1
|
Madriaga JP, Kodrycka M, Crawford TD. Pair Natural Orbitals for Coupled Cluster Quadratic Response Theory. J Phys Chem A 2025; 129:4601-4610. [PMID: 40344537 DOI: 10.1021/acs.jpca.5c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Reduced-scaling approaches have yielded significant improvements in the computational efficiency of coupled cluster methods, making them more feasible for studying large molecules. In this work, we extend the use of pair natural orbitals (PNOs) to frequency-dependent quadratic response properties. We evaluate the performance of PNOs alongside methods optimized for response properties that derive from an approximate field-perturbed density matrix known as perturbation-aware PNOs (PNO++). Additionally, we concatenate the PNO and PNO++ spaces to obtain the combined-PNO++ method, which is tailored to simultaneously maintain the accuracy of the CCSD correlation energies and response properties. We analyze the truncation errors associated with these methods using first electric dipole hyperpolarizability - specifically the average second-harmonic generation and optical refractivity, using canonical coupled cluster singles and doubles (CCSD) as a reference. The performance analysis of the PNO family provides valuable insights into the viability of implementing CCSD quadratic response properties at a full-production level, highlighting which techniques may yield the most successful results.
Collapse
Affiliation(s)
- Jose P Madriaga
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Monika Kodrycka
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - T Daniel Crawford
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Banana T, Rajput SS, Chandravanshi N, Alam MM. Effect of meso-pentafluorophenyl group on two-photon absorption in heterocorroles and heterocorrins. Phys Chem Chem Phys 2024; 26:27694-27703. [PMID: 39469992 DOI: 10.1039/d4cp03450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Owing to their high reactivity, the meso-positions of corroles and corrins are usually protected by some bulky groups. These groups in addition to the said purpose may also affect the photophysical properties of such systems. However, there is no systematic study in the literature exploring this effect. In this work, we target to answer how the meso-substitution affects the photophysical properties in some heterocorroles and heterocorrins. We considered one of the commonly used substitutions, i.e., pentafluorophenyl (-PFPh), at meso positions of 26 heterocorroles and heterocorrins. We employed the state-of-the-art CC2 method in conjunction with resolution-of-identity approximation to study the charge-transfer and one- and two-photon absorption in these systems. It is further explored using a four-state model that helps in understanding the contribution of various transition dipole moments and their relative orientation. At the end, we also investigated the effect of other substitutions such as -CH3, -CF3, -C2H3, -OMe, -phenyl, and -tolyl on two-photon activity.
Collapse
Affiliation(s)
- Tejendra Banana
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Neelam Chandravanshi
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Md Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India
| |
Collapse
|
3
|
Naim C, Zaleśny R, Jacquemin D. Two-Photon Absorption Strengths of Small Molecules: Reference CC3 Values and Benchmarks. J Chem Theory Comput 2024; 20:9093-9106. [PMID: 39374489 DOI: 10.1021/acs.jctc.4c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We present a large dataset of highly accurate two-photon transition strengths (δTPA) determined for standard small molecules. Our reference values have been calculated using the quadratic response implementation of the third-order coupled cluster method including iterative triples (Q-CC3). The aug-cc-pVTZ atomic basis set is used for molecules with up to five non-hydrogen atoms, while larger molecules are assessed with aug-cc-pVDZ; the differences due to the basis sets are discussed. This dataset, encompassing 82 singlet transitions of various characters (Rydberg, valence, and double excitations), enables a comprehensive benchmark of smaller basis sets and alternative wavefunction methods when Q-CC3 calculations become beyond reach as well as time-dependent density functional theory (TD-DFT) approaches. The evaluated wavefunction methods include quadratic response and equation-of-motion CCSD approximations, Q-CC2, and second-order algebraic diagrammatic construction in its intermediate state representation (I-ADC2). In the TD-DFT framework, a set of five commonly used exchange-correlation functionals are evaluted. This extensive analysis provides a quantitative assessment of these methods, revealing how different system sizes, response intensities, and types of transitions affect their performances.
Collapse
Affiliation(s)
- Carmelo Naim
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| |
Collapse
|
4
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
5
|
Rauwolf N, Klopper W, Holzer C. Non-linear light-matter interactions from the Bethe-Salpeter equation. J Chem Phys 2024; 160:061101. [PMID: 38341783 DOI: 10.1063/5.0191499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/15/2024] [Indexed: 02/13/2024] Open
Abstract
A route to assess non-linear light-matter interactions from the increasingly popular GW-Bethe-Salpeter equation (GW-BSE) method is outlined. In the present work, the necessary analytic expressions within the static-screened exchange approximation of the BSE are derived. This enables a straightforward implementation of the computation of the first hyperpolarizability as well as two-photon absorption processes for molecular systems. Benchmark calculations on small molecular systems reveal that the GW-BSE method is intriguingly accurate for predicting both first hyperpolarizabilities and two-photon absorption strengths. Using state-of-the-art Kohn-Sham references as a starting point, the accuracy of the GW-BSE method rivals that of the coupled-cluster singles-and-doubles method, outperforming both second-order coupled-cluster and time-dependent density-functional theory.
Collapse
Affiliation(s)
- Nina Rauwolf
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Ahmadzadeh K, Li X, Rinkevicius Z, Norman P, Zaleśny R. Toward Accurate Two-Photon Absorption Spectrum Simulations: Exploring the Landscape beyond the Generalized Gradient Approximation. J Phys Chem Lett 2024; 15:969-974. [PMID: 38252270 PMCID: PMC10839899 DOI: 10.1021/acs.jpclett.3c03513] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
In this Letter, we present a pioneering analysis of the density functional approximations (DFAs) beyond the generalized gradient approximation (GGA) for predicting two-photon absorption (2PA) strengths of a set of push-pull π-conjugated molecules. In more detail, we have employed a variety of meta-generalized gradient approximation (meta-GGA) functionals, including SCAN, MN15, and M06-2X, to assess their accuracy in describing the 2PA properties of a chosen set of 48 organic molecules. Analytic quadratic response theory is employed for these functionals, and their performance is compared against the previously studied DFAs and reference data obtained at the coupled-cluster CC2 level combined with the resolution-of-identity approximation (RI-CC2). A detailed analysis of the meta-GGA functional performance is provided, demonstrating that they improve upon their predecessors in capturing the key electronic features of the π-conjugated two-photon absorbers. In particular, the Minnesota functional MN15 shows very promising results as it delivers pleasingly accurate chemical rankings for two-photon transition strengths and excited-state dipole moments.
