1
|
Kuntar SP, Ghosh A, Ghanty TK. Theoretical prediction of donor-acceptor type novel complexes with strong noble gas-boron covalent bond. Phys Chem Chem Phys 2024; 26:4975-4988. [PMID: 38258349 DOI: 10.1039/d3cp02667a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The experimental identification of NgBeO molecules, followed by the recent theoretical exploration of super-strong NgBO+ (Ng = He-Rn) ions motivated us to investigate the stability of iso-electronic NgBNH+ (Ng = He-Rn) ions using various ab initio-based quantum chemical methods. The hydrogen-like chemical behavior of gold in small clusters and molecules also inspired us to study the nature of the bonding interactions in NgBNAu+ ions compared to that in NgBNH+ ions. The calculated Ng-B bond lengths in the predicted ions have been found to be much lower than the corresponding covalent limits, indicating a covalent Ng-B interaction in both the NgBNH+ and NgBNAu+ ions. In addition, the Ng-B bond dissociation energies are found to be in the range of 136.7-422.8 kJ mol-1 for NgBNH+ and 77.4-319.1 kJ mol-1 for NgBNAu+, implying the stable nature of the predicted ions. Interestingly, the Ng-B bond length (except for Ne) is the lowest reported to date together with the highest He-B and Ne-B binding energies considering all the neutral and cationic complexes containing Ng-B bonding motifs. Moreover, the natural bonding orbital (NBO) and electron density-based atoms-in-molecule (AIM) analysis reveal the covalent nature of the Ng-B bond in the predicted ions. Furthermore, the energy decomposition analysis together with the natural bond orbital in the chemical valence (EDA-NOCV) studies indicate that the orbital interaction energy is the main contributor to the total attraction energy in the Ng-B bonds. All the calculated results indicate the hydrogen-like chemical behavior of gold in the predicted NgBNM+ ions, showing further evidence of the concept of "gold-hydrogen analogy". Also, for comparison, the corresponding Cu and Ag analogs are investigated. All the computed results together with the experimental identification of the NgMX (Ng = Ar-Xe; M = Cu, Ag, Au; X = F, Cl), ArOH+, and NgBeO (Ng = Ar-Xe) systems clearly indicate that it may be possible to prepare and characterize the predicted NgBNM+ ions experimentally using suitable technique(s).
Collapse
Affiliation(s)
- Subrahmanya Prasad Kuntar
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
- Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Ayan Ghosh
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
- Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
- Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
2
|
Kuntar SP, Ghosh A, Ghanty TK. Prediction of donor-acceptor-type novel noble gas complexes in the triplet electronic state. Phys Chem Chem Phys 2023; 25:6987-6994. [PMID: 36807359 DOI: 10.1039/d2cp05813h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Closed-shell noble gas (Ng) compounds in the singlet electronic state have been extensively studied in the past two decades after the revolutionary discovery of 1HArF molecule. Motivated by the experimental identification of very strong donor-acceptor-type singlet-state Ng complex 1ArOH+, in the present article, for the first time, we report new donor-acceptor-type noble gas complexes in the triplet electronic state (3NgBeN+ (Ng = He-Rn)), where most of the Ng-Be bond lengths are smaller than the corresponding covalent limits. The newly proposed complexes are predicted to be stable by various computational tools, including coupled-cluster and multireference-based methods, with strong Ng-Be bonding (40.4-196.2 kJ mol-1). We have also investigated 3NgBeP+ (Ng = He-Rn) complexes for the purpose of comparison. Various computational results, including the structural parameters, bonding energies, vibrational frequencies, and atoms-in-molecule properties suggest that it may be possible to prepare and characterize these triplet state complexes through suitable experimental technique(s).
Collapse
Affiliation(s)
- Subrahmanya Prasad Kuntar
- Homi Bhabha National Institute, Training School complex, Anushaktinagar, Mumbai 400094, India.,Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Ayan Ghosh
- Homi Bhabha National Institute, Training School complex, Anushaktinagar, Mumbai 400094, India.,Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Training School complex, Anushaktinagar, Mumbai 400094, India.,Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400085, India.
