of Chemistry, Gorlaeus Laboratories,
Leiden University, P.O. Box 9502, 2300 RA Leiden,
The Netherlands
| | - Gernot Füchsel
- Leiden Institute of Chemistry, Gorlaeus Laboratories,
Leiden University, P.O. Box 9502, 2300 RA Leiden,
The Netherlands
- Institut für Chemie und
Biochemie—Physikalische und Theoretische Chemie, Freie
Universität Berlin, Takustraße 3, 14195 Berlin,
Germany
| |
Collapse
|
6
|
van Lent R, Auras SV, Cao K, Walsh AJ, Gleeson MA, Juurlink LBF. Site-specific reactivity of molecules with surface defects—the case of H2 dissociation on Pt. Science 2019; 363:155-157. [DOI: 10.1126/science.aau6716] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/30/2018] [Indexed: 11/02/2022]
Abstract
The classic system that describes weakly activated dissociation in heterogeneous catalysis has been explained by two dynamical models that are fundamentally at odds. Whereas one model for hydrogen dissociation on platinum(111) invokes a preequilibrium and diffusion toward defects, the other is based on direct and local reaction. We resolve this dispute by quantifying site-specific reactivity using a curved platinum single-crystal surface. Reactivity is step-type dependent and varies linearly with step density. Only the model that relies on localized dissociation is consistent with our results. Our approach provides absolute, site-specific reaction cross sections.
Collapse
|
7
|
Füchsel G, Cao K, Er S, Smeets EWF, Kleyn AW, Juurlink LBF, Kroes GJ. Anomalous Dependence of the Reactivity on the Presence of Steps: Dissociation of D 2 on Cu(211). J Phys Chem Lett 2018; 9:170-175. [PMID: 29262681 PMCID: PMC5759030 DOI: 10.1021/acs.jpclett.7b03097] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Stepped metal surfaces are usually assumed to exhibit an increased catalytic activity for bond cleavage of small molecules over their flat single-crystal counterparts. We present experimental and theoretical data on the dissociative adsorption of molecular hydrogen on copper that contradicts this notion. We observe hydrogen molecules to be more reactive on the flat Cu(111) than on the stepped Cu(211) surface. We suggest that this exceptional behavior is due to a geometric effect, that is, that bond cleavage on the flat surface does not occur preferentially over a top site.
Collapse
Affiliation(s)
- Gernot Füchsel
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Kun Cao
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Süleyman Er
- Center
for Computational Energy Research, Dutch
Institute For Fundamental Energy Research, De Zaale 20, 5612
AJ Eindhoven, The Netherlands
| | - Egidius W. F. Smeets
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Aart W. Kleyn
- Center
of Interface Dynamics for Sustainability, Institute of Materials,
CAEP, 596 Yinhe Road
seventh Section, Shuangliu,Chengdu, Sichuan 610200, People’s
Republic of China
| | - Ludo B. F. Juurlink
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- L.B.F.J.: E-mail: . Tel: +31 (0)71 527 4221
| | - Geert-Jan Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- G.-J.K.: E-mail: . Tel: +31 (0)71 527 4396
| |
Collapse
|
8
|
Kroes GJ, Díaz C. Quantum and classical dynamics of reactive scattering of H2 from metal surfaces. Chem Soc Rev 2016; 45:3658-700. [DOI: 10.1039/c5cs00336a] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
State-of-the-art theoretical models allow nowadays an accurate description of H2/metal surface systems and phenomena relative to heterogeneous catalysis. Here we review the most relevant ones investigated during the last 10 years.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry
- Gorlaeus Laboratories
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - Cristina Díaz
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
9
|
Jacobse L, den Dunnen A, Juurlink LBF. The molecular dynamics of adsorption and dissociation of O2 on Pt(553). J Chem Phys 2015; 143:014703. [DOI: 10.1063/1.4923006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Leon Jacobse
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Angela den Dunnen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Ludo B. F. Juurlink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
10
|
Pétuya R, Larrégaray P, Crespos C, Busnengo HF, Martínez AE. Dynamics of H2 Eley-Rideal abstraction from W(110): Sensitivity to the representation of the molecule-surface potential. J Chem Phys 2014; 141:024701. [DOI: 10.1063/1.4885139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- R. Pétuya
- Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex, France
- CNRS, ISM, UMR5255, F-33400 Talence, France
| | - P. Larrégaray
- Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex, France
- CNRS, ISM, UMR5255, F-33400 Talence, France
| | - C. Crespos
- Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex, France
- CNRS, ISM, UMR5255, F-33400 Talence, France
| | - H. F. Busnengo
- Instituto de Física Rosario (IFIR) CONICET-UNR. Ocampo y Esmeralda (2000) Rosario, Argentina
| | - A. E. Martínez
- Instituto de Física Rosario (IFIR) CONICET-UNR. Ocampo y Esmeralda (2000) Rosario, Argentina
| |
Collapse
|
11
|
Groot IMN, Schouten KJP, Kleyn AW, Juurlink LBF. Dynamics of hydrogen dissociation on stepped platinum. J Chem Phys 2008; 129:224707. [DOI: 10.1063/1.3040268] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
12
|
Olsen RA, McCormack DA, Luppi M, Baerends EJ. Six-dimensional quantum dynamics of H2 dissociative adsorption on the Pt(211) stepped surface. J Chem Phys 2008; 128:194715. [DOI: 10.1063/1.2920488] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
McCormack DA. Dynamical pruning of static localized basis sets in time-dependent quantum dynamics. J Chem Phys 2006; 124:204101. [PMID: 16774313 DOI: 10.1063/1.2196889] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the viability of dynamical pruning of localized basis sets in time-dependent quantum wave packet methods. Basis functions that have a very small population at any given time are removed from the active set. The basis functions themselves are time independent, but the set of active functions changes in time. Two different types of localized basis functions are tested: discrete variable representation (DVR) functions, which are localized in position space, and phase-space localized (PSL) functions, which are localized in both position and momentum. The number of functions active at each point in time can be as much as an order of magnitude less for dynamical pruning than for static pruning, in reactive scattering calculations of H2 on the Pt(211) stepped surface. Scaling of the dynamically pruned PSL (DP-PSL) bases with dimension is considerably more favorable than for either the primitive (direct product) or DVR bases, and the DP-PSL basis set is predicted to be three orders of magnitude smaller than the primitive basis set in the current state-of-the-art six-dimensional reactive scattering calculations.
Collapse
Affiliation(s)
- Drew A McCormack
- Theoretische Chemie, Faculteit Exacte Wetenschappen, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|