1
|
Zanchet A, Roncero O, Karabulut E, Solem N, Romanzin C, Thissen R, Alcaraz C. The role of intersystem crossing in the reactive collision of S+(4S) with H2. J Chem Phys 2024; 161:044302. [PMID: 39037135 DOI: 10.1063/5.0214447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024] Open
Abstract
We report a study on the reactive collision of S+(4S) with H2, HD, and D2 combining guided ion beam experiments and quantum-mechanical calculations. It is found that the reactive cross sections reflect the existence of two different mechanisms, one being spin-forbidden. Using different models, we demonstrate that the spin-forbidden pathway follows a complex mechanism involving three electronic states instead of two as previously thought. The good agreement between theory and experiment validates the methodology employed and allows us to fully understand the reaction mechanism. This study also provides new fundamental insights into the intersystem crossing process.
Collapse
Affiliation(s)
- Alexandre Zanchet
- Instituto de Física Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain
| | - Octavio Roncero
- Instituto de Física Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain
| | - Ezman Karabulut
- Vocational School of Health Services, Bitlis Eren University, 13000 Bitlis, Turkey
| | - Nicolas Solem
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France and Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
| | - Claire Romanzin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France and Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
| | - Roland Thissen
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France and Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
| | - Christian Alcaraz
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France and Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Saint Aubin, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Mazo-Sevillano PD, Aguado A, Goicoechea JR, Roncero O. Quantum study of the CH3+ photodissociation in full-dimensional neural network potential energy surfaces. J Chem Phys 2024; 160:184307. [PMID: 38738612 DOI: 10.1063/5.0206895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
C H 3 + , a cornerstone intermediate in interstellar chemistry, has recently been detected for the first time by using the James Webb Space Telescope. The photodissociation of this ion is studied here. Accurate explicitly correlated multi-reference configuration interaction ab initio calculations are done, and full-dimensional potential energy surfaces are developed for the three lower electronic states, with a fundamental invariant neural network method. The photodissociation cross section is calculated using a full-dimensional quantum wave packet method in heliocentric Radau coordinates. The wave packet is represented in angular and radial grids, allowing us to reduce the number of points physically accessible, requiring to push up the spurious states appearing when evaluating the angular kinetic terms, through projection technique. The photodissociation spectra, when employed in astrochemical models to simulate the conditions of the Orion bar, result in a lesser destruction of CH3+ compared to that obtained when utilizing the recommended values in the kinetic database for astrochemistry.
Collapse
Affiliation(s)
- Pablo Del Mazo-Sevillano
- Unidad Asociada UAM-IFF-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alfredo Aguado
- Unidad Asociada UAM-IFF-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier R Goicoechea
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| | - Octavio Roncero
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
3
|
Mao Y, Yang Z, Buren B, Chen M. Unveiling Quantum Interference in the D + + H 2 Nonadiabatic Reaction Dynamics at Low Collision Energies. J Phys Chem A 2024; 128:420-430. [PMID: 38174889 DOI: 10.1021/acs.jpca.3c07097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Fully converged nonadiabatic dynamics calculations of the D+ + H2 → H+ + HD reaction are performed at low temperatures using the time-dependent wave packet approach based on a set of precise 3 × 3 diabatic potential energy surfaces (PESs) ( Phys. Chem. Chem. Phys., 2021, 23, 7735-7747, DOI: 10.1039/D0CP04100A). The D+ + H2 reaction is mediated by a dense manifold of resonances associated with the deep potential well on the ground-state PES. The calculated results show that the nonadiabatic coupling can affect the resonance positions, deviating from the expectation based solely on adiabatic considerations. Furthermore, significant forward-backward asymmetry in total differential cross sections (DCSs) is revealed, which is markedly influenced by nonadiabatic effects. The nonadiabatic effects not only affect the contribution of partial waves in the reaction but also make the interference patterns in the DCSs change significantly.
Collapse
Affiliation(s)
- Ye Mao
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China
| | - Zijiang Yang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China
| | - Bayaer Buren
- School of Science, Shenyang University of Technology, Shenyang 110870, PR China
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
4
|
Chen H, Buren B, Yang Z, Chen M. An effective approximation of Coriolis coupling in reactive scattering: application to the time-dependent wave packet calculations. Phys Chem Chem Phys 2023; 25:22927-22940. [PMID: 37591811 DOI: 10.1039/d3cp00530e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Coriolis coupling plays a crucial role in reactive scattering, but dynamics calculations including the complete Coriolis coupling significantly increase the difficulty of numerical evolution due to the corresponding expensive matrix processing. The coupled state approximation that completely ignores the off-diagonal Coriolis coupling saves computational cost significantly but its error is usually unacceptable. In this paper, an improved coupled state approximation inspired by recently published results [D. Yang, X. Hu, D. H. Zhang and D. Xie, J. Chem. Phys., 2018, 148, 084101.] of the inelastic scattering problem is extended to deal with the reactive scattering. The calculations using the time-dependent wave packet method reveal that the new method can accurately reproduce the rigorous results of the H + HD (j0 < 3) → D + H2 reaction and immensely improve the computational efficiency. Additionally, we extend the new method to the non-adiabatic Li(2p) + H2 (v0 = 0, j0 = 0, 1) → H + LiH reaction, showcasing its advantages of low computational cost and high accuracy.
Collapse
Affiliation(s)
- Hanghang Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China.
| | - Bayaer Buren
- School of Science, Shenyang University of Technology, Shenyang 110870, PR China
| | - Zijiang Yang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China.