| |
Collapse
|
3
|
Kuntar SP, Ghosh A, Ghanty TK. Superstrong Chemical Bonding of Noble Gases with Oxidoboron (BO +) and Sulfidoboron (BS +). J Phys Chem A 2022; 126:7888-7900. [PMID: 36264945 DOI: 10.1021/acs.jpca.2c05554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inspired by the overwhelming exploration of noble gas-boron (Ng-B) bond containing chemical compounds, the stability of the Ng bound BY+ and AlY+ (Y = O and S) has been investigated by using various ab initio based quantum chemical methods. Ng atoms are found to form exceptionally strong bonds with BO+ species in the predicted NgBO+ (Ng = He-Rn) complexes with remarkably high Ng-B dissociation energies ranging from 138.0 to 462.2 kJ mol-1 for the He-Rn series. It is the highest ever Ng-B binding energy in conjunction with the smallest Ng-B bond length for any of the cationic species involving a Ng-B bond as reported until today. More importantly, the calculated Ng-B bond lengths have been found to be much lower than the respective covalent limits in both NgBO+ and NgBS+ ions. The electronegativity difference between O and S atoms has been reflected nicely in the Ng-B and Ng-Al binding energies, which are found to be 91.9-346.5, 9.6-169.2, and 6.8-142.1 kJ mol-1 in NgBS+, NgAlO+, and NgAlS+, respectively. The strong covalent bonding between Ng and B/Al atoms in the predicted chemical systems has also been supported by the natural bonding orbital (NBO) and electron density based atoms-in-molecule (AIM) analysis. In addition, the energy decomposition analysis (EDA) in combination with the natural bond orbital for chemical valence (NOCV) indicates that the orbital interaction term is the prime contributor to the total attraction energy in the Ng-B and Ng-Al bonds. Furthermore, Ng-B and Ng-Al bonding can be assessed using the donor-acceptor model where the σ-electron donation that takes place from Ng (HOMO) → XY+ (LUMO) (X = B and Al; Y = O and S) is the major contributor to the orbital interaction energy. All the computational results along with the very recent experimental observation of ArOH+ and NgMX (Ng = Ar-Xe; M = Cu, Ag, Au; X = F, Cl) clearly indicate that it might be possible to synthesize and characterize these superstrong complexes, NgXY+ (Ng = He-Rn; X = B and Al; Y = O and S), under suitable experimental technique(s).
Collapse
Affiliation(s)
- Subrahmanya Prasad Kuntar
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India.,Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Ayan Ghosh
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India.,Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India.,Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
4
|
Ghosh A, Maitra A, Kuntar SP, Ghanty TK. Stability-Order Reversal in FSiY and FYSi (Y = N and P) Molecules after the Insertion of a Noble Gas Atom. J Phys Chem A 2022; 126:1132-1143. [PMID: 35157456 DOI: 10.1021/acs.jpca.1c10424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent theoretical prediction and experimental identification of fluorinated noble gas cyanides and isocyanides motivate us to explore a unique novel series of neutral noble gas-inserted heavier cyanofluoride isomers, FNgYSi and FNgSiY (Ng = Kr, Xe, and Rn; Y = N and P), theoretically using quantum chemical calculations. The concerned minima and saddle point geometries have been optimized using DFT, MP2, and CCSD(T) methods. The precursor molecule FSiY is more stable than its isomer FYSi, and the stability order is found to be reversed after the insertion of a noble gas (Ng) atom into them which is in contrast to the previously reported FCN/FNC systems where the stability order in the precursors remains intact after the insertion of a Ng atom into them. The predicted FNgYSi molecules are metastable in nature as they are kinetically stable but thermodynamically unstable with respect to the global minima products (FYSi and Ng). All the calculations for the corresponding FNgSiY molecules clearly indicate that the less stable FNgSiY behaves similarly to the FNgYSi in all respects. The energetics, force constant, and spectroscopic data strongly reinforce the possibility of occurrence of these predicted FNgYSi and FNgSiY molecules which might be experimentally realized under suitable cryogenic condition(s).
Collapse
Affiliation(s)
- Ayan Ghosh
- Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Training School Complex, Anushakti Nagar, Mumbai 400 085, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, , Mumbai 400 094, India
| | - Anwesha Maitra
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Subrahmanya Prasad Kuntar
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, , Mumbai 400 094, India.,Bio Science Group, Bhabha Atomic Research Centre, Training School Complex, Anushakti Nagar, Mumbai 400 085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, , Mumbai 400 094, India.,Bio Science Group, Bhabha Atomic Research Centre, Training School Complex, Anushakti Nagar, Mumbai 400 085, India
| |
Collapse
|
5
|
Kuntar SP, Ghosh A, Ghanty TK. Theoretical prediction of FNgM3–kHk (Ng = Ar, Kr, Xe, and Rn; M = Cu, Ag and Au; k = 0–2) molecules. Mol Phys 2022. [DOI: 10.1080/00268976.2021.2020924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Subrahmanya Prasad Kuntar
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Ayan Ghosh
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Tapan K. Ghanty
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Bio Science Group, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
6
|
Kuntar SP, Ghosh A, Ghanty TK. Existence of Noble Gas Inserted Phosphorus Fluorides: FNgPF 2 and FNgPF 4 with Ng-P Covalent Bond (Ng = Ar, Kr, Xe and Rn). Phys Chem Chem Phys 2022; 24:20466-20479. [DOI: 10.1039/d2cp02329f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Very limited literature on noble gas (Ng)-phosphorous chemical bonding and our recent theoretical prediction of FNgP molecule motivates us to explore a unique novel class of neutral noble gas inserted...
