1
|
Pan H, Zhao B, Guo H, Liu K. State-to-State Dynamics in Mode-Selective Polyatomic Reactions. J Phys Chem Lett 2023; 14:10412-10419. [PMID: 37955874 DOI: 10.1021/acs.jpclett.3c02853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Chemical reactions are intrinsically quantum mechanical transformations of reactants to products. Recent experimental and theoretical advances have enabled the exploration of reaction dynamics with a quantum state resolution for both reactants and products. To this end, reactions involving more than three atoms are of particular interest, because they exhibit rich dynamics concerning the role of different reactant modes in controlling reactivity and product energy disposal. A clear understanding of the state-to-state dynamics requires new paradigms. In this Perspective, we examine some new concepts that have emerged from recent state-to-state studies of polyatomic reactions and illustrate the key role played by the transition state.
Collapse
Affiliation(s)
- Huilin Pan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, P. R. China
| | - Bin Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Kopin Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, P. R. China
- Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Bonnet L, Crespos C, Monnerville M. Chemical reaction thresholds according to classical-limit quantum dynamics. J Chem Phys 2022; 157:094114. [PMID: 36075739 DOI: 10.1063/5.0101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Classical-limit quantum dynamics is used to explain the origin of the quantum thresholds of chemical reactions from their classical dynamics when these are vibrationally nonadiabatic across the interaction region. This study is performed within the framework of an elementary model of chemical reaction that mimics the passage from the free rotation of the reagents to the bending vibration at the transition state to the free rotation of the products.
Collapse
Affiliation(s)
- L Bonnet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - C Crespos
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - M Monnerville
- Univ. Lille, CNRS, PhLAM, UMR 8523, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
3
|
Sahoo J, Rawat AMS, Mahapatra S. Theoretical Study of the Energy Disposal Mechanism and the State-Resolved Quantum Dynamics of the H + LiH + → H 2 + Li + Reaction. J Phys Chem A 2021; 125:3387-3397. [PMID: 33876630 DOI: 10.1021/acs.jpca.1c01811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite several studies in the literature, the detailed quantum state-to-state level mechanism of the astrophysically important exoergic barrierless H + LiH+ → H2 + Li+ reaction is yet to be understood. In this work, we have investigated the energy disposal mechanism of the reaction in terms of integral reaction cross section, product internal state distributions, differential cross section, and rate constant. Fully converged and Coriolis coupled quantum mechanical calculations based on a time-dependent wave packet method have been performed at the state-to-state level on the ab initio electronic ground state potential energy surface (PES) constructed by Martinazzo et al. (J. Chem. Phys. 2003, 119, 11241-11248). The agreement between the present quantum mechanical and previous quasi-classical results is found even at very low relative translational energies of reagents. A non-statistical inverse Boltzmann vibrational distribution for the product is found. This is attributed to the "attractive" nature of the underlying PES, which facilitates the excess energy release mostly as product vibration (60-80%). The energy disposal in products is found to be unaffected by the rovibrational excitation of the reagent diatom due to the weak coupling between the vibrational modes of the reagent and the product. The mild effect of collision energy on the product energy disposal is ascribed to the effective coupling between the translational modes of the reagent and the product. It is found that the collisions lead to the formation of the product H2 in its rovibrationally excited levels.
Collapse
Affiliation(s)
- Jayakrushna Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | - S Mahapatra
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
4
|
Photodissociation transition states characterized by chirped pulse millimeter wave spectroscopy. Proc Natl Acad Sci U S A 2020; 117:146-151. [PMID: 31852828 DOI: 10.1073/pnas.1911326116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 193-nm photolysis of CH2CHCN illustrates the capability of chirped-pulse Fourier transform millimeter-wave spectroscopy to characterize transition states. We investigate the HCN, HNC photofragments in highly excited vibrational states using both frequency and intensity information. Measured relative intensities of J = 1-0 rotational transition lines yield vibrational-level population distributions (VPD). These VPDs encode the properties of the parent molecule transition state at which the fragment molecule was born. A Poisson distribution formalism, based on the generalized Franck-Condon principle, is proposed as a framework for extracting information about the transition-state structure from the observed VPD. We employ the isotopologue CH2CDCN to disentangle the unimolecular 3-center DCN elimination mechanism from other pathways to HCN. Our experimental results reveal a previously unknown transition state that we tentatively associate with the HCN eliminated via a secondary, bimolecular reaction.