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
5
|
Gomez-Carrasco S, Felix-Gonzalez D, Aguado A, Roncero O. Spin-orbit transitions in the N +( 3P JA) + H 2 → NH +(X 2 Π, 4Σ -)+ H( 2S) reaction, using adiabatic and mixed quantum-adiabatic statistical approaches. J Chem Phys 2022; 157:084301. [DOI: 10.1063/5.0102376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The cross section and rate constants for the title reaction are calculated for all the spin-orbit states of N+(3PJA) using two statistical approaches, one purely adiabatic and the other one mixing quantum capture for the entrance channel and adiabatic treatment for the products channel. This is made by using a symmetry adapted basis set combining electronic (spin and orbital) and nuclear angular momenta in the reactants channel. To this aim, accurate ab initio calculations are performed separately for reactants and products. In the reactants channel, the three lowest electronic states (without spin-orbit couplings) have been diabatized, and the spin-orbit couplings have been introduced through a model localizing the spin-orbit interactions in the N+ atom, which yields accurate results as compared to ab initio calculations including spin-orbit couplings. For the products, eleven purely adiabatic spin-orbit states have been determined with ab initio calculations. The reactive rate constants thus obtained are in very good agreement with the available experimental data for several ortho-H2 fractions, assuming a thermal initial distribution of spin-orbit states. The rate constants for selected spin-orbit JA states are obtained, to provide a proper validation of the spin-orbit effects to obtain the experimental rate constants.
Collapse
Affiliation(s)
| | | | - Alfredo Aguado
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
6
|
Desrousseaux B, Konings M, Loreau J, Lique F. HD-H + collisions: statistical and quantum state-to-state studies. Phys Chem Chem Phys 2021; 23:19202-19208. [PMID: 34524315 DOI: 10.1039/d1cp02564c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the early Universe, the cooling mechanisms of the gas significantly rely on the HD abundance and excitation conditions. A proper modeling of its formation and destruction paths as well as its excitation by both radiative and collisional processes is then required to accurately describe the cooling mechanisms of the pristine gas. In such media, ion-molecule reactions are dominant. Their theoretical study is challenging and state-of-the-art quantum time-independent methods are computationally limited to collisions involving light molecules. Here, we report a state-to-state scattering study of the HD-H+ collisional system using two different methods: an exact quantum time-independent approach and a recently developed fast and efficient statistical method. Reactive and inelastic rate coefficients were obtained for temperatures up to 300 K. The statistical method is able to reproduce exact calculations with an accuracy reaching the astrophysical needs while drastically reducing the computational resources requirements. Such results suggest that this new statistical method should be considered to provide the astrophysical community collisional data for which quantum calculations are impossible.
Collapse
Affiliation(s)
- Benjamin Desrousseaux
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France.
| | - Maarten Konings
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Jérôme Loreau
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - François Lique
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France.
| |
Collapse
|
7
|
Roncero O, Andrianarijaona V, Aguado A, Sanz-Sanz C. Vibrational effects in the quantum dynamics of the H + D 2+ charge transfer reaction. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1948125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- O. Roncero
- IFF-CSIC, Instituto de Física Fundamental, Madrid, Spain
| | - V. Andrianarijaona
- Department of Physics, Pacific Union College, Angwin, CA, USA
- Department of Physics and Engineering, Southern Adventist University, Collegedale, TN, USA
| | - A. Aguado
- Unidad Asociada UAM-CSIC, Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| | - C. Sanz-Sanz
- Unidad Asociada UAM-CSIC, Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Sanz-Sanz C, Aguado A, Roncero O. Near-resonant effects in the quantum dynamics of the H + H 2 + → H 2 + H + charge transfer reaction and isotopic variants. J Chem Phys 2021; 154:104104. [PMID: 33722048 DOI: 10.1063/5.0044320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The non-adiabatic quantum dynamics of the H + H2 + → H2 + H+ charge transfer reactions, and some isotopic variants, is studied with an accurate wave packet method. A recently developed 3 × 3 diabatic potential model is used, which is based on very accurate ab initio calculations and includes the long-range interactions for ground and excited states. It is found that for initial H2 +(v = 0), the quasi-degenerate H2(v' = 4) non-reactive charge transfer product is enhanced, producing an increase in the reaction probability and cross section. It becomes the dominant channel from collision energies above 0.2 eV, producing a ratio between v' = 4 and the rest of v's, which that increase up to 1 eV. The H + H2 + → H2 + + H exchange reaction channel is nearly negligible, while the reactive and non-reactive charge transfer reaction channels are of the same order, except that corresponding to H2(v' = 4), and the two charge transfer processes compete below 0.2 eV. This enhancement is expected to play an important vibrational and isotopic effect that needs to be evaluated. For the three proton case, the problem of the permutation symmetry is discussed when using reactant Jacobi coordinates.
Collapse
Affiliation(s)
- Cristina Sanz-Sanz
- Unidad Asociada UAM-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alfredo Aguado
- Unidad Asociada UAM-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Octavio Roncero
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
9
|
González-Lezana T, Hily-Blant P, Faure A. Rate constants for the H + + H 2 reaction from 5 K to 3000 K with a statistical quantum method. J Chem Phys 2021; 154:054310. [PMID: 33557572 DOI: 10.1063/5.0039629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An exhaustive investigation of state-to-state H+ + H2(v, j) → H+ + H2(v', j') transitions for rovibrational levels of molecular hydrogen below 1.3 eV from the bottom of the H2 well is carried out by means of a statistical quantum method, which assumes the complex-forming nature of the process. Integral cross sections for transitions involving states H2(v = 0, j = 0-12), H2(v = 1, j = 0-8), and H2(v = 2, j = 0-3) are obtained for collision energies within a range of Emin = 10-5 eV and Emax = 2 eV. Rate constants are then calculated between T = 5 K and 3000 K, and they are compared, when possible, with previous values reported in the literature. As a first application, the cooling rate coefficient of H2 excited by protons is determined and compared with a recent estimate.