Collapse
|
7
|
Ghosh A, Mallick A, Ghanty TK. Anomaly in the stability of the hydroxides of icosagens (B and Al) and their noble gas (Xe and Rn) derivatives: a comparative study. Phys Chem Chem Phys 2020; 22:14109-14124. [PMID: 32542270 DOI: 10.1039/d0cp01928c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Motivated by the discovery of neutral noble gas hydrides, herein, we have explored the possibility of the existence of a novel class of neutral noble gas compounds, HNgBO, HNgOB, HNgAlO and HNgOAl (Ng = Xe and Rn), through the insertion of a Ng atom into the hydroxides of icosagens and their isomers, namely, HBO, HOB, HAlO and HOAl. Second-order Møller-Plesset perturbation theory (MP2), density functional theory (DFT), and coupled-cluster theory (CCSD(T))-based methods have been employed to investigate the structures, stabilities, energetics, harmonic vibrational frequencies, and charge distribution of the predicted molecules. The HXeBO, HXeOAl, HRnBO, HRnAlO and HRnOAl molecules are found to be thermodynamically stable with respect to all plausible 2-body and 3-body dissociation channels except the 2-body dissociation pathway, leading to the formation of global minimum products (Ng + HBO), (Ng + HOAl) and (Ng + HAlO). However, the very large activation energy barrier heights provide enough kinetic stability to the predicted metastable molecules, which in turn can prevent them from dissociating into the global minimum products. Between the HNgBO-HNgOB isomers, HNgBO is found to be more stable, where both HNgBO and the precursor molecule HBO are linear. On the other hand, HNgOAl is more stable between the HNgAlO-HNgOAl isomers, where the precursor molecule HOAl is bent and HNgOAl is linear in contradiction and in agreement with Walsh's rule, respectively. Moreover, in contrast to the more stable HNgBO case, where the Ng atom is bonded with the icosagen atom, in the more stable HNgOAl, the Ng atom is connected to the chalcogen atom. All the detailed aforementioned analyses concerning the predicted molecules clearly indicate that a strong covalent bond exists between the H and Ng atoms, while an ionic interaction is found between the Ng and B atoms in HNgBO and Ng and O atoms in the HNgOAl molecules. In addition, the charge distribution and atoms-in-molecules (AIM) analyses are in agreement with the above-mentioned conclusion and also suggest that the predicted metastable HNgBO and HNgOAl molecules should essentially exist in the form of [HNg]+[BO]- and [HNg]+[OAl]-, respectively. All the calculated results reported in this work indicate that it might be possible to prepare and characterize the predicted molecules via suitable experimental technique(s) under cryogenic conditions.
Collapse
Affiliation(s)
- Ayan Ghosh
- Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | | |
Collapse
|
8
|
Pan S, Jana G, Saha R, Zhao L, Chattaraj PK. Intriguing structural, bonding and reactivity features in some beryllium containing complexes. Phys Chem Chem Phys 2020; 22:27476-27495. [DOI: 10.1039/d0cp04912c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We highlighted our contributions to Be chemistry which include bond-stretch isomerism in Be32− species, Be complexes bound with noble gas, CO, and N2, Be based nanorotors, and intriguing bonding situations in some Be complexes.
Collapse
Affiliation(s)
- Sudip Pan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing
| | - Gourhari Jana
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Ranajit Saha
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Lili Zhao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing
| | - Pratim K. Chattaraj
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
- Department of Chemistry
| |
Collapse
|
9
|
Wen M, Li ZZ, Li AY. Noble gas inserted compounds of borazine and its derivative B 3N 3R 6: structures and bonding. J Mol Model 2018; 24:326. [PMID: 30368616 DOI: 10.1007/s00894-018-3860-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/05/2018] [Indexed: 11/27/2022]
Abstract
Quantum chemistry computations were performed at the MP2 and B3LYP levels of theory using the basis sets aug-cc-pVDZ and def2-TZVPPD to study the noble gas (Ng) compounds formed by insertion of a Ng atom (Kr, Xe, Rn) into the B-H/F and N-H/F bonds of inorganic benzene B3N3H6 and its fluorine derivative B3N3F6. The geometrical structures were optimized and vibrational analysis was carried out to demonstrate these structures being local minima on the potential energy surface. The thermodynamic properties of the formation process of Ng compounds were calculated. A series of theoretical methods based on the wavefunction analysis, including NBO, AIM and ELF methods and energy decomposition analysis, was used to investigate the bonding nature of the noble gas atoms and the properties of the Ng compounds. The N-Ng bond was found to be stronger than the B-Ng bond, but the B-Ng bond is of typical covalent character and σ-donation from the Ng atom to the ring B atom makes the predominant contribution towards stability of the B-Ng bond. NICS calculation shows that these Ng-containing compounds are of weak π-aromaticity.