Collapse
Affiliation(s)
- Karan Ahmadzadeh
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xin Li
- PDC
Center for High Performance Computing, KTH
Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Zilvinas Rinkevicius
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, Kaunas LT-51368, Lithuania
| | - Patrick Norman
- Division
of Theoretical Chemistry and Biology, School of Engineering Sciences
in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Robert Zaleśny
- Faculty
of Chemistry, Wrocław University of
Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| |
Collapse
|
7
|
Larsson ED, Reinholdt P, Hedegård ED, Kongsted J. Accuracy of One- and Two-Photon Intensities with the Extended Polarizable Density Embedding Model. J Phys Chem B 2023; 127:9905-9914. [PMID: 37948667 DOI: 10.1021/acs.jpcb.3c05029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The recently developed extended polarizable density embedding (PDE-X) model is evaluated for the spectroscopic properties of organic chromophores solvated in water, including both one- and two-photon absorption properties. The PDE-X embedding model systematically improves vertical excitation energies over the preceding polarizable density embedding model (PDE). PDE-X shows more modest improvements over existing embedding models for oscillator strengths and two-photon absorption cross-sections, which are more sensitive properties. We argue that the origin of these discrepancies is related to the description of polarization effects, suggesting directions for future development of the embedding model.
Collapse
Affiliation(s)
- Ernst Dennis Larsson
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
8
|
Sirimatayanant S, Andruniów T. Benchmarking two-photon absorption strengths of rhodopsin chromophore models with CC3 and CCSD methodologies: An assessment of popular density functional approximations. J Chem Phys 2023; 158:094106. [PMID: 36889953 DOI: 10.1063/5.0135594] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
This work presents the investigations of the impact of an increasing electron correlation in the hierarchy of coupled-cluster methods, i.e., CC2, CCSD, and CC3, on two-photon absorption (2PA) strengths for the lowest excited state of the minimal rhodopsin's chromophore model-cis-penta-2,4-dieniminium cation (PSB3). For a larger chromophore's model [4-cis-hepta-2,4,6-trieniminium cation (PSB4)], CC2 and CCSD calculations of 2PA strengths were performed. Additionally, 2PA strengths predicted by some popular density functional theory (DFT) functionals differing in HF exchange contribution were assessed against the reference CC3/CCSD data. For PSB3, the accuracy of 2PA strengths increases in the following order: CC2 < CCSD < CC3, with the CC2 deviation from both higher-level methods exceeding 10% at 6-31+G* basis sets and 2% at aug-cc-pVDZ basis set. However, for PSB4, this trend is reversed and CC2-based 2PA strength is larger than the corresponding CCSD value. Among the DFT functionals investigated, CAM-B3LYP and BHandHLYP provide 2PA strengths in best compliance with reference data, however, with the error approaching an order of magnitude.
Collapse
Affiliation(s)
- Saruti Sirimatayanant
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Tadeusz Andruniów
- Institute of Advanced Materials, Department of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
9
|
Nanda KD, Gulania S, Krylov AI. Theory, implementation, and disappointing results for two-photon absorption cross sections within the doubly electron-attached equation-of-motion coupled-cluster framework. J Chem Phys 2023; 158:054102. [PMID: 36754800 DOI: 10.1063/5.0135052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The equation-of-motion coupled-cluster singles and doubles method with double electron attachment (EOM-DEA-CCSD) is capable of computing reliable energies, wave functions, and first-order properties of excited states in diradicals and polyenes that have a significant doubly excited character with respect to the ground state, without the need for including the computationally expensive triple excitations. Here, we extend the capabilities of the EOM-DEA-CCSD method to the calculations of a multiphoton property, two-photon absorption (2PA) cross sections. Closed-form expressions for the 2PA cross sections are derived within the expectation-value approach using response wave functions. We analyze the performance of this new implementation by comparing the EOM-DEA-CCSD energies and 2PA cross sections with those computed using the CC3 quadratic response theory approach. As benchmark systems, we consider transitions to the states with doubly excited character in twisted ethene and in polyenes, for which EOM-EE-CCSD (EOM-CCSD for excitation energies) performs poorly. The EOM-DEA-CCSD 2PA cross sections are comparable with the CC3 results for twisted ethene; however, the discrepancies between the two methods are large for hexatriene. The observed trends are explained by configurational analysis of the 2PA channels.
Collapse
Affiliation(s)
- Kaushik D Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Sahil Gulania
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
10
|
Thomas A, Wakhradkar MG, B S, Gunturu KC, Kaczmarek-Kędziera A, Abraham J. Computational Study on the Effect of Thienyl π-Donor on the Optical Response of Nonclassical Oligo-Pyrazinothienothiadiazole Biradicaloids. J Phys Chem A 2022; 126:7829-7839. [DOI: 10.1021/acs.jpca.2c04788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anup Thomas
- Centre for Computational Research in Clean Energy Technologies, Sree Chitra Thirunal College of Engineering, Trivandrum695018, India
| | - Mahesh G. Wakhradkar
- School of Chemical Sciences, S.R.T.M. University, Nanded431606, Maharashtra, India
| | - Siddlingeshwar B
- Department of Physics, M.S. Ramaiah Institute of Technology, (Autonomous Institute Affiliated to VTU), Bengaluru560054, India
| | | | - Anna Kaczmarek-Kędziera
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100Toruń, Poland
| | - Joel Abraham
- Centre for Computational Research in Clean Energy Technologies, Sree Chitra Thirunal College of Engineering, Trivandrum695018, India
| |
Collapse
|
11
|
de Wergifosse M, Beaujean P, Grimme S. Ultrafast Evaluation of Two-Photon Absorption with Simplified Time-Dependent Density Functional Theory. J Phys Chem A 2022; 126:7534-7547. [PMID: 36201255 DOI: 10.1021/acs.jpca.2c02395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work presents the theoretical background to evaluate two-photon absorption (2PA) cross-sections in the framework of simplified time-dependent density functional theory (sTD-DFT). Our new implementation allows the ultrafast evaluation of 2PA cross-sections for large molecules based on a regular DFT ground-state determinant as well as a variant employing our tight-binding sTD-DFT-xTX flavor for very large systems. The method is benchmarked against higher-level calculations for trans-stilbene and typical fluorescent protein chromophores. For eGFP, a quadrupolar chromophore and its branched version, the flavine mono-nucleotide, and the iLOV protein, we compare sTD-DFT 2PA spectra to experimental ones. This includes extension and testing of our all-atom quantum chemistry methodology for the evaluation of 2PA for a system of ∼2000 atoms, providing striking agreement with the experimental spectrum.