Collapse
Affiliation(s)
| | | | - Alexandre Faure
- Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
| |
Collapse
|
10
|
State-to-state investigations of vibrational excitation effects for D+ + HD reaction. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Bulut N, Roncero O, Lique F. Possible Formation and Destruction of the OD + Ions in the Interstellar Medium. J Phys Chem A 2020; 124:6552-6561. [DOI: 10.1021/acs.jpca.0c05021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Niyazi Bulut
- Department of Physics, Firat University, 23169 Elazig̃, Turkey
| | - Octavio Roncero
- Instituto de Fı́sica Fundamental, CSIC, C/Serrano, 123, 28006 Madrid, Spain
| | - François Lique
- LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, F-76063 Le Havre, France
| |
Collapse
|
12
|
Gans B, Garcia GA, Boyé-Péronne S, Pratt ST, Guillemin JC, Aguado A, Roncero O, Loison JC. Origin band of the first photoionizing transition of hydrogen isocyanide. Phys Chem Chem Phys 2019; 21:2337-2344. [PMID: 30656348 PMCID: PMC6469576 DOI: 10.1039/c8cp07737a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoelectron spectrum of the X1Σ+ → X+2Σ+ ionizing transition of hydrogen isocyanide (HNC) is measured for the first time at a fixed photon energy (13 eV). The assignment of the spectrum is supported by wave-packet calculations simulating the photoionization transition spectrum and using ab initio calculations of the potential energy surfaces for the three lowest electronic states of the cation. The photoelectron spectrum allows the retrieval of the fundamental of the CN stretching mode of the cationic ground state ([small nu, Greek, tilde]3 = 2260 ± 80 cm-1) and the adiabatic ionization energy of hydrogen isocyanide: IE(HNC) = 12.011 ± 0.010 eV, which is far below that of HCN (IE(HCN) = 13.607 eV). In light of this latter result, the thermodynamics of the HCN+/HNC+ isomers is discussed and a short summary of the values available in the literature is given.
Collapse
Affiliation(s)
- Bérenger Gans
- Institut des Sciences Moléculaires d'Orsay (ISMO), UMR 8214 CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bhowmick S, Bossion D, Scribano Y, Suleimanov YV. The low temperature D + + H 2→ HD + H + reaction rate coefficient: a ring polymer molecular dynamics and quasi-classical trajectory study. Phys Chem Chem Phys 2018; 20:26752-26763. [PMID: 30324962 DOI: 10.1039/c8cp05398g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction between D+ and H2 plays an important role in astrochemistry at low temperatures and also serves as a prototype for a simple ion-molecule reaction. Its ground X[combining tilde]1A' state has a very small thermodynamic barrier (up to 1.8 × 10-2 eV) and the reaction proceeds through the formation of an intermediate complex lying within the potential well with a depth of at least 0.2 eV, thus representing a challenge for dynamical studies. In the present work, we analyze the title reaction within the temperature range of 20-100 K by means of ring polymer molecular dynamics (RPMD) and quasi-classical trajectory (QCT) methods over the full-dimensional global potential energy surface developed by Aguado et al. [A. Aguado, O. Roncero, C. Tablero, C. Sanz and M. Paniagua, J. Chem. Phys., 2000, 112, 1240]. The computed thermal RPMD and QCT rate coefficients are found to be almost independent of temperature and fall within the range of 1.34-2.01 × 10-9 cm3 s-1. They are also in very good agreement with previous time-independent quantum mechanical and statistical quantum method calculations. Furthermore, we observe that the choice of asymptotic separation distance between the reactants can markedly alter the rate coefficient in the low temperature regime (20-50 K). Therefore it is of utmost importance to correctly assign the value of this parameter for dynamical studies, particularly at very low temperatures of astrochemical importance. We finally conclude that the experimental rate measurements for the title reaction are highly desirable in future.
Collapse
Affiliation(s)
- Somnath Bhowmick
- Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.
| | - Duncan Bossion
- Laboratoire Univers et Particules de Montpellier, UMR-CNRS 5299, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Yohann Scribano
- Laboratoire Univers et Particules de Montpellier, UMR-CNRS 5299, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Yury V Suleimanov
- Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.
| |
Collapse
|
14
|
He H, Zhu W, Su W, Dong L, Li B. Accurate Quantum Wave Packet Study of the Deep Well D + + HD Reaction: Product Ro-vibrational State-Resolved Integral and Differential Cross Sections. J Phys Chem A 2018; 122:2319-2328. [DOI: 10.1021/acs.jpca.7b08941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haixiang He
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| | - Weimin Zhu
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| | - Wenli Su
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| | - Lihui Dong
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| | - Bin Li
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, People’s Republic of China
| |
Collapse
|
15
|
Aguado A, Roncero O, Zanchet A, Agúndez M, Cernicharo J. The Photodissociation of HCN and HNC: Effects on the HNC/HCN Abundance Ratio in the Interstellar Medium. THE ASTROPHYSICAL JOURNAL 2017; 838:33. [PMID: 28522878 PMCID: PMC5433558 DOI: 10.3847/1538-4357/aa63ee] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The impact of the photodissociation of HCN and HNC isomers is analyzed in different astrophysical environments. For this purpose, the individual photodissociation cross section of HCN and HNC isomers have been calculated in the 7-13.6 eV photon energy range for a temperature of 10 K. These calculations are based on the ab initio calculation of three-dimensional adiabatic potential energy surfaces of the 21 lower electronic states. The cross sections are then obtained using a quantum wave packet calculation of the rotational transitions needed to simulate a rotational temperature of 10 K. The cross section calculated for HCN shows significant differences with respect to the experimental one, and this is attributed to the need of considering non-adiabatic transitions. Ratios between the photodissociation rates of HCN and HNC under different ultraviolet radiation fields have been computed by renormalizing the rates to the experimental one. It is found that HNC is photodissociated faster than HCN by a factor of 2.2, for the local interstellar radiation field, and 9.2, for the solar radiation field at 1 au. We conclude that to properly describe the HNC/HCN abundance ratio in astronomical environments illuminated by an intense ultraviolet radiation field it is necessary to use different photodissociation rates for each of the two isomers, obtained by integrating the product of the photodissociation cross sections and ultraviolet radiation field over the relevant wavelength range.