Collapse
Affiliation(s)
- Mei Wen
- School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road No.2, Chongqing, 400715, People's Republic of China
| | - Zhuo Zhe Li
- School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road No.2, Chongqing, 400715, People's Republic of China
| | - An Yong Li
- School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road No.2, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
10
|
Ghosh A, Gupta A, Gupta R, Ghanty TK. Noble gas hydrides in the triplet state: HNgCCO + (Ng = He, Ne, Ar, Kr, and Xe). Phys Chem Chem Phys 2018; 20:20270-20279. [PMID: 30039141 DOI: 10.1039/c8cp03516d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Motivated by the very recent investigations of neutral noble gas compounds in the open-shell configuration, we explored a new series of noble gas hydrides in the triplet state. The possible existence of noble gas-inserted ketenyl cations, HNgCCO+ (Ng = He, Ne, Ar, Kr, and Xe), in their triplet electronic state has been predicted by various ab initio quantum chemical techniques. Density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2), and coupled-cluster theory (CCSD(T)) based methods have been employed to investigate the structures, energetics, harmonic vibrational frequencies, and charge distribution analysis of these ions. The aforementioned ions have been found to be thermodynamically stable with respect to all plausible 2-body and 3-body dissociation channels, except the 2-body dissociation pathway leading to the formation of global minima products (Ng + HCCO+). Nevertheless, each of the predicted HNgCCO+ ions is connected to the global minima products through a transition state with a finite barrier height on the potential energy surface, which confirms the kinetic stability of the metastable species. Detailed analysis of the optimized structural parameters, energetics, and harmonic vibrational frequencies of the predicted species clearly indicated that a strong covalent bond exists between H and Ng atoms, while a comparatively weak interaction is found between Ng and C atoms. Moreover, charge distribution and atoms-in-molecules (AIM) analysis strongly concurred with the above inferences and also suggested that the predicted metastable ions should exist essentially in the form of [HNg]+[CCO] complex. These results ultimately indicate that these predicted species may be prepared and characterized by suitable experimental technique(s) under a cryogenic environment.
Collapse
Affiliation(s)
- Ayan Ghosh
- Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | | | |
Collapse
|
11
|
Theoretical prediction of noble gas inserted halocarbenes: FNgCX (Ng = Kr, and Xe; X = F, Cl, Br, and I). Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Pan S, Ghara M, Ghosh S, Chattaraj PK. Noble gas bound beryllium chromate and beryllium hydrogen phosphate: a comparison with noble gas bound beryllium oxide. RSC Adv 2016. [DOI: 10.1039/c6ra20232b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two new beryllium based compounds, beryllium hydrogen phosphate and beryllium chromate are found to have remarkable noble gas binding ability, particularly for Ar–Rn atoms.
Collapse
Affiliation(s)
- Sudip Pan
- Department of Chemistry and Center for Theoretical Studies
- Indian Institute of Technology Kharagpur
- India
| | - Manas Ghara
- Department of Chemistry and Center for Theoretical Studies
- Indian Institute of Technology Kharagpur
- India
| | - Sreyan Ghosh
- Department of Chemistry and Center for Theoretical Studies
- Indian Institute of Technology Kharagpur
- India
| | - Pratim K. Chattaraj
- Department of Chemistry and Center for Theoretical Studies
- Indian Institute of Technology Kharagpur
- India
| |
Collapse
|
13
|
Ghosh A, Manna D, Ghanty TK. Prediction of neutral noble gas insertion compounds with heavier pnictides: FNgY (Ng = Kr and Xe; Y = As, Sb and Bi). Phys Chem Chem Phys 2016; 18:12289-98. [DOI: 10.1039/c6cp01338d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutral noble gas insertion compounds involving arsenic, antimony and bismuth atoms wherein the triplet electronic state is the ground state are predicted for the first time.