Collapse
Affiliation(s)
- Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115Bonn, Germany
| | - Pierre Beaujean
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000Namur, Belgium
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115Bonn, Germany
| |
Collapse
|
12
|
Andersen JH, Nanda KD, Krylov AI, Coriani S. Cherry-Picking Resolvents: Recovering the Valence Contribution in X-ray Two-Photon Absorption within the Core-Valence-Separated Equation-of-Motion Coupled-Cluster Response Theory. J Chem Theory Comput 2022; 18:6189-6202. [PMID: 36084326 DOI: 10.1021/acs.jctc.2c00541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calculations of first-order response wave functions in the X-ray regime often diverge within correlated frameworks such as equation-of-motion coupled-cluster singles and doubles (EOM-CCSD), a consequence of the coupling with the valence ionization continuum. Here, we extend our strategy of introducing a hierarchy of approximations to the EOM-EE-CCSD resolvent (or, inversely, the model Hamiltonian) involved in the response equations for the calculation of X-ray two-photon absorption (X2PA) cross sections. We exploit the frozen-core core-valence separation (fc-CVS) scheme to first decouple the core and valence Fock spaces, followed by a separate approximate treatment of the valence resolvent. We demonstrate the robust convergence of X-ray response calculations within this framework and compare X2PA spectra of small benchmark molecules with the previously reported density functional theory results.
Collapse
Affiliation(s)
- Josefine H Andersen
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | - Kaushik D Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
13
|
Knysh I, Jassar MB, Osmialowsk B, Zalesny R, Jacquemin D. IN SILICO SCREENING OF TWO‐PHOTON ABSORPTION PROPERTIES OF A LARGE SET OF BIS‐DIFLUOROBORATE‐DYES. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Iryna Knysh
- Nantes University: Universite de Nantes CEISAM Lab FRANCE
| | | | | | - Robert Zalesny
- Wroclaw University of Technology: Politechnika Wroclawska Department of Chemistr FRANCE
| | - Denis Jacquemin
- Université de Nantes CEISAM 2, rue de la Houssinière 44322 Nantes FRANCE
| |
Collapse
|
14
|
Le Breton G, Bonhomme O, Brevet PF, Benichou E, Loison C. First hyperpolarizability of water at the air-vapor interface: a QM/MM study questions standard experimental approximations. Phys Chem Chem Phys 2021; 23:24932-24941. [PMID: 34726679 DOI: 10.1039/d1cp02258j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface Second-Harmonic Generation (S-SHG) experiments provide a unique approach to probe interfaces. One important issue for S-SHG is how to interpret the S-SHG intensities at the molecular level. Established frameworks commonly assume that each molecule emits light according to an average molecular hyperpolarizability tensor β(-2ω,ω,ω). However, for water molecules, this first hyperpolarizability is known to be extremely sensitive to their environment. We have investigated the molecular first hyperpolarizability of water molecules within the liquid-vapor interface, using a quantum description with explicit, inhomogeneous electrostatic embedding. The resulting average molecular first hyperpolarizability tensor depends on the distance relative to the interface, and it practically respects the Kleinman symmetry everywhere in the liquid. Within this numerical approach, based on the dipolar approximation, the water layer contributing to the Surface Second Harmonic Generation (S-SHG) intensity is less than a nanometer. The results reported here question standard interpretations based on a single, averaged hyperpolarizability for all molecules at the interface. Not only the molecular first hyperpolarizability tensor significantly depends on the distance relative to the interface, but it is also correlated to the molecular orientation. Such hyperpolarizability fluctuations may impact the S-SHG intensity emitted by an aqueous interface.
Collapse
Affiliation(s)
- Guillaume Le Breton
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Oriane Bonhomme
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Pierre-François Brevet
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Emmanuel Benichou
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Claire Loison
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| |
Collapse
|
15
|
Fu M, Wesolowski TA. The Challenge of Accurate Computation of Two-Photon Absorption Properties of Organic Chromophores in the Condensed Phase. J Chem Theory Comput 2021; 17:3652-3665. [PMID: 33944563 DOI: 10.1021/acs.jctc.1c00204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two strategies are applied to evaluate the effect of the environment on the two-photon absorption (TPA) cross sections for two characteristic excited states of C2H4 upon complexation with H2O. The supermolecular strategy provides the reference complexation-induced shifts and uses either the EOM-CCSD or ADC(2) method. The embedding strategy is based on frozen-density-embedding theory (FDET) and uses only fundamental constants. The TPA cross sections from high-level supermolecular calculations are extremely basis-set-sensitive. Literature data and the present study indicate that accuracy of the absolute TPA cross sections below 100 atomic units and their shifts below 10 atomic units remains a challenge. The obtained FDET results show a similar basis-set behavior. For the largest basis set (d-aug-cc-pVQZ), TPA cross sections obtained from these two strategies are in excellent agreement. The complexation-induced shifts have the correct sign of the effect and a small (12-33%) relative error in magnitude. The deviations of the FDET-derived shifts from the reference are of similar magnitude as the reliability threshold of the reference shifts.
Collapse
Affiliation(s)
- Mingxue Fu
- Department of Physical Chemistry, University of Geneva, 30, Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Tomasz A Wesolowski
- Department of Physical Chemistry, University of Geneva, 30, Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| |
Collapse
|
16
|
Ahmadzadeh K, Scott M, Brand M, Vahtras O, Li X, Rinkevicius Z, Norman P. Efficient implementation of isotropic cubic response functions for two-photon absorption cross sections within the self-consistent field approximation. J Chem Phys 2021; 154:024111. [PMID: 33445884 DOI: 10.1063/5.0031851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Within the self-consistent field approximation, computationally tractable expressions for the isotropic second-order hyperpolarizability have been derived and implemented for the calculation of two-photon absorption cross sections. The novel tensor average formulation presented in this work allows for the evaluation of isotropic damped cubic response functions using only ∼3.3% (one-photon off-resonance regions) and ∼10% (one-photon resonance regions) of the number of auxiliary Fock matrices required when explicitly calculating all the needed individual tensor components. Numerical examples of the two-photon absorption cross section in the one-photon off-resonance and resonance regions are provided for alanine-tryptophan and 2,5-dibromo-1,4-bis(2-(4-diphenylaminophenyl)vinyl)-benzene. Furthermore, a benchmark set of 22 additional small- and medium-sized organic molecules is considered. In all these calculations, a quantitative assessment is made of the reduced and approximate forms of the cubic response function in the one-photon off-resonance regions and results demonstrate a relative error of less than ∼5% when using the reduced expression as compared to the full form of the isotropic cubic response function.