Collapse
Affiliation(s)
- Alfredo Aguado
- Departamento de Química Física Aplicada (UAM), Unidad Asociada a IFF-CSIC, Facultad de Ciencias Módulo 14, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Octavio Roncero
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| | - Alexandre Zanchet
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| | - Marcelino Agúndez
- Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, Cantoblanco 28049, Spain
| | - José Cernicharo
- Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, Cantoblanco 28049, Spain
| |
Collapse
|
16
|
Chenel A, Roncero O, Aguado A, Agúndez M, Cernicharo J. Photodissociation of HCN and HNC isomers in the 7-10 eV energy range. J Chem Phys 2016; 144:144306. [PMID: 27083720 PMCID: PMC4894478 DOI: 10.1063/1.4945389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ultraviolet photoabsorption spectra of the HCN and HNC isomers have been simulated in the 7-10 eV photon energy range. For this purpose, the three-dimensional adiabatic potential energy surfaces of the 7 lowest electronic states, and the corresponding transition dipole moments, have been calculated, at multireference configuration interaction level. The spectra are calculated with a quantum wave packet method on these adiabatic potential energy surfaces. The spectra for the 3 lower excited states, the dissociative electronic states, correspond essentially to predissociation peaks, most of them through tunneling on the same adiabatic state. The 3 higher electronic states are bound, hereafter electronic bound states, and their spectra consist of delta lines, in the adiabatic approximation. The radiative lifetime towards the ground electronic states of these bound states has been calculated, being longer than 10 ns in all cases, much longer that the characteristic predissociation lifetimes. The spectra of HCN is compared with the available experimental and previous theoretical simulations, while in the case of HNC there are no previous studies to our knowledge. The spectrum for HNC is considerably more intense than that of HCN in the 7-10 eV photon energy range, which points to a higher photodissociation rate for HNC, compared to HCN, in astrophysical environments illuminated by ultraviolet radiation.
Collapse
Affiliation(s)
- Aurelie Chenel
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| | - Octavio Roncero
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| | - Alfredo Aguado
- Departamento de Química Física Aplicada (UAM), Unidad Asociada a IFF-CSIC, Facultad de Ciencias Módulo 14, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Marcelino Agúndez
- Instituto de Ciencias de Materiales (CCMM-CSIC), C.S.I.C., Cantoblanco, 28049 Madrid, Spain
| | - José Cernicharo
- Instituto de Ciencias de Materiales (CCMM-CSIC), C.S.I.C., Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
17
|
Bulut N, Lique F, Roncero O. Exchange and Inelastic OH(+) + H Collisions on the Doublet and Quartet Electronic States. J Phys Chem A 2015. [PMID: 26203890 DOI: 10.1021/acs.jpca.5b05246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The exchange and inelastic state-to-state cross sections for the OH(+) + H collisions are computed from wave packet calculations using the doublet and quartet ground electronic potential energy surface (PES) correlating to the open shell reactants, for collision energies in the range of 1 meV to 0.7 eV. The doublet PES presents a deep insertion well, of ≈6 eV, but the exchange reaction has a rather low probability, showing that the mechanism is not statistical. This well is also responsible of a rather high rotational energy transfer, which makes the rigid-rotor approach overestimate the cross section for low Δj transitions and for high collisonal energies. The quartet PES, with a much shallower well, also presents a low exchange reaction cross section, but the inelastic state-to-state cross sections are very well reproduced by rigid-rotor calculations. When the electronic partition is used to obtain the total state-to-state cross section, the contribution of the doublet state becomes small, and the resulting total cross sections become close to those obtained for the quartet state. Thus, the total (quartet and doublet) cross sections for this open shell system can be reproduced rather satisfactorily by those obtained with the rigid-rotor approximation on the quartet state. Finally, we compare the new OH(+)-H cross sections with OH(+)-He ones recently computed. We found significant differences, especially for transitions with large Δj showing that specific OH(+)-H calculations had to be performed to accurately analyze the OH(+) emission from interstellar molecular clouds.
Collapse
Affiliation(s)
- Niyazi Bulut
- Firat University , Department of Physics, 23169 Elazig̃, Turkey
| | - François Lique
- LOMC - UMR 6294, CNRS-Université du Havre , 25 rue Philippe Lebon, BP 1123-76 063, Le Havre, France
| | - Octavio Roncero
- Instituto de Física Fundamental, CSIC , C/Serrano, 123, 28006 Madrid, Spain
| |
Collapse
|
18
|
Lara M, Jambrina PG, Aoiz FJ, Launay JM. Cold and ultracold dynamics of the barrierless D+ + H2 reaction: Quantum reactive calculations for ∼R−4 long range interaction potentials. J Chem Phys 2015; 143:204305. [DOI: 10.1063/1.4936144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Manuel Lara
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - P. G. Jambrina
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - F. J. Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - J.-M. Launay
- Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes I, F-35042 Rennes, France
| |
Collapse
|
19
|
Bulut N, Kłos J, Roncero O. Quantum mechanical calculations of state-to-state cross sections and rate constants for the F + DCl → Cl + DF reaction. J Chem Phys 2015; 142:214310. [PMID: 26049499 DOI: 10.1063/1.4922110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up to 0.5 eV and different initial rotational and vibrational excitations, DCl(v = 0, j = 0 - 1; v = 1, j = 0). Also, initial-state resolved rate constants of the title reaction have been calculated in a temperature range of 100-400 K. It is found that the initial rotational excitation of the DCl molecule does not enhance reactivity, in contract to the reaction with the isotopologue HCl in which initial rotational excitation produces an important enhancement. These differences between the isotopologue reactions are analyzed in detail and attributed to the presence of resonances for HCl(v = 0, j), absent in the case of DCl(v = 0, j). For vibrational excited DCl(v = 1, j), however, the reaction cross section increases noticeably, what is also explained by another resonance.
Collapse
Affiliation(s)
- Niyazi Bulut
- Department of Physics, Firat University, 23169 Elazig˜, Turkey
| | - Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
| | - Octavio Roncero
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
20
|
Rajagopala Rao T, Mahapatra S, Honvault P. A comparative account of quantum dynamics of the H⁺ + H₂ reaction at low temperature on two different potential energy surfaces. J Chem Phys 2015; 141:064306. [PMID: 25134570 DOI: 10.1063/1.4892043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rotationally resolved reaction probabilities, integral cross sections, and rate constant for the H(+) + H2 (v = 0, j = 0 or 1) → H2 (v' = 0, j') + H(+) reaction are calculated using a time-independent quantum mechanical method and the potential energy surface of Kamisaka et al. [J. Chem. Phys. 116, 654 (2002)] (say KBNN PES). All partial wave contributions of the total angular momentum, J, are included to obtain converged cross sections at low collision energies and rate constants at low temperatures. In order to test the accuracy of the KBNN PES, the results obtained here are compared with those obtained in our earlier work [P. Honvault et al., Phys. Rev. Lett. 107, 023201 (2011)] using the accurate potential energy surface of Velilla et al. [J. Chem. Phys. 129, 084307 (2008)]. Integral cross sections and rate constants obtained on the two potential energy surfaces considered here show remarkable differences in terms of magnitude and dependence on collision energy (or temperature) which can be attributed to the differences observed in the topography of the surfaces near to the entrance channel. This clearly shows the inadequacy of the KBNN PES for calculations at low collision energies.