Collapse
Affiliation(s)
- Ayan Ghosh
- Laser and Plasma Technology Division
- Beam Technology Development Group
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Debashree Manna
- Theoretical Chemistry Section
- Chemistry Group
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - Tapan K. Ghanty
- Theoretical Chemistry Section
- Chemistry Group
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| |
Collapse
|
14
|
Sekhar P, Ghosh A, Ghanty TK. Noble Gas Inserted Protonated Silicon Monoxide Cations: HNgOSi+ (Ng = He, Ne, Ar, Kr, and Xe). J Phys Chem A 2015; 119:11601-13. [DOI: 10.1021/acs.jpca.5b09018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pooja Sekhar
- Theoretical
Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Ayan Ghosh
- Laser
and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Tapan K. Ghanty
- Theoretical
Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
15
|
DFT Study of the effects of counter ions on bonding, molecular and spectral properties of pentaflourophenyl xenonium diflouride cation. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Pan S, Moreno D, Ghosh S, Chattaraj PK, Merino G. Structure and stability of noble gas bound
EX3+ compounds (E = C, Ge, Sn, Pb; X = H, F, Cl, Br). J Comput Chem 2015; 37:226-36. [DOI: 10.1002/jcc.23986] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/02/2015] [Accepted: 06/06/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Sudip Pan
- Department of Chemistry and Centre for Theoretical Studies; Indian Institute of Technology Kharagpur; Kharagpur West Bengal 721302 India
| | - Diego Moreno
- Departamento de Física Aplicada; Centro de Investigación y de Estudios Avanzados; Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex Mérida Yucatan 97310 México
| | - Sreyan Ghosh
- Department of Chemistry and Centre for Theoretical Studies; Indian Institute of Technology Kharagpur; Kharagpur West Bengal 721302 India
| | - Pratim K. Chattaraj
- Department of Chemistry and Centre for Theoretical Studies; Indian Institute of Technology Kharagpur; Kharagpur West Bengal 721302 India
| | - Gabriel Merino
- Departamento de Física Aplicada; Centro de Investigación y de Estudios Avanzados; Unidad Mérida. Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex Mérida Yucatan 97310 México
| |
Collapse
|
17
|
Ghosh A, Dey S, Manna D, Ghanty TK. Noble-Gas-Inserted Fluoro(sulphido)boron (FNgBS, Ng = Ar, Kr, and Xe): A Theoretical Prediction. J Phys Chem A 2015; 119:5732-41. [PMID: 25928588 DOI: 10.1021/jp512520y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The possibility of the existence of a new series of neutral noble gas compound, FNgBS (where Ng = Ar, Kr, Xe), is explored theoretically through the insertion of a Ng atom into the fluoroborosulfide molecule (FBS). Second-order Møller-Plesset perturbation theory, density functional theory, and coupled cluster theory based methods have been employed to predict the structure, stability, harmonic vibrational frequencies, and charge distribution of FNgBS molecules. Through energetics study, it has been found that the molecules could dissociate into global minima products (Ng + FBS) on the respective singlet potential energy surface via a unimolecular dissociation channel; however, the sufficiently large activation energy barriers provide enough kinetic stability to the predicted molecules, which, in turn, prevent them from dissociating into the global minima products. Moreover, the FNgBS species are thermodynamically stable, owing to very high positive energies with respect to other two two-body dissociation channels, leading to FNg + BS and F(-) + NgBS(+), and two three-body dissociation channels, corresponding to the dissociation into F + Ng + BS and F(-) + Ng + BS(+). Furthermore, the Mulliken and NBO charge analysis together with the AIM results reveal that the Ng-B bond is more of covalent in nature, whereas the F-Ng bond is predominantly ionic in character. Thus, these compounds can be better represented as F(-)[NgBS](+). This fact is also supported by the detail analysis of bond length, bond dissociation energy, and stretching force constant values. All of the calculated results reported in this work clearly indicate that it might be possible to prepare and characterize the FNgBS molecules in cryogenic environment through matrix isolation technique by using a mixture of OCS/BF3 in the presence of large quantity of noble gas under suitable experimental conditions.
Collapse
Affiliation(s)
- Ayan Ghosh
- †Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Sourav Dey
- ‡Ramakrishna Mission Vidyamandira, Belur Math, West Bengal 711 202, India
| | - Debashree Manna
- §Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Tapan K Ghanty
- §Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
18
|
Prediction of a Neutral Noble Gas Compound in the Triplet State. Chemistry 2015; 21:8290-6. [DOI: 10.1002/chem.201500291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 11/07/2022]
|
19
|
Pan S, Gupta A, Mandal S, Moreno D, Merino G, Chattaraj PK. Metastable behavior of noble gas inserted tin and lead fluorides. Phys Chem Chem Phys 2015; 17:972-82. [DOI: 10.1039/c4cp03856h] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metastable FNgEF and FNgEF3 (E = Sn, Pb; Ng = Kr–Rn) are the first reported neutral compounds possessing Ng–Sn and Ng–Pb covalent bonds.