Collapse
Affiliation(s)
- Karan Ahmadzadeh
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Mikael Scott
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Manuel Brand
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Olav Vahtras
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Xin Li
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Zilvinas Rinkevicius
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Patrick Norman
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| |
Collapse
|
17
|
Thorning F, Strunge K, Jensen F, Ogilby PR. The complex between molecular oxygen and an organic molecule: modeling optical transitions to the intermolecular charge-transfer state. Phys Chem Chem Phys 2021; 23:15038-15048. [PMID: 34212959 DOI: 10.1039/d1cp01738a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The collision complex between the ground electronic state of an organic molecule, M, and ground state oxygen, O2(X3Σg-), can absorb light to produce an intermolecular charge transfer (CT) state, often represented simply as the M radical cation, M+˙, paired with the superoxide radical anion, O2-˙. Aspects of this transition have been the subject of numerous studies for ∼70 years, many of which address fundamental concepts in chemistry and physics. We now examine the extent to which the combination of Molecular Dynamics simulations and electronic structure response methods can model transitions to the toluene-O2 CT state. To account for the experimental spectra, we consider (a) the distribution of toluene-O2 geometries that contribute to the transitions, (b) a quantitative description of intermolecular CT, and (c) oxygen-induced local transitions in toluene that complement the CT transitions, specifically transitions that populate toluene triplet states. We find that the latter oxygen-induced local transitions play a prominent role on the long wavelength side of the spectrum commonly attributed to the intermolecular CT transition. Our calculations provide a new perspective on the seminal discussion between R. S. Mulliken and D. F. Evans on the nature of O2-dependent transitions in organic molecules, and bode well for modeling transitions to excited states with CT character in noncovalent weakly-bonded molecular complexes.
Collapse
Affiliation(s)
| | - Kris Strunge
- Chemistry Department, Aarhus University, DK-8000, Aarhus, Denmark.
| | - Frank Jensen
- Chemistry Department, Aarhus University, DK-8000, Aarhus, Denmark.
| | - Peter R Ogilby
- Chemistry Department, Aarhus University, DK-8000, Aarhus, Denmark.
| |
Collapse
|
18
|
TamilSelvan S, Prakasam A, Venkatesh G, Kamal C, Sheena Mary Y, Parveen Banu S, Vennila P, Shyma Mary Y. Synthesis, spectral characterizations, molecular geometries and electronic properties of phenothiazine based organic dyes for dye-sensitized solar cells. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
A number of organic dye compounds is developed and used as dye-sensitized solar cells in order to produce cost-effective devices and enhance cell performance. In this aspect, phenothiazine based organic dye compounds such as (E)-3-(7-bromo-10-phenyl-10H-phenothiazine-3-yl) acrylic acid and (E)-3-(7-bromo-10-phenyl-10H-phenothiazine-3-yl)-2-cyanoacrylic acid have been synthesized. The synthesized dye compounds have been characterized through Fourier-transform infrared, Fourier-transform Raman and nuclear magnetic resonance spectroscopic method. The Ultraviolet–Visible spectra were recorded and electronic features were discussed with the theoretically calculated bands using time-dependent density functional theory. Frontier molecular orbital, natural bond orbital and non-linear optical properties have been calculated for these compounds using density functional theory. The photosensitization properties such as light harvesting efficiency and electron injection driving force (∆G
inject) have also been discussed.
Collapse
Affiliation(s)
| | - Annamalai Prakasam
- Department of Physics , Thiruvalluvar Government Arts College , Rasipuram 638052 , India
| | - Ganesan Venkatesh
- Department of Chemistry , VSA Group of Institutions , Salem , Tamil Nadu 636010 , India
| | - Chennappan Kamal
- Department of Chemistry , Mahendra College of Engineering , Namakkal , Tamil Nadu 636106 , India
| | - Yohannan Sheena Mary
- Department of Physics , Fatima Mata National College (Autonomous) , Kollam , Kerala , India
| | | | - Palanisamy Vennila
- Department of Chemistry , Thiruvalluvar Government Arts College , Rasipuram 638052 , India
| | - Yohannan Shyma Mary
- Department of Physics , Fatima Mata National College (Autonomous) , Kollam , Kerala , India
| |
Collapse
|
19
|
Nanda KD, Krylov AI. Cherry-picking resolvents: A general strategy for convergent coupled-cluster damped response calculations of core-level spectra. J Chem Phys 2020; 153:141104. [DOI: 10.1063/5.0020843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
20
|
Paterson MJ, Townsend D. Rydberg-to-valence evolution in excited state molecular dynamics. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1815389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Dave Townsend
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, UK
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
21
|
Affiliation(s)
- Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
22
|
Kjellsson L, Nanda KD, Rubensson JE, Doumy G, Southworth SH, Ho PJ, March AM, Al Haddad A, Kumagai Y, Tu MF, Schaller RD, Debnath T, Bin Mohd Yusof MS, Arnold C, Schlotter WF, Moeller S, Coslovich G, Koralek JD, Minitti MP, Vidal ML, Simon M, Santra R, Loh ZH, Coriani S, Krylov AI, Young L. Resonant Inelastic X-Ray Scattering Reveals Hidden Local Transitions of the Aqueous OH Radical. PHYSICAL REVIEW LETTERS 2020; 124:236001. [PMID: 32603165 DOI: 10.1103/physrevlett.124.236001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 05/06/2023]
Abstract
Resonant inelastic x-ray scattering (RIXS) provides remarkable opportunities to interrogate ultrafast dynamics in liquids. Here we use RIXS to study the fundamentally and practically important hydroxyl radical in liquid water, OH(aq). Impulsive ionization of pure liquid water produced a short-lived population of OH(aq), which was probed using femtosecond x-rays from an x-ray free-electron laser. We find that RIXS reveals localized electronic transitions that are masked in the ultraviolet absorption spectrum by strong charge-transfer transitions-thus providing a means to investigate the evolving electronic structure and reactivity of the hydroxyl radical in aqueous and heterogeneous environments. First-principles calculations provide interpretation of the main spectral features.