Collapse
Affiliation(s)
- T Rajagopala Rao
- Laboratoire ICB, UMR 6303, CNRS-Université de Bourgogne, 21078 Dijon Cedex, France
| | - S Mahapatra
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - P Honvault
- Laboratoire ICB, UMR 6303, CNRS-Université de Bourgogne, 21078 Dijon Cedex, France
| |
Collapse
|
21
|
Koner D, Barrios L, González-Lezana T, Panda AN. Wave packet and statistical quantum calculations for the He + NeH⁺ → HeH⁺ + Ne reaction on the ground electronic state. J Chem Phys 2015; 141:114302. [PMID: 25240353 DOI: 10.1063/1.4895567] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH(+) (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.
Collapse
Affiliation(s)
- Debasish Koner
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Lizandra Barrios
- Instituto de Física Fundamental, C.S.I.C., Serrano 123, Madrid 28006, Spain
| | | | - Aditya N Panda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
22
|
Sahoo T, Ghosh S, Adhikari S, Sharma R, Varandas AJC. Low-temperature D+ + H2 reaction: A time-dependent coupled wave-packet study in hyperspherical coordinates. J Chem Phys 2015; 142:024304. [DOI: 10.1063/1.4905379] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tapas Sahoo
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sandip Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Satrajit Adhikari
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rahul Sharma
- Departamento de Química, and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - António J. C. Varandas
- Departamento de Química, and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
23
|
|
24
|
|
25
|
Goswami S, Rao TR, Mahapatra S, Bussery-Honvault B, Honvault P. Time-Dependent Quantum Wave Packet Dynamics of S + OH Reaction on Its Electronic Ground State. J Phys Chem A 2014; 118:5915-26. [DOI: 10.1021/jp504757g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sugata Goswami
- School
of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - T. Rajagopala Rao
- Laboratoire
Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne, 21078 Dijon Cedex, France
| | - S. Mahapatra
- School
of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - B. Bussery-Honvault
- Laboratoire
Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne, 21078 Dijon Cedex, France
| | - P. Honvault
- Laboratoire
Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université Bourgogne, 21078 Dijon Cedex, France
- UFR
ST, Université de Franche-Comté, 25030 Besançon
Cedex, France
| |
Collapse
|
26
|
Sahoo T, Ghosh S, Adhikari S, Sharma R, Varandas AJC. Coupled 3D Time-Dependent Wave-Packet Approach in Hyperspherical Coordinates: Application to the Adiabatic Singlet-State(11A′) D+ + H2 Reaction. J Phys Chem A 2014; 118:4837-50. [DOI: 10.1021/jp5035739] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tapas Sahoo
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sandip Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Satrajit Adhikari
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rahul Sharma
- Departamento
de Química,
and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - António J. C. Varandas
- Departamento
de Química,
and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
27
|
González-Lezana T, Scribano Y, Honvault P. The D(+) + H2 reaction: differential and integral cross sections at low energy and rate constants at low temperature. J Phys Chem A 2014; 118:6416-24. [PMID: 24802076 DOI: 10.1021/jp501446y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The D(+) + H2 reaction is investigated by means of a time independent quantum mechanical (TIQM) and statistical quantum mechanical (SQM) methods. Differential cross sections and product rotational distributions obtained with these two theoretical approaches for collision energies between 1 meV and 0.1 eV are compared to analyze the dynamics of the process. The agreement observed between the TIQM differential cross sections and the SQM predictions as the energy increases revealed the role played by the complex-forming mechanism. The importance of a good description of the asymptotic regions is also investigated by calculating rate constants for the title reaction at low temperature.
Collapse
|
28
|
González-Lezana T, Honvault P, Scribano Y. Dynamics of the D(+) + H2 → HD + H(+) reaction at the low energy regime by means of a statistical quantum method. J Chem Phys 2014; 139:054301. [PMID: 23927256 DOI: 10.1063/1.4816638] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The D(+) +H2(v = 0, j = 0, 1) → HD+H(+) reaction has been investigated at the low energy regime by means of a statistical quantum mechanical (SQM) method. Reaction probabilities and integral cross sections (ICSs) between a collisional energy of 10(-4) eV and 0.1 eV have been calculated and compared with previously reported results of a time independent quantum mechanical (TIQM) approach. The TIQM results exhibit a dense profile with numerous narrow resonances down to Ec ~ 10(-2) eV and for the case of H2(v = 0, j = 0) a prominent peak is found at ~2.5 × 10(-4) eV. The analysis at the state-to-state level reveals that this feature is originated in those processes which yield the formation of rotationally excited HD(v' = 0, j' > 0). The statistical predictions reproduce reasonably well the overall behaviour of the TIQM ICSs at the larger energy range (Ec ≥ 10(-3) eV). Thermal rate constants are in qualitative agreement for the whole range of temperatures investigated in this work, 10-100 K, although the SQM values remain above the TIQM results for both initial H2 rotational states, j = 0 and 1. The enlargement of the asymptotic region for the statistical approach is crucial for a proper description at low energies. In particular, we find that the SQM method leads to rate coefficients in terms of the energy in perfect agreement with previously reported measurements if the maximum distance at which the calculation is performed increases noticeably with respect to the value employed to reproduce the TIQM results.