Collapse
Affiliation(s)
- Sudip Pan
- Department of Chemistry and Centre for Theoretical Studies
- Indian Institute of Technology
- Kharagpur
- India
| | - Ashutosh Gupta
- Department of Chemistry
- Udai Pratap Autonomous College
- Varanasi
- India
| | - Subhajit Mandal
- Department of Chemistry and Centre for Theoretical Studies
- Indian Institute of Technology
- Kharagpur
- India
| | - Diego Moreno
- Departamento de Física Aplicada
- Centro de Investigación y de Estudios Avanzados Unidad Mérida
- Mérida
- México
| | - Gabriel Merino
- Departamento de Física Aplicada
- Centro de Investigación y de Estudios Avanzados Unidad Mérida
- Mérida
- México
| | - Pratim K. Chattaraj
- Department of Chemistry and Centre for Theoretical Studies
- Indian Institute of Technology
- Kharagpur
- India
| |
Collapse
|
20
|
Pan S, Saha R, Chattaraj PK. On the stability of noble gas bound 1-tris(pyrazolyl)borate beryllium and magnesium complexes. NEW J CHEM 2015. [DOI: 10.1039/c5nj00983a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1-Tris(pyrazolyl)borate beryllium and magnesium cationic complexes are found to bind Ar–Rn atoms quite effectively.
Collapse
Affiliation(s)
- Sudip Pan
- Department of Chemistry and Centre for Theoretical Studies
- Indian Institute of Technology Kharagpur
- India
| | - Ranajit Saha
- Department of Chemistry and Centre for Theoretical Studies
- Indian Institute of Technology Kharagpur
- India
| | - Pratim K. Chattaraj
- Department of Chemistry and Centre for Theoretical Studies
- Indian Institute of Technology Kharagpur
- India
| |
Collapse
|
21
|
Pan S, Moreno D, Merino G, Chattaraj PK. Stability of Noble-Gas-Bound SiH3+Clusters. Chemphyschem 2014; 15:3554-64. [DOI: 10.1002/cphc.201402370] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Indexed: 11/06/2022]
|
22
|
Ghosh A, Manna D, Ghanty TK. Theoretical Prediction of Noble Gas Inserted Thioformyl Cations: HNgCS+ (Ng = He, Ne, Ar, Kr, and Xe). J Phys Chem A 2014; 119:2233-43. [DOI: 10.1021/jp5042266] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ayan Ghosh
- Laser and Plasma Technology Division, Beam Technology Development
Group, and ‡Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Debashree Manna
- Laser and Plasma Technology Division, Beam Technology Development
Group, and ‡Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Tapan K. Ghanty
- Laser and Plasma Technology Division, Beam Technology Development
Group, and ‡Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
23
|
Pan S, Moreno D, Cabellos JL, Merino G, Chattaraj PK. Ab Initio Study on the Stability of NgnBe2N2, NgnBe3N2and NgBeSiN2Clusters. Chemphyschem 2014; 15:2618-25. [DOI: 10.1002/cphc.201402101] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/24/2014] [Indexed: 11/09/2022]
|
24
|
Khatua M, Pan S, Chattaraj PK. Confinement induced binding of noble gas atoms. J Chem Phys 2014; 140:164306. [DOI: 10.1063/1.4871800] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Ma L, Huang Z, Niu X, Zhang B, Wang Q. Theoretical study on the selectivity of the insertion xenon atom into hypohalous acids. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Tavakol H, Hassani F, Mollaei-Renani A. A theoretical study of stabilities, reactivities and bonding properties of XKrOH (X = F, Cl, Br and I) as potential new krypton compounds using coupled cluster, MP2 and DFT calculations. RSC Adv 2014. [DOI: 10.1039/c4ra05040a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DFT andAb initiocalculations were employed to disclose the conceivable existence of new noble gas molecules, XKrOH.
Collapse
Affiliation(s)
- Hossein Tavakol
- Department of Chemistry
- Isfahan University of Technology
- Isfahan, Iran
| | - Fahimeh Hassani
- Department of Chemistry
- Isfahan University of Technology
- Isfahan, Iran
| | | |
Collapse
|
27
|
Manna D, Ghosh A, Ghanty TK. Theoretical prediction of XRgCO(+) ions (X = F, Cl, and Rg = Ar, Kr, Xe). J Phys Chem A 2013; 117:14282-92. [PMID: 24295279 DOI: 10.1021/jp410631y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this work we have predicted novel rare gas containing cationic molecules, XRgCO(+) (X = F, Cl and Rg = Ar, Kr, Xe) using ab initio quantum chemical methods. Detail structural, stability, vibrational frequency, and charge distribution values are reported using density functional theory, second-order Møller-Plesset perturbation theory, and coupled-cluster theory based methods. These ions are found to be metastable in nature and exhibit a linear geometry with C∞v symmetry in their minima energy structures, and the nonlinear transition state geometries are associated with Cs symmetry. Except for the two-body dissociation channel (Rg + XCO(+)), these ions are stable with respect to all other dissociation channels. However, the connecting transition states between the above-mentioned two-body dissociation channel products and the predicted ions are associated with sufficient energy barriers, which restricts the metastable species to transform into the global minimum products. Thus, it may be possible to detect and characterize these metastable ions using an electron bombardment technique under cryogenic conditions.