Collapse
Affiliation(s)
- L Kjellsson
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | - K D Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, USA
| | - J-E Rubensson
- Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala, Sweden
| | - G Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - S H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - P J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - A M March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - A Al Haddad
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Y Kumagai
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - M-F Tu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - R D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - T Debnath
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - M S Bin Mohd Yusof
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - C Arnold
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 20146 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, 22607 Hamburg, Germany
| | - W F Schlotter
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S Moeller
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - G Coslovich
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J D Koralek
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M P Minitti
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M L Vidal
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - M Simon
- Sorbonne Université and CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75252 Paris Cedex 05, France
| | - R Santra
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, 20146 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, 22607 Hamburg, Germany
| | - Z-H Loh
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 639798
| | - S Coriani
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - A I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90007, USA
| | - L Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Physics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
23
|
Loos PF, Lipparini F, Boggio-Pasqua M, Scemama A, Jacquemin D. A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Medium Sized Molecules. J Chem Theory Comput 2020; 16:1711-1741. [PMID: 31986042 DOI: 10.1021/acs.jctc.9b01216] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following our previous work focusing on compounds containing up to 3 non-hydrogen atoms [J. Chem. Theory Comput. 2018, 14, 4360-4379], we present here highly accurate vertical transition energies obtained for 27 molecules encompassing 4, 5, and 6 non-hydrogen atoms: acetone, acrolein, benzene, butadiene, cyanoacetylene, cyanoformaldehyde, cyanogen, cyclopentadiene, cyclopropenone, cyclopropenethione, diacetylene, furan, glyoxal, imidazole, isobutene, methylenecyclopropene, propynal, pyrazine, pyridazine, pyridine, pyrimidine, pyrrole, tetrazine, thioacetone, thiophene, thiopropynal, and triazine. To obtain these energies, we use equation-of-motion/linear-response coupled cluster theory up to the highest technically possible excitation order for these systems (CC3, EOM-CCSDT, and EOM-CCSDTQ) and selected configuration interaction (SCI) calculations (with tens of millions of determinants in the reference space), as well as the multiconfigurational n-electron valence state perturbation theory (NEVPT2) method. All these approaches are applied in combination with diffuse-containing atomic basis sets. For all transitions, we report at least CC3/aug-cc-pVQZ vertical excitation energies as well as CC3/aug-cc-pVTZ oscillator strengths for each dipole-allowed transition. We show that CC3 almost systematically delivers transition energies in agreement with higher-level methods with a typical deviation of ±0.04 eV, except for transitions with a dominant double excitation character where the error is much larger. The present contribution gathers a large, diverse, and accurate set of more than 200 highly accurate transition energies for states of various natures (valence, Rydberg, singlet, triplet, n → π*, π → π*, ...). We use this series of theoretical best estimates to benchmark a series of popular methods for excited state calculations: CIS(D), ADC(2), CC2, STEOM-CCSD, EOM-CCSD, CCSDR(3), CCSDT-3, CC3, and NEVPT2. The results of these benchmarks are compared to the available literature data.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, CNRS et Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 3, 56124 Pisa, Italy
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, CNRS et Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques, CNRS et Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | - Denis Jacquemin
- CEISAM Lab, UMR 6230, Université de Nantes, CNRS, F-44000 Nantes, France
| |
Collapse
|
24
|
Nanda KD, Vidal ML, Faber R, Coriani S, Krylov AI. How to stay out of trouble in RIXS calculations within equation-of-motion coupled-cluster damped response theory? Safe hitchhiking in the excitation manifold by means of core–valence separation. Phys Chem Chem Phys 2020; 22:2629-2641. [DOI: 10.1039/c9cp03688a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present a novel approach with robust convergence of the response equations for computing resonant inelastic X-ray scattering (RIXS) cross sections within the equation-of-motion coupled-cluster (EOM-CC) framework.
Collapse
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Marta L. Vidal
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Rasmus Faber
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Sonia Coriani
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
- The Hamburg Centre for Ultrafast Imaging
| |
Collapse
|
25
|
Michail E, Schreck MH, Holzapfel M, Lambert C. Exciton coupling effects on the two-photon absorption of squaraine homodimers with varying bridge units. Phys Chem Chem Phys 2020; 22:18340-18350. [DOI: 10.1039/d0cp03410j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excitonically coupled squaraine dimers show high two-photon absorption cross sections.
Collapse
Affiliation(s)
- Evripidis Michail
- Institut für Organische Chemie and Center for Nanosystems Chemistry
- Universität Würzburg
- Am Hubland
- D-97074 Würzburg
- Germany
| | - Maximilian H. Schreck
- Institut für Organische Chemie and Center for Nanosystems Chemistry
- Universität Würzburg
- Am Hubland
- D-97074 Würzburg
- Germany
| | - Marco Holzapfel
- Institut für Organische Chemie and Center for Nanosystems Chemistry
- Universität Würzburg
- Am Hubland
- D-97074 Würzburg
- Germany
| | - Christoph Lambert
- Institut für Organische Chemie and Center for Nanosystems Chemistry
- Universität Würzburg
- Am Hubland
- D-97074 Würzburg
- Germany
| |
Collapse
|
26
|
One‐ and Two‐Photon‐Induced Photochemistry of Iron Pentacarbonyl [Fe(CO)
5
]: Insights from Coupled Cluster Response Theory. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Di Remigio R, Giovannini T, Ambrosetti M, Cappelli C, Frediani L. Fully Polarizable QM/Fluctuating Charge Approach to Two-Photon Absorption of Aqueous Solutions. J Chem Theory Comput 2019; 15:4056-4068. [DOI: 10.1021/acs.jctc.9b00305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tommaso Giovannini
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Luca Frediani
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
28
|
Loos PF, Boggio-Pasqua M, Scemama A, Caffarel M, Jacquemin D. Reference Energies for Double Excitations. J Chem Theory Comput 2019; 15:1939-1956. [DOI: 10.1021/acs.jctc.8b01205] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Michel Caffarel
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Denis Jacquemin
- Laboratoire CEISAM (UMR 6230), CNRS, Université de Nantes, 44399 Cedex 3 Nantes, France
| |
Collapse
|
29
|
Grabarek D, Andruniów T. Assessment of Functionals for TDDFT Calculations of One- and Two-Photon Absorption Properties of Neutral and Anionic Fluorescent Proteins Chromophores. J Chem Theory Comput 2018; 15:490-508. [PMID: 30485096 DOI: 10.1021/acs.jctc.8b00769] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Performance of DFT functionals with different percentages of exact Hartree-Fock exchange energy (EX) is assessed for recovery of the CC2 reference one- (OPA) and two-photon absorption (TPA) spectra of fluorescent proteins chromophores in vacuo. The investigated DFT functionals, together with their EX contributions are BLYP (0%), B3LYP (20%), B1LYP (25%), BHandHLYP (50%), and CAM-B3LYP (19% at short range and 65% at long range). Our test set consists of anionic and neutral chromophores as naturally occurring in the fluorescent proteins. For the first time, we compare TDDFT and CC2 methods for higher excited states than the S1 state, exhibiting relatively large TPA intensity. Our TDDFT results for neutral chromophores reveal an increase in excitation energies as well as TPA and OPA intensities errors, compared to CC2-derived results, as the DFT functional contains less exact exchange. The long-range-corrected CAM-B3LYP functional performs the best, closely followed by BHandHLYP, while BLYP usually significantly underestimates all investigated spectral properties, hence being the worst in reproducing the reference CC2 results. The hybrid B3LYP and B1LYP functionals can be roughly placed in between. We propose that TDDFT may underestimate the TPA intensities for neutral chromophores of fluorescent proteins due to underestimated oscillator strengths between some excited states. In the case of anionic chromophores, we find that B3LYP and B1LYP functionals overcome others in terms of reproducing CC2 excitation energies. On the other hand, however, TPA intensity is usually significantly underestimated, and in this respect, CAM-B3LYP functional seems to be again superior. In contrast to the case of neutral chromophores, it seems that a large magnitude of excited-state dipole moments or changes in dipole moments upon excitation may be the driving force behind high TPA transition moments.