Collapse
|
29
|
Yu S, Su S, Dai D, Yuan K, Yang X. State-to-state dynamics of the H*(n) + HD → D*(n′) + H2 reactive scattering. J Chem Phys 2014; 140:034310. [DOI: 10.1063/1.4861759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Honvault P, Scribano Y. State-to-state quantum mechanical calculations of rate coefficients for the D+ + H2 → HD + H+ reaction at low temperature. J Phys Chem A 2013; 117:9778-84. [PMID: 23452294 DOI: 10.1021/jp3124549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of the D(+) + H2 → HD + H(+) reaction on a recent ab initio potential energy surface (Velilla, L.; Lepetit, B.; Aguado, A.; Beswick, J. A.; Paniagua, M. J. Chem. Phys. 2008, 129, 084307) has been investigated by means of a time-independent quantum mechanical approach. Cross-sections and rate coefficients are calculated, respectively, for collision energies below 0.1 eV and temperatures up to 100 K for astrophysical application. An excellent accord is found for collision energy above 5 meV, while a disagreement between theory and experiment is observed below this energy. We show that the rate coefficients reveal a slightly temperature-dependent behavior in the upper part of the temperature range considered here. This is in agreement with the experimental data above 80 K, which give a temperature independent value. However, a significant decrease is found at temperatures below 20 K. This decrease can be related to quantum effects and the decay back to the reactant channel, which are not considered by simple statistical approaches, such as the Langevin model. Our results have been fitted to appropriate analytical expressions in order to be used in astrochemical and cosmological models.
Collapse
Affiliation(s)
- P Honvault
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne , 21078 Dijon Cedex, and UFR Sciences et Techniques, Université de Franche-Comté , 25030 Besançon cedex, France
| | | |
Collapse
|
31
|
Xu W, Zhang P. Accurate study on the quantum dynamics of the He + HeH(+) (X1Σ+) reaction on a new ab initio potential energy surface for the lowest 1(1)A' electronic singlet state. J Phys Chem A 2013; 117:1406-12. [PMID: 23347266 DOI: 10.1021/jp312084r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A time-dependent quantum wave packet method is used to investigate the dynamics of the He + HeH(+)(X(1)Σ(+)) reaction based on a new potential energy surface [Liang et al., J. Chem. Phys.2012, 136, 094307]. The coupled channel (CC) and centrifugal-sudden (CS) reaction probabilities as well as the total integral cross sections are calculated. A comparison of the results with and without Coriolis coupling revealed that the number of K states N(K) (K is the projection of the total angular momentum J on the body-fixed z axis) significantly influences the reaction threshold. The effective potential energy profiles of each N(K) for the He + HeH(+) reaction in a collinear geometry indicate that the barrier height gradually decreased with increased N(K). The calculated time evolution of CC and CS probability density distribution over the collision energy of 0.27-0.36 eV at total angular momentum J = 50 clearly suggests a lower reaction threshold of CC probabilities. The CC cross sections are larger than the CS results within the entire energy range, demonstrating that the Coriolis coupling effect can effectively promote the He + HeH(+) reaction.
Collapse
Affiliation(s)
- Wenwu Xu
- State key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, PR China
| | | |
Collapse
|
32
|
Xu W, Li W, Lv S, Zhai H, Duan Z, Zhang P. Coriolis Coupling Effects in O+(4S) + H2(X1Σg+) → OH+(X3Σ–) + H(2S) Reaction and Its Isotopic Variants: Exact Time-Dependent Quantum Scattering Study. J Phys Chem A 2012; 116:10882-8. [DOI: 10.1021/jp305612t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenwu Xu
- State Key
Laboratory of Molecular Reaction Dynamics,
Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Wenliang Li
- State Key
Laboratory of Molecular Reaction Dynamics,
Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Shuangjiang Lv
- State Key
Laboratory of Molecular Reaction Dynamics,
Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Hongsheng Zhai
- State Key
Laboratory of Molecular Reaction Dynamics,
Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Zhixin Duan
- State Key
Laboratory of Molecular Reaction Dynamics,
Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Peiyu Zhang
- State Key
Laboratory of Molecular Reaction Dynamics,
Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| |
Collapse
|
33
|
Jambrina PG, Alvariño JM, Gerlich D, Hankel M, Herrero VJ, Sáez-Rábanos V, Aoiz FJ. Dynamics of the D+ + H2 and H+ + D2 reactions: a detailed comparison between theory and experiment. Phys Chem Chem Phys 2012; 14:3346-59. [DOI: 10.1039/c2cp23479c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
|
35
|
ZHANG CUIHUA, ZHANG WENQIN, CHEN MAODU. THEORETICAL STUDIES OF STEREODYNAMICS FOR THE H+ + H2 (ν = 0–3, j = 0) → H2 + H+ REACTION. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633609004654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The stereodynamics calculation was carried out for the title reaction by quasiclassical trajectory method on the ground surface of KBNN potential energy surface. The vector correlations are determined at initial ground state and vibrational excitation of the reagent H 2. The results show that the rotational polarization is affected lightly by collision energy and strongly by reagent excitation for title reaction. The rotational alignments are almost isotropic at several collision energies on initial ground state of the reagent H 2, which means that the product rotational angular momentum is weakly polarized (or no polarized). Nevertheless, the polarization of product rotational angular momentum is enhanced remarkably at the vibrational excitations of the reagent H 2 in collision energy of 0.524 eV.