Collapse
Affiliation(s)
- Debashree Manna
- Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre , Mumbai 400 085, India
| | | | | |
Collapse
|
28
|
Coupled cluster, MP2, and DFT study of structures, stabilities, vibrations, and bonding properties of XXeOH (X = F, Cl, Br, and I). Struct Chem 2013. [DOI: 10.1007/s11224-013-0373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Pan S, Moreno D, Cabellos JL, Romero J, Reyes A, Merino G, Chattaraj PK. In quest of strong Be-Ng bonds among the neutral Ng-Be complexes. J Phys Chem A 2013; 118:487-94. [PMID: 24199587 DOI: 10.1021/jp409941v] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The global minimum geometries of BeCN2 and BeNBO are linear BeN-CN and BeN-BO, respectively. The Be center of BeCN2 binds He with the highest Be-He dissociation energy among the studied neutral He-Be complexes. In addition, BeCN2 can be further tuned as a better noble gas trapper by attaching it with any electron-withdrawing group. Taking BeO, BeS, BeNH, BeNBO, and BeCN2 systems, the study at the CCSD(T)/def2-TZVP level of theory also shows that both BeCN2 and BeNBO systems have higher noble gas binding ability than those related reported systems. ΔG values for the formation of NgBeCN2/NgBeNBO (Ng = Ar-Rn) are negative at room temperature (298 K), whereas the same becomes negative at low temperature for Ng = He and Ne. The polarization plus the charge transfer is the dominating term in the interaction energy.
Collapse
Affiliation(s)
- Sudip Pan
- Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology , Kharagpur 721302, India
| | | | | | | | | | | | | |
Collapse
|
30
|
Sirohiwal A, Manna D, Ghosh A, Jayasekharan T, Ghanty TK. Theoretical prediction of rare gas containing hydride cations: HRgBF+ (Rg = He, Ar, Kr, and Xe). J Phys Chem A 2013; 117:10772-82. [PMID: 24032346 DOI: 10.1021/jp4064824] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The existence of rare-gas-containing hydride ions of boron (HRgBF(+)) has been predicted by using ab initio quantum chemical methods. The HRgBF(+) ions are obtained by inserting a rare gas (Rg) atom in between the H and B atoms of a HBF(+) ion, and the geometries are optimized for minima as well as transition states using second-order Møller-Plesset perturbation theory (MP2), density functional theory (DFT), and coupled-cluster theory (CCSD(T)) based techniques. The predicted HRgBF(+) ions are found to be metastable, and they exhibit a linear structure at the minima and a nonlinear planar structure at the transition state, corresponding to C∞v and Cs symmetries, respectively. All of the predicted HRgBF(+) ions show negative binding energies with respect to the two-body dissociation channel, leading to global minima (HBF(+) + Rg) on the singlet potential energy surface. In contrast, the dissociation energies corresponding to another two-body dissociation channel leading to HRg(+) + BF and two three-body dissociation channels corresponding to the dissociation into H + Rg + BF(+) and H(+) + Rg + BF show very high positive energies. Apart from positive dissociation energies, the predicted ions show finite barrier heights corresponding to the transition states involving a H-Rg-B bending mode, leading to the global minima products (HBF(+) + Rg). The finite barrier heights in turn would prevent the metastable HRgBF(+) species from transforming to global minima products. Structure, harmonic vibrational frequencies, stability, and Mulliken and natural bonding orbital (NBO) charge distribution values for all of the species are reported using the MP2 and DFT methods. Furthermore, the intrinsic reaction coordinate analysis confirms that the metastable minimum-energy structure and the global minimum products are connected through the corresponding transition state for each of the species on the respective singlet potential energy surface. Atoms-in-molecules (AIM) analysis indicates that the HRgBF(+) ions are best described as HRg(+)BF and are analogous to the isoelectronic HRgCO(+) and HRgN2(+) ions. The energetic along with charge redistribution and spectroscopic data strongly support the possible existence of HRgBF(+) ions. Hence, it might be possible to generate HRgBF(+) ions in the DC discharge plasma of a BF3/H2/Rg mixture at low temperature, and the predicted ions may be characterized using the magnetic field modulated infrared laser spectroscopic technique, which has been used earlier to characterize HBF(+) ions.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Departmnet of Chemistry, Indian Institute of Science Education and Research (IISER) , Bhopal 462 023, India
| | | | | | | | | |