Collapse
Affiliation(s)
- Dawid Grabarek
- Advanced Materials Engineering and Modelling Group , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| | - Tadeusz Andruniów
- Advanced Materials Engineering and Modelling Group , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland
| |
Collapse
|
30
|
Patil DS, Avhad KC, Sekar N. Linear correlation between DSSC efficiency, intramolecular charge transfer characteristics, and NLO properties – DFT approach. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
de Wergifosse M, Houk AL, Krylov AI, Elles CG. Two-photon absorption spectroscopy of trans-stilbene, cis-stilbene, and phenanthrene: Theory and experiment. J Chem Phys 2018; 146:144305. [PMID: 28411609 DOI: 10.1063/1.4979651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Two-photon absorption (2PA) spectroscopy provides complementary, and sometimes more detailed, information about the electronic structure of a molecule relative to one-photon absorption (1PA) spectroscopy. However, our understanding of the 2PA processes is rather limited due to technical difficulties in measuring experimental 2PA spectra and theoretical challenges in computing higher-order molecular properties. This paper examines the 2PA spectroscopy of trans-stilbene, cis-stilbene, and phenanthrene by a combined experimental and theoretical approach. The broadband 2PA spectra of all three compounds are measured under identical conditions in order to facilitate a direct comparison of the absolute 2PA cross sections in the range 3.5-6.0 eV. For comparison, the theoretical 2PA cross sections are computed using the equation-of-motion coupled-cluster method with single and double substitutions. Simulated 2PA spectra based on the calculations reproduce the main features of the experimental spectra in solution, although the quantitative comparison is complicated by a number of uncertainties, including limitations of the theoretical model, vibronic structure, broadening of the experimental spectra, and solvent effects. The systematic comparison of experimental and theoretical spectra for this series of structurally similar compounds provides valuable insight into the nature of 2PA transitions in conjugated molecules. Notably, the orbital character and symmetry-based selection rules provide a foundation for interpreting the features of the experimental 2PA spectra in unprecedented detail.
Collapse
Affiliation(s)
- Marc de Wergifosse
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Amanda L Houk
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | | |
Collapse
|
32
|
Coupled cluster evaluation of the second and third harmonic scattering responses of small molecules. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2219-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Fernández B, Rodríguez R, Rizzo A, Quiñoá E, Riguera R, Freire F. Predicting the Helical Sense of Poly(phenylacetylene)s from their Electron Circular Dichroism Spectra. Angew Chem Int Ed Engl 2018; 57:3666-3670. [PMID: 29405581 DOI: 10.1002/anie.201713164] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/18/2018] [Indexed: 01/20/2023]
Abstract
The calculated ECD spectrum (time-dependent density functional theory TD-DFT) for small oligomers of polyphenylacetylenes (PPAs) show a very good match with the experimental spectra of the PPA polymers, particularly with the first Cotton band associated to the helical sense of the internal polyenic backbone. This has been proven with a series of PPAs representative of cis-cisoidal, cis-transoidal, compressed and stretched polyene backbones, with identical or opposite internal/external rotational senses and allows the prediction of the helical sense of the internal helix of a PPA directly from its CD spectra.
Collapse
Affiliation(s)
- Berta Fernández
- Departmento de Química Física, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Rafael Rodríguez
- Centro Singular de investigación en Química Biolóxica e, Materiais Moleculares (CiQUS) e Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n (Edificio CiQUS), Santiago de Compostela, Spain
| | - Antonio Rizzo
- Instituto per i Processi Chimico-Fisici (IPCF), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Pisa, 56124, Pisa, Italy
| | - Emilio Quiñoá
- Centro Singular de investigación en Química Biolóxica e, Materiais Moleculares (CiQUS) e Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n (Edificio CiQUS), Santiago de Compostela, Spain
| | - Ricardo Riguera
- Centro Singular de investigación en Química Biolóxica e, Materiais Moleculares (CiQUS) e Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n (Edificio CiQUS), Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de investigación en Química Biolóxica e, Materiais Moleculares (CiQUS) e Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n (Edificio CiQUS), Santiago de Compostela, Spain
| |
Collapse
|
34
|
Fernández B, Rodríguez R, Rizzo A, Quiñoá E, Riguera R, Freire F. Predicting the Helical Sense of Poly(phenylacetylene)s from their Electron Circular Dichroism Spectra. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Berta Fernández
- Departmento de Química Física; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Rafael Rodríguez
- Centro Singular de investigación en Química Biolóxica e, Materiais Moleculares (CiQUS) e Departamento de Química Orgánica; Universidade de Santiago de Compostela, Jenaro de la Fuente s/n (Edificio CiQUS); Santiago de Compostela Spain
| | - Antonio Rizzo
- Instituto per i Processi Chimico-Fisici (IPCF); Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Pisa; 56124 Pisa Italy
| | - Emilio Quiñoá
- Centro Singular de investigación en Química Biolóxica e, Materiais Moleculares (CiQUS) e Departamento de Química Orgánica; Universidade de Santiago de Compostela, Jenaro de la Fuente s/n (Edificio CiQUS); Santiago de Compostela Spain
| | - Ricardo Riguera
- Centro Singular de investigación en Química Biolóxica e, Materiais Moleculares (CiQUS) e Departamento de Química Orgánica; Universidade de Santiago de Compostela, Jenaro de la Fuente s/n (Edificio CiQUS); Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de investigación en Química Biolóxica e, Materiais Moleculares (CiQUS) e Departamento de Química Orgánica; Universidade de Santiago de Compostela, Jenaro de la Fuente s/n (Edificio CiQUS); Santiago de Compostela Spain
| |
Collapse
|
35
|
Solimannejad M, Rezaie F, Kamalinahad S. Correlating cluster size and NLO response of complexes aggregated with bifurcated metal bonds: a DFT study. Struct Chem 2018. [DOI: 10.1007/s11224-017-1009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Di Remigio R, Beerepoot MTP, Cornaton Y, Ringholm M, Steindal AH, Ruud K, Frediani L. Open-ended formulation of self-consistent field response theory with the polarizable continuum model for solvation. Phys Chem Chem Phys 2018; 19:366-379. [PMID: 27905594 DOI: 10.1039/c6cp06814f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of high-order absorption properties of molecules is a field of growing importance. Quantum-chemical studies can help design chromophores with desirable characteristics. Given that most experiments are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in quantum-chemical studies of these properties. We here present an open-ended formulation of self-consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to solvation, the mutual solute-solvent polarization is represented by means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute-solvent boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue analyses of the response functions naturally lead to the identification of excitation energies and transition moments. We document the implementation of this approach in the Dalton program package using a recently developed open-ended response code and the PCMSolver libraries and present results for one-, two-, three-, four- and five-photon absorption processes of three small molecules in solution.