Collapse
Affiliation(s)
- CUIHUA ZHANG
- School of Physics and Optoelectronic Technology, School of Chemical Engineering, College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - WENQIN ZHANG
- School of Physics and Optoelectronic Technology, School of Chemical Engineering, College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - MAODU CHEN
- School of Physics and Optoelectronic Technology, School of Chemical Engineering, College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
36
|
Grozdanov TP, McCarroll R. Mean Potential Statistical Theory of the H+ + D2 → HD + D+ Reaction. J Phys Chem A 2011; 115:6872-7. [DOI: 10.1021/jp1115228] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tasko P. Grozdanov
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Ronald McCarroll
- Laboratoire de Chimie Physique-Matière et Rayonnement, (UMR 7614 du CNRS), Université Pierre et Marie Curie, 75231-Paris Cedex 05, France
| |
Collapse
|
37
|
González-Sánchez L, Vasyutinskii O, Zanchet A, Sanz-Sanz C, Roncero O. Quantum stereodynamics of Li + HF reactive collisions: the role of reactants polarization on the differential cross section. Phys Chem Chem Phys 2011; 13:13656-69. [DOI: 10.1039/c0cp02452j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Jiménez-Redondo M, Carrasco E, Herrero VJ, Tanarro I. Isotopic exchange processes in cold plasmas of H2/D2 mixtures. Phys Chem Chem Phys 2011; 13:9655-66. [DOI: 10.1039/c1cp20426b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Hankel M. Coriolis coupling effects in the dynamics of deep well reactions: application to the H+ + D2 reaction. Phys Chem Chem Phys 2011; 13:7948-60. [DOI: 10.1039/c1cp20144a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Honvault P, Jorfi M, González-Lezana T, Faure A, Pagani L. Quantum mechanical study of the proton exchange in the ortho–para H2 conversion reaction at low temperature. Phys Chem Chem Phys 2011; 13:19089-100. [DOI: 10.1039/c1cp21232j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Abstract
The nonadiabatic quantum dynamics and Coriolis coupling effect in chemical reaction have been reviewed, with emphasis on recent progress in using the time-dependent wave packet approach to study the Coriolis coupling and nonadiabatic effects, which was done by K. L. Han and his group. Several typical chemical reactions, for example, H+D(2), F+H(2)/D(2)/HD, D(+)+H(2), O+H(2), and He+H(2)(+), have been discussed. One can find that there is a significant role of Coriolis coupling in reaction dynamics for the ion-molecule collisions of D(+)+H(2), Ne+H(2)(+), and He+H(2)(+) in both adiabatic and nonadiabatic context.
Collapse
Affiliation(s)
- Emilia L Wu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., Minneapolis, MN 55455-0132, USA.
| |
Collapse
|
42
|
Zanchet A, González-Lezana T, Aguado A, Gómez-Carrasco S, Roncero O. Nonadiabatic state-to-state reactive collisions among open shell reactants with conical intersections: the OH((2)Pi) + F((2)P) example. J Phys Chem A 2010; 114:9733-42. [PMID: 20465247 DOI: 10.1021/jp101914a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accurate wave packet calculations on the OH((2)Pi) + F((2)P) → O((3)P) + HF((1)Sigma(+)) reactive collisions are performed using a recently proposed coupled diabatic states. Adiabatic and nonadiabatic dynamics are compared in detail, analyzing the final state distribution of products. It is found that with the new surfaces a significant increase of the rate constant is obtained, with noticeable nonadiabatic effects. The inclusion of the spin-orbit splittings for the calculation of the electronic partition function produces an important increase of the reaction rate constants, yielding a rather good agreement with the experimental results. It is also concluded that spin-orbit couplings are also necessary in the entrance channel to describe this reaction.
Collapse
Affiliation(s)
- Alexandre Zanchet
- Unidad Asociada UAM-CSIC, Instituto de Física Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Zanchet A, Roncero O, Omar S, Paniagua M, Aguado A. Potential energy surface and reactive collisions for the Au+H(2) system. J Chem Phys 2010; 132:034301. [PMID: 20095733 DOI: 10.1063/1.3290950] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A global potential energy surface is obtained for the ground state of the endoergic Au((2)S)+H(2)(X (1)Sigma(g) (+))-->AuH((1)Sigma(+))+H((2)S) reaction. The global potential is obtained by fitting highly correlated ab initio calculations on the system, using relativistic pseudopotential for the gold atom. Several electronic states are calculated correlating with Au((2)S)+H(2), Au((2)D)+H(2), and H(2), Au((2)P)+H(2) asymptotes. These states show several conical intersections and curve crossings along the minimum energy reaction path which are analyzed in detail. One of them gives rise to an insertion well in which there are important contributions from the Au((2)D) and Au((2)P) states of gold, which is interesting because it is analog to the deep chemisorption well appearing in larger gold clusters. Quantum wave packet and quasiclassical trajectory dynamical calculations performed for the reaction at zero total angular momentum are in good agreement, provided that a Gaussian binning method is used to account for the zero-point energy of products. Finally, integral and differential cross sections are calculated for the reaction with quasiclassical trajectories. Two different reaction mechanisms are found, one direct and the second indirect, in which the Au atom inserts in between the two hydrogen atoms because of the existence of the insertion well discussed above.
Collapse
Affiliation(s)
- Alexander Zanchet
- Unidad Asociada UAM-CSIC, Instituto de Fíisica Fundamental, C.S.I.C. Serrano 123, Madrid 28006, Spain
| | | | | | | | | |
Collapse
|
45
|
Jambrina PG, Aoiz FJ, Bulut N, Smith SC, Balint-Kurti GG, Hankel M. The dynamics of the H++ D2reaction: a comparison of quantum mechanical wavepacket, quasi-classical and statistical-quasi-classical results. Phys Chem Chem Phys 2010; 12:1102-15. [DOI: 10.1039/b919914d] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Jambrina PG, Alvariño JM, Aoiz FJ, Herrero VJ, Sáez-Rábanos V. Reaction dynamics of the D+ + H2 system. A comparison of theoretical approaches. Phys Chem Chem Phys 2010; 12:12591-603. [DOI: 10.1039/c0cp00311e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Li Z, Xie D, Sun Z, Zhang DH, Lin SY, Guo H. NH(X3Σ)+H/D(S2)→H(S2)+NH/ND(X3Σ) exchange reactions: State-to-state quantum scattering and applicability of statistical model. J Chem Phys 2009; 131:124313. [DOI: 10.1063/1.3241134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
48
|