Collapse
|
5
|
Zhao B, Guo H. State‐to‐state quantum reactive scattering in four‐atom systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Zhao
- Department of Chemistry and Chemical Biology University of New Mexico Albuquerque NM USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology University of New Mexico Albuquerque NM USA
| |
Collapse
|
6
|
Guo H, Liu K. Control of chemical reactivity by transition-state and beyond. Chem Sci 2016; 7:3992-4003. [PMID: 30155041 PMCID: PMC6013787 DOI: 10.1039/c6sc01066k] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/06/2016] [Indexed: 11/21/2022] Open
Abstract
It has been long established that the transition state for an activated reaction controls the overall reactivity, serving as the bottleneck for reaction flux. However, the role of the transition state in regulating quantum state resolved reactivity has only been addressed more recently, thanks to advances in both experimental and theoretical techniques. In this perspective, we discuss some recent advances in understanding mode-specific reaction dynamics in bimolecular reactions, mainly focusing on the X + H2O/CH4 (X = H, F, Cl, and O(3P)) systems, extensively studied in our groups. These advances shed valuable light on the importance of the transition state in mode-specific and steric dynamics of these prototypical reactions. It is shown that many mode-specific phenomena can be understood in terms of a transition-state based model, which assumes in the sudden limit that the ability of a reactant mode for promoting the reaction stems from its coupling with the reaction coordinate at the transition state. Yet, in some cases the long-range anisotropic interactions in the entrance (or exit) valley, which govern how the trajectories reach (or leave) the transition state, also come into play, thus modifying the reactive outcomes.
Collapse
Affiliation(s)
- Hua Guo
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , USA .
| | - Kopin Liu
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 10617 , Taiwan .
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
7
|
Zhao B, Sun Z, Guo H. State-to-State Mode Specificity: Energy Sequestration and Flow Gated by Transition State. J Am Chem Soc 2015; 137:15964-70. [DOI: 10.1021/jacs.5b11404] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Zhao
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Zhigang Sun
- State
Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical
and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
8
|
Zhao B, Sun Z, Guo H. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal. J Chem Phys 2015; 142:241101. [DOI: 10.1063/1.4922650] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bin Zhao
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Zhigang Sun
- Center for Theoretical and Computational Chemistry, and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
9
|
Zhao B, Guo H. Modulations of Transition-State Control of State-to-State Dynamics in the F + H2O → HF + OH Reaction. J Phys Chem Lett 2015; 6:676-680. [PMID: 26262484 DOI: 10.1021/acs.jpclett.5b00071] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The full-dimensional quantum dynamics of the F + H2O → HF + OH reaction is investigated at the state-to-state level for the first time using a transition-state wave packet method on an accurate global potential energy surface. It is found that the H2O rotation enhances the reactivity and the product-state distribution is dominated by HF vibrational excitation while the OH moiety serves effectively as a spectator. These observations underscore the transition-state control of the reaction dynamics, as both the H2O rotational and HF vibrational modes are strongly coupled to the reaction coordinate at the transition state. It is also shown that the transition-state dominance of the reaction dynamics is modulated by other features on the potential energy surface, such as the prereaction well.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
10
|
Welsch R, Manthe U. Loss of Memory in H + CH4 → H2 + CH3 State-to-State Reactive Scattering. J Phys Chem Lett 2015; 6:338-342. [PMID: 26261943 DOI: 10.1021/jz502525p] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
State-to-state reaction probabilities for the H + CH4→ H2 + CH3 reaction are calculated by accurate full-dimensional quantum dynamics calculations employing the multilayer multiconfigurational time-dependent Hartree approach and the quantum transition-state concept. Reactions starting from different vibrational and rotational states of the methane reactant are investigated for vanishing total angular momentum. The vibrational state distributions of the products are found to be essentially independent of the initial rovibrational state of the reactants. The reaction products only show vibrational excitation in the methyl umbrella mode. No excitation in H2 vibration or another CH3 vibration is observed. Analyzing the results, the observed loss of vibrational memory can be explained by a transition-state-based view of the reaction process.