Collapse
Affiliation(s)
- Roberto Di Remigio
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Maarten T P Beerepoot
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Yann Cornaton
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Magnus Ringholm
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Arnfinn Hykkerud Steindal
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Luca Frediani
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
37
|
Pernpointner M, Visscher L, Trofimov AB. Four-Component Polarization Propagator Calculations of Electron Excitations: Spectroscopic Implications of Spin–Orbit Coupling Effects. J Chem Theory Comput 2018; 14:1510-1522. [DOI: 10.1021/acs.jctc.7b01056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Markus Pernpointner
- Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - Lucas Visscher
- Theoretical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1083, NL-1081HV Amsterdam, Netherlands
| | - Alexander B. Trofimov
- Laboratory of Quantum Chemistry, Irkutsk State University, Karl Marx Street 1, 664003 Irkutsk, Russia
| |
Collapse
|
38
|
Warde U, Sekar N. Fluorescent Benzocoumarin-π-Extended Styryl Hybrids: Solvatochromism, Excess Dipole Moment, NLO Properties and DFT Study. J Fluoresc 2017; 28:293-309. [DOI: 10.1007/s10895-017-2192-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022]
|
39
|
Nanda KD, Krylov AI. Effect of the diradical character on static polarizabilities and two-photon absorption cross sections: A closer look with spin-flip equation-of-motion coupled-cluster singles and doubles method. J Chem Phys 2017; 146:224103. [DOI: 10.1063/1.4984822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
40
|
de Wergifosse M, Elles CG, Krylov AI. Two-photon absorption spectroscopy of stilbene and phenanthrene: Excited-state analysis and comparison with ethylene and toluene. J Chem Phys 2017; 146:174102. [DOI: 10.1063/1.4982045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marc de Wergifosse
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | | | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
41
|
Goetz RE, Isaev TA, Nikoobakht B, Berger R, Koch CP. Theoretical description of circular dichroism in photoelectron angular distributions of randomly oriented chiral molecules after multi-photon photoionization. J Chem Phys 2017; 146:024306. [DOI: 10.1063/1.4973456] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
42
|
Parker SM, Roy S, Furche F. Unphysical divergences in response theory. J Chem Phys 2016; 145:134105. [DOI: 10.1063/1.4963749] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Shane M. Parker
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Saswata Roy
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| |
Collapse
|
43
|
Friese DH, Beerepoot MTP, Ringholm M, Ruud K. Open-Ended Recursive Approach for the Calculation of Multiphoton Absorption Matrix Elements. J Chem Theory Comput 2016; 11:1129-44. [PMID: 25821415 PMCID: PMC4357236 DOI: 10.1021/ct501113y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Indexed: 01/05/2023]
Abstract
![]()
We present an implementation of single
residues for response functions
to arbitrary order using a recursive approach. Explicit expressions
in terms of density-matrix-based response theory for the single residues
of the linear, quadratic, cubic, and quartic response functions are
also presented. These residues correspond to one-, two-, three- and
four-photon transition matrix elements. The newly developed code is
used to calculate the one-, two-, three- and four-photon absorption
cross sections of para-nitroaniline and para-nitroaminostilbene, making this the first treatment of four-photon
absorption in the framework of response theory. We find that the calculated
multiphoton absorption cross sections are not very sensitive to the
size of the basis set as long as a reasonably large basis set with
diffuse functions is used. The choice of exchange–correlation
functional, however, significantly affects the calculated cross sections
of both charge-transfer transitions and other transitions, in particular,
for the larger para-nitroaminostilbene molecule.
We therefore recommend the use of a range-separated exchange–correlation
functional in combination with the augmented correlation-consistent
double-ζ basis set aug-cc-pVDZ for the calculation of multiphoton
absorption properties.
Collapse
|
44
|
Friese DH, Hättig C, Rizzo A. Origin-independent two-photon circular dichroism calculations in coupled cluster theory. Phys Chem Chem Phys 2016; 18:13683-92. [PMID: 27140590 DOI: 10.1039/c6cp01653g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the first origin-independent approach for the treatment of two-photon circular dichroism (TPCD) using coupled cluster methods. The approach is assessed concerning its behavior on the choice of the basis set and different coupled cluster methods. We also provide a comparison of results from CC2 with those from density functional theory using the CAM-B3LYP functional. Concerning the basis set we note that in most cases an augmented triple zeta basis or a doubly augmented double zeta basis is needed for reasonably converged results. In the comparison of different coupled cluster methods results from CCSD, CC3 and CC2 have been found to be quite similar in most cases, while CCS results differ remarkably from the results at the higher levels. However, this proof-of-principle study also shows that further benchmarking of DFT and CC2 against accurate coupled cluster reference values (e.g. CCSD or CC3) is needed.