Zanchet A, Roncero O, González-Lezana T, Rodríguez-López A, Aguado A, Sanz-Sanz C, Gómez-Carrasco S. Differential Cross Sections and Product Rotational Polarization in A + BC Reactions Using Wave Packet Methods: H+ + D2 and Li + HF Examples. J Phys Chem A 2009; 113:14488-501. [DOI: 10.1021/jp9038946] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Zanchet
- Instituto de Física Fundamental, CSIC, Unidad Asociada UAM-CSIC, Serrano 123, 28006 Madrid, Spain, Centro de Supercomputación de Galicia, Av. de Vigo s/n (Campus Sur), 15706 Santiago de Compostela, Spain, and Departamento de Química Física, Facultad de Ciencias C-XIV, Unidad Asociada UAM-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain, School of Chemistry, University of Birmingham, Edbaston, Birmingham B15 2TT, United Kingdom, and Theoretical Chemistry Department, Institute of Physical
| | - O. Roncero
- Instituto de Física Fundamental, CSIC, Unidad Asociada UAM-CSIC, Serrano 123, 28006 Madrid, Spain, Centro de Supercomputación de Galicia, Av. de Vigo s/n (Campus Sur), 15706 Santiago de Compostela, Spain, and Departamento de Química Física, Facultad de Ciencias C-XIV, Unidad Asociada UAM-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain, School of Chemistry, University of Birmingham, Edbaston, Birmingham B15 2TT, United Kingdom, and Theoretical Chemistry Department, Institute of Physical
| | - T. González-Lezana
- Instituto de Física Fundamental, CSIC, Unidad Asociada UAM-CSIC, Serrano 123, 28006 Madrid, Spain, Centro de Supercomputación de Galicia, Av. de Vigo s/n (Campus Sur), 15706 Santiago de Compostela, Spain, and Departamento de Química Física, Facultad de Ciencias C-XIV, Unidad Asociada UAM-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain, School of Chemistry, University of Birmingham, Edbaston, Birmingham B15 2TT, United Kingdom, and Theoretical Chemistry Department, Institute of Physical
| | - A. Rodríguez-López
- Instituto de Física Fundamental, CSIC, Unidad Asociada UAM-CSIC, Serrano 123, 28006 Madrid, Spain, Centro de Supercomputación de Galicia, Av. de Vigo s/n (Campus Sur), 15706 Santiago de Compostela, Spain, and Departamento de Química Física, Facultad de Ciencias C-XIV, Unidad Asociada UAM-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain, School of Chemistry, University of Birmingham, Edbaston, Birmingham B15 2TT, United Kingdom, and Theoretical Chemistry Department, Institute of Physical
| | - A. Aguado
- Instituto de Física Fundamental, CSIC, Unidad Asociada UAM-CSIC, Serrano 123, 28006 Madrid, Spain, Centro de Supercomputación de Galicia, Av. de Vigo s/n (Campus Sur), 15706 Santiago de Compostela, Spain, and Departamento de Química Física, Facultad de Ciencias C-XIV, Unidad Asociada UAM-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain, School of Chemistry, University of Birmingham, Edbaston, Birmingham B15 2TT, United Kingdom, and Theoretical Chemistry Department, Institute of Physical
| | - C. Sanz-Sanz
- Instituto de Física Fundamental, CSIC, Unidad Asociada UAM-CSIC, Serrano 123, 28006 Madrid, Spain, Centro de Supercomputación de Galicia, Av. de Vigo s/n (Campus Sur), 15706 Santiago de Compostela, Spain, and Departamento de Química Física, Facultad de Ciencias C-XIV, Unidad Asociada UAM-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain, School of Chemistry, University of Birmingham, Edbaston, Birmingham B15 2TT, United Kingdom, and Theoretical Chemistry Department, Institute of Physical
| | - S. Gómez-Carrasco
- Instituto de Física Fundamental, CSIC, Unidad Asociada UAM-CSIC, Serrano 123, 28006 Madrid, Spain, Centro de Supercomputación de Galicia, Av. de Vigo s/n (Campus Sur), 15706 Santiago de Compostela, Spain, and Departamento de Química Física, Facultad de Ciencias C-XIV, Unidad Asociada UAM-CSIC, Universidad Autónoma de Madrid, 28049, Madrid, Spain, School of Chemistry, University of Birmingham, Edbaston, Birmingham B15 2TT, United Kingdom, and Theoretical Chemistry Department, Institute of Physical
| |
Collapse
|
49
|
González-Lezana T, Honvault P, Jambrina PG, Aoiz FJ, Launay JM. Effects of the rotational excitation of D2 and of the potential energy surface on the H++D2→HD+D+ reaction. J Chem Phys 2009; 131:044315. [DOI: 10.1063/1.3183538] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Jambrina PG, Aoiz FJ, Eyles CJ, Herrero VJ, Sáez Rábanos V. Cumulative reaction probabilities and transition state properties: a study of the H+ + H2 and H+ + D2 proton exchange reactions. J Chem Phys 2009; 130:184303. [PMID: 19449917 DOI: 10.1063/1.3129343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cumulative reaction probabilities (CRPs) have been calculated by accurate (converged, close coupling) quantum mechanical (QM), quasiclassical trajectory (QCT), and statistical QCT (SQCT) methods for the H(+) + H(2) and H(+) + D(2) reactions at collision energies up to 1.2 eV and total angular momentum J = 0-4. A marked resonance structure is found in the QM CRP, most especially for the H(3)(+) system and J = 0. When the CRPs are resolved in their ortho and para contributions, a clear steplike structure is found associated with the opening of internal states of reactants and products. The comparison of the QCT results with those of the other methods evinces the occurrence of two transition states, one at the entrance and one at the exit. At low J values, except for the quantal resonance structure and the lack of quantization in the product channel, the agreement between QM and QCT is very good. The SQCT model, that reflects the steplike structure associated with the opening of initial and final states accurately, clearly tends to overestimate the value of the CRP as the collision energy increases. This effect seems more marked for the H(+) + D(2) isotopic variant. For sufficiently high J values, the growth of the centrifugal barrier leads to an increase in the threshold of the CRP. At these high J values the discrepancy between SQCT and QCT becomes larger and is magnified with growing collision energy. The total CRPs calculated with the QCT and SQCT methods allowed the determination of the rate constant for the H(+) + D(2) reaction. It was found that the rate, in agreement with experiment, decreases with temperature as expected for an endothermic reaction. In the range of temperatures between 200 and 500 K the differences between SQCT and QCT rate results are relatively minor. Although exact QM calculations are formidable for an exact determination of the k(T), it can be reliably expected that their value will lie between those given by the dynamical and statistical trajectory methods.
Collapse
Affiliation(s)
- P G Jambrina
- Departamento de Química Física, Universidad de Salamanca, 37008 Salamanca, Spain
| | | | | | | | | |
Collapse
|