Collapse
Affiliation(s)
- Ralph Welsch
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
11
|
Song H, Guo H. Effects of reactant rotational excitations on H2 + NH2 → H + NH3 reactivity. J Chem Phys 2014; 141:244311. [DOI: 10.1063/1.4904483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hongwei Song
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
12
|
Guo H, Jiang B. The sudden vector projection model for reactivity: mode specificity and bond selectivity made simple. Acc Chem Res 2014; 47:3679-85. [PMID: 25393632 DOI: 10.1021/ar500350f] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CONSPECTUS: Mode specificity is defined by the differences in reactivity due to excitations in various reactant modes, while bond selectivity refers to selective bond breaking in a reaction. These phenomena not only shed light on reaction dynamics but also open the door for laser control of reactions. The existence of mode specificity and bond selectivity in a reaction indicates that not all forms of energy are equivalent in promoting the reactivity, thus defying a statistical treatment. They also allow the enhancement of reactivity and control product branching ratio. As a result, they are of central importance in chemistry. This Account discusses recent advances in our understanding of these nonstatistical phenomena. In particular, the newly proposed sudden vector projection (SVP) model and its applications are reviewed. The SVP model is based on the premise that the collision in many direct reactions is much faster than intramolecular vibrational energy redistribution in the reactants. In such a sudden limit, the coupling of a reactant mode with the reaction coordinate at the transition state, which dictates its ability to promote the reaction, is approximately quantified by the projection of the former onto the latter. The SVP model can be considered as a generalization of the venerable Polanyi's rules, which are based on the location of the barrier. The SVP model is instead based on properties of the saddle point and as a result capable of treating the translational, rotational, and multiple vibrational modes in reactions involving polyatomic reactants. In case of surface reactions, the involvement of surface atoms can also be examined. Taking advantage of microscopic reversibility, the SVP model has also been used to predict product energy disposal in reactions. This simple yet powerful rule of thumb has been successfully demonstrated in many reactions including uni- and bimolecular reactions in the gas phase and gas-surface reactions. The success of the SVP model underscores the importance of the transition state in controlling mode-specific and bond-selective chemistry.
Collapse
Affiliation(s)
- Hua Guo
- Department
of Chemistry and
Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Bin Jiang
- Department
of Chemistry and
Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
13
|
Liu R, Wang F, Jiang B, Czakó G, Yang M, Liu K, Guo H. Rotational mode specificity in the Cl + CHD3 → HCl + CD3 reaction. J Chem Phys 2014; 141:074310. [DOI: 10.1063/1.4892598] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Welsch R, Manthe U. Communication: Ro-vibrational control of chemical reactivity in H+CH4→ H2+CH3 : Full-dimensional quantum dynamics calculations and a sudden model. J Chem Phys 2014; 141:051102. [DOI: 10.1063/1.4891917] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ralph Welsch
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
15
|
Manthe U, Welsch R. Correlation functions for fully or partially state-resolved reactive scattering calculations. J Chem Phys 2014; 140:244113. [DOI: 10.1063/1.4884716] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Ralph Welsch
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
16
|
Zhao B, Sun Z, Guo H. Calculation of state-to-state differential and integral cross sections for atom-diatom reactions with transition-state wave packets. J Chem Phys 2014; 140:234110. [DOI: 10.1063/1.4883615] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Jiang B, Guo H. Relative efficacy of vibrational vs. translational excitation in promoting atom-diatom reactivity: rigorous examination of Polanyi's rules and proposition of sudden vector projection (SVP) model. J Chem Phys 2014; 138:234104. [PMID: 23802948 DOI: 10.1063/1.4810007] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To provide a systematic and rigorous re-examination of the well-known Polanyi's rules, excitation functions of several A + BC(v = 0, 1) reactions are determined using the Chebyshev real wave packet method on accurate potential energy surfaces. Reactions with early (F + H2 and F + HCl), late (Cl + H2), and central (H∕D∕Mu + H2, where Mu is a short-lived light isotope of H) barriers are represented. Although Polanyi's rules are in general consistent with the quantum dynamical results, their predictions are strictly valid only in certain energy ranges divided by a cross-over point. In particular, vibrational excitation of the diatomic reactant typically enhances reactivity more effectively than translational excitation at high energies, while reverse is true at low energies. This feature persists irrespective of the barrier location. A sudden vector projection model is proposed as an alternative to Polanyi's rules. It is found to give similar, but more quantitative, predictions about mode selectivity in these reactions, and has the advantage to be extendible to reactions involving polyatomic molecules.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | |
Collapse
|
18
|
Jiang B, Li J, Guo H. Effects of reactant rotational excitation on reactivity: Perspectives from the sudden limit. J Chem Phys 2014; 140:034112. [DOI: 10.1063/1.4861668] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Jiang B, Guo H. Control of Mode/Bond Selectivity and Product Energy Disposal by the Transition State: X + H2O (X = H, F, O(3P), and Cl) Reactions. J Am Chem Soc 2013; 135:15251-6. [DOI: 10.1021/ja408422y] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Jiang
- Department of Chemistry and
Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hua Guo
- Department of Chemistry and
Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
20
|
|
21
|
Welsch R, Huarte-Larrañaga F, Manthe U. State-to-state reaction probabilities within the quantum transition state framework. J Chem Phys 2012; 136:064117. [DOI: 10.1063/1.3684631] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Schiffel G, Manthe U. A transition state view on reactive scattering: Initial state-selected reaction probabilities for the H+CH4→H2+CH3 reaction studied in full dimensionality. J Chem Phys 2010; 133:174124. [DOI: 10.1063/1.3489409] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Schiffel G, Manthe U. Communications: A rigorous transition state based approach to state-specific reaction dynamics: Full-dimensional calculations for H+CH4→H2+CH3. J Chem Phys 2010; 132:191101. [DOI: 10.1063/1.3428622] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Aoiz FJ, Herrero VJ, Rábanos VS. Cumulative reaction probabilities and transition state properties: A study of the F+H2 reaction and its deuterated isotopic variants. J Chem Phys 2008; 129:024305. [DOI: 10.1063/1.2952672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Gustafsson M, Skodje RT, Zhang J, Dai D, Harich SA, Wang X, Yang X. Observing the stereodynamics of chemical reactions using randomly oriented molecular beams. J Chem Phys 2007; 124:241105. [PMID: 16821965 DOI: 10.1063/1.2217015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new method is demonstrated to study the stereodynamics of simple chemical reactions that does not require the use of oriented (or aligned) molecular beams or measurements of the orientation state of product molecules. Instead, it is shown that by numerically combining accurate measurements of the state-to-state differential cross section for two or more rotational states of the reagent molecule, the separate contribution from the individual helicity states can be extracted. New molecular beam experiments are conducted for the D+H(2)-->HD+H reaction that confirm the validity of the method.