Collapse
Affiliation(s)
- Daniel H Friese
- Centre for Theoretical and Computational Chemistry, University of Tromsø, Tromsø, Norway.
| | | | | |
Collapse
|
45
|
Margar SN, Sekar N. Nonlinear optical properties of curcumin: solvatochromism-based approach and computational study. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1161248] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
46
|
Friese DH, Ruud K. Three-photon circular dichroism: towards a generalization of chiroptical non-linear light absorption. Phys Chem Chem Phys 2016; 18:4174-84. [PMID: 26782622 DOI: 10.1039/c5cp07102j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the theory of three-photon circular dichroism (3PCD), a novel non-linear chiroptical property not yet described in the literature. We derive the observable absorption cross section including the orientational average of the necessary seventh-rank tensors and provide origin-independent expressions for 3PCD using either a velocity-gauge treatment of the electric dipole operator or a length-gauge formulation using London atomic orbitals. We present the first numerical results for hydrogen peroxide, 3-methylcyclopentanone (MCP) and 4-helicene, including also a study of the origin dependence and basis set convergence of 3PCD. We find that for the 3PCD-brightest low-lying Rydberg state of hydrogen peroxide, the dichroism is extremely basis set dependent, with basis set convergence not being reached before a sextuple-zeta basis is used, whereas for the MCP and 4-helicene molecules, the basis set dependence is more moderate and at the triple-zeta level the 3PCD contributions are more or less converged irrespective of whether the considered states are Rydberg states or not. The character of the 3PCD-brightest states in MCP is characterized by a fairly large charge-transfer character from the carbonyl group to the ring system. In general, the quadrupole contributions to 3PCD are found to be very small.
Collapse
Affiliation(s)
- Daniel H Friese
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway.
| | | |
Collapse
|
47
|
Alam MM, Daniel C. One- and two-photon activity of diketopyrrolopyrrole-Zn-porphyrin conjugates: linear and quadratic density functional response theory applied to model systems. Theor Chem Acc 2016. [DOI: 10.1007/s00214-015-1780-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Rizzo A, Rikken GLJA, Mathevet R. Ab initio study of the enantio-selective magnetic-field-induced second harmonic generation in chiral molecules. Phys Chem Chem Phys 2016; 18:1846-58. [PMID: 26682613 DOI: 10.1039/c5cp07127e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a systematic ab initio study of enantio-selective magnetic-field-induced second harmonic generation (MFISHG) on a set of chiral systems ((l)-alanine, (l)-arginine and (l)-cysteine; 3,4-dehydro-(l)-proline; (S)-α-phellandrene; (R,S)- and (S,S)-cystine disulphide; N-(4-nitrophenyl)-(S)-prolinol, N-(4-(2-nitrovinyl)-phenyl)-(S)-prolinol, N-(4-tricyanovinyl-phenyl)-(S)-prolinol, (R)-BINOL, (S)-BINAM and 6-(M)-helicene). The needed electronic frequency dependent cubic response calculations are performed within a density functional theory (DFT) approach. A study of the dependence of the property on the choice of electron correlation, on one-electron basis set extension and on the choice of magnetic gauge origin is carried out on a prototype system (twisted oxygen peroxide). The magnetic gauge dependence analysis is extended also to the molecules of the set. An attempt to analyze the structure-property relationships is also made, based on the results obtained for biphenyl (in a frozen twisted conformation), for prolinol and for some of their derivatives. The strength of the effect is discussed, in order to establish its measurability with a proposed experimental setup.
Collapse
Affiliation(s)
- Antonio Rizzo
- Consiglio Nazionale delle Ricerche - CNR, Istituto per i Processi Chimico-Fisici, UoS di Pisa, Area della Ricerca, Via G. Moruzzi 1, I-56124 Pisa, Italy.
| | | | | |
Collapse
|
49
|
Greenough SE, Horbury MD, Smith NA, Sadler PJ, Paterson MJ, Stavros VG. Excited-State Dynamics of a Two-Photon-Activatable Ruthenium Prodrug. Chemphyschem 2016; 17:221-4. [PMID: 26632426 PMCID: PMC4797363 DOI: 10.1002/cphc.201501075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 11/16/2022]
Abstract
We present a new approach to investigate how the photodynamics of an octahedral ruthenium(II) complex activated through two-photon absorption (TPA) differ from the equivalent complex activated through one-photon absorption (OPA). We photoactivated a Ru(II) polypyridyl complex containing bioactive monodentate ligands in the photodynamic therapy window (620-1000 nm) by using TPA and used transient UV/Vis absorption spectroscopy to elucidate its reaction pathways. Density functional calculations allowed us to identify the nature of the initially populated states and kinetic analysis recovers a photoactivation lifetime of approximately 100 ps. The dynamics displayed following TPA or OPA are identical, showing that TPA prodrug design may use knowledge gathered from the more numerous and easily conducted OPA studies.
Collapse
Affiliation(s)
- Simon E Greenough
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Michael D Horbury
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Nichola A Smith
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Martin J Paterson
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Vasilios G Stavros
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
50
|
Denis JC, Ruseckas A, Hedley GJ, Matheson AB, Paterson MJ, Turnbull GA, Samuel IDW, Galbraith I. Self-trapping and excited state absorption in fluorene homo-polymer and copolymers with benzothiadiazole and tri-phenylamine. Phys Chem Chem Phys 2016; 18:21937-48. [DOI: 10.1039/c6cp02059c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excited state absorption (ESA) is studied using time-dependent density functional theory and compared with experiments performed in dilute solutions.
Collapse
Affiliation(s)
- Jean-Christophe Denis
- Institute of Photonics and Quantum Sciences
- SUPA
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
| | - Arvydas Ruseckas
- Organic Semiconductor Centre
- SUPA
- School of Physics & Astronomy
- University of St. Andrews
- St. Andrews
| | - Gordon J. Hedley
- Organic Semiconductor Centre
- SUPA
- School of Physics & Astronomy
- University of St. Andrews
- St. Andrews
| | - Andrew B. Matheson
- Organic Semiconductor Centre
- SUPA
- School of Physics & Astronomy
- University of St. Andrews
- St. Andrews
| | - Martin J. Paterson
- Institute of Chemical Sciences
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Graham A. Turnbull
- Organic Semiconductor Centre
- SUPA
- School of Physics & Astronomy
- University of St. Andrews
- St. Andrews
| | - Ifor D. W. Samuel
- Organic Semiconductor Centre
- SUPA
- School of Physics & Astronomy
- University of St. Andrews
- St. Andrews
| | - Ian Galbraith
- Institute of Photonics and Quantum Sciences
- SUPA
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
| |
Collapse
|