Collapse
Affiliation(s)
- Magnus Gustafsson
- Institute of Atomic and Molecular Sciences, Academia Sinica, PO Box 23-166, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
26
|
Gustafsson M, Skodje RT. Probing stereodynamics in reactive collisions using helicity filtering. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2006.11.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Aoiz FJ, Herrero VJ, de Miranda MP, Sáez Rábanos V. Constraints at the transition state of the D + H2 reaction: quantum bottlenecks vs. stereodynamics. Phys Chem Chem Phys 2007; 9:5367-73. [PMID: 17914474 DOI: 10.1039/b709161c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article presents a quasiclassical trajectory method for the calculation of cumulative reaction probabilities by sampling of the helicity quantum number of the reagents (k). The method is applied to the D + H(2) reaction at various total angular momentum (J) values, and the helicity-resolved quasiclassical cumulative reaction probabilities are compared to their quantum mechanical counterparts. The agreement between the two sets of results is fairly good. In particular, k-dependent, J-independent reaction thresholds found with quantum methods are reproduced by the quasiclassical calculations. The shift of these thresholds with increasing k, which has been previously attributed to the quantum bottleneck states taking part in the reaction, is revisited and discussed also in terms of the reaction stereodynamics.
Collapse
Affiliation(s)
- F J Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
28
|
Aoiz FJ, Brouard M, Eyles CJ, Castillo JF, Sáez Rábanos V. Cumulative reaction probabilities: A comparison between quasiclassical and quantum mechanical results. J Chem Phys 2006; 125:144105. [PMID: 17042577 DOI: 10.1063/1.2353837] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This article presents a quasiclassical trajectory (QCT) method for determining the cumulative reaction probability (CRP) as a function of the total energy. The method proposed is based on a discrete sampling using integer values of the total and orbital angular momentum quantum numbers for each trajectory and on the development of equations that have a clear counterpart in the quantum mechanical (QM) case. The calculations comprise cumulative reaction probabilities at a given total angular momentum J, as well as those summed over J. The latter are used to compute QCT rate constants. The method is illustrated by comparing QCT and exact QM results for the H+H2, H+D2, D+H2, and H+HD reactions. The agreement between QCT and QM results is very good, with small discrepancies between the two data sets indicating some genuine quantum effects. The most important of these involves the value of the CRP at low energies which, due to the absence of tunneling, is lower in the QCT calculations, causing the corresponding rate constants to be smaller. The second is the steplike structure that is clearly displayed in the QM CRP for J = 0, which is much smoother in the corresponding QCT results. However, when the QCT density of reactive states, i.e., the derivatives of the QCT CRP with respect to the energy, is calculated, a succession of maxima and minima is obtained which roughly resembles those found in the QM calculations, although the latter are considerably sharper. The analysis of the broad peaks in the QCT density of reactive states indicates that the distributions of collision times associated with the maxima are somewhat broader, with a tail extending to larger collision times, than those associated with the minima. In addition, the QM and QCT dynamics of the isotopic variants mentioned above are compared in the light of their CRPs. Issues such as the compliance of the QCT CRP with the law of microscopic reversibility, as well as the similarity between the CRPs for ortho and para species in the QM and QCT cases, are also addressed.
Collapse
Affiliation(s)
- F J Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain.
| | | | | | | | | |
Collapse
|