Collapse
|
31
|
Ghosh A, Manna D, Ghanty TK. Theoretical prediction of rare gas inserted hydronium ions: HRgOH2+. J Chem Phys 2013; 138:194308. [DOI: 10.1063/1.4804623] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
32
|
Jayasekharan T, Ghanty TK. Theoretical investigation of rare gas hydride cations: HRgN2+ (Rg=He, Ar, Kr, and Xe). J Chem Phys 2012; 136:164312. [PMID: 22559487 DOI: 10.1063/1.4704819] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rare gas containing protonated nitrogen cations, HRgN(2)(+) (Rg=He, Ar, Kr, and Xe), have been predicted using quantum computational methods. HRgN(2)(+) ions exhibit linear structure (C(∞v) symmetry) at the minima and show planar structure (C(s) symmetry) at the transition state. The stability is determined by computing the energy differences between the predicted ions and its various unimolecular dissociation products. Analysis of energy diagram indicates that HXeN(2)(+) is thermodynamically stable with respect to dissociated products while HHeN(2)(+), HArN(2)(+), and HKrN(2)(+) ions are metastable with small barrier heights. Moreover, the computed intrinsic reaction coordinate analysis also confirms that the minima and the 2-body global dissociation products are connected through transition states for the metastable ions. The coupled-cluster theory computed dissociation energies corresponding to the 2-body dissociation (HN(2)(+) + Rg) is -288.4, -98.3, -21.5, and 41.4 kJ mol(-1) for HHeN(2)(+), HArN(2)(+), HKrN(2)(+), and HXeN(2)(+) ions, respectively. The dissociation energies are positive for all the other channels implying that the predicted ions are stable with respect to other 2- and 3-body dissociation channels. Atoms-in-molecules analysis indicates that predicted ions may be best described as HRg(+)N(2). It should be noted that the energetic of HXeN(2)(+) ion is comparable to that of the experimentally observed stable mixed cations, viz. (RgHRg')(+). Therefore, it may be possible to prepare and characterize HXeN(2)(+) ions in an electron bombardment matrix isolation technique.
Collapse
Affiliation(s)
- T Jayasekharan
- Applied Spectroscopy Division, Physics Group, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | |
Collapse
|
33
|
|
34
|
Shen T, Huang Z, Guo L, Wang H. An ab initio study on the insertion of radon atoms into hypohalous acids. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Huang Z, Guo L, Shen T, Ma L, Niu X. Theoretical study of HKrOX (X = F, Cl, Br and I): structure, anharmonic vibrational spectroscopy, stability and bonding. Phys Chem Chem Phys 2012; 14:8083-9. [DOI: 10.1039/c2cp40165g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Cukras J, Sadlej J. Theoretical predictions of the spectroscopic parameters in noble-gas molecules: HXeOH and its complex with water. Phys Chem Chem Phys 2011; 13:15455-67. [PMID: 21804992 DOI: 10.1039/c1cp21359h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We employ state-of-the-art methods and basis sets to study the effect of inserting the Xe atom into the water molecule and the water dimer on their NMR parameters. Our aim is to obtain predictions for the future experimental investigation of novel xenon complexes by NMR spectroscopy. Properties such as molecular structure and energetics have been studied by supermolecular approaches using HF, MP2, CCSD, CCSD(T) and MP4 methods. The bonding in HXeOH···H(2)O complexes has been analyzed by Symmetry-Adapted Perturbation Theory to provide the intricate insight into the nature of the interaction. We focus on vibrational spectra, NMR shielding and spin-spin coupling constants-experimental signals that reflect the electronic structures of the compounds. The parameters have been calculated at electron-correlated and Dirac-Hartree-Fock relativistic levels. This study has elucidated that the insertion of the Xe atom greatly modifies the NMR properties, including both the electron correlation and relativistic effects, the (129)Xe shielding constants decrease in HXeOH and HXeOH···H(2)O in comparison to Xe atom; the (17)O, as a neighbour of Xe, is deshielded too. The HXeOH···H(2)O complex in its most stable form is stabilized mainly by induction and dispersion energies.
Collapse
Affiliation(s)
- Janusz Cukras
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | | |
Collapse
|
37
|
Khriachtchev L, Tapio S, Domanskaya AV, Räsänen M, Isokoski K, Lundell J. HXeOBr in a xenon matrix. J Chem Phys 2011; 134:124307. [DOI: 10.1063/1.3570826] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Jayasekharan T, Ghanty TK. Theoretical prediction of HRgCO+ ion (Rg=He, Ne, Ar, Kr, and Xe). J Chem Phys 2008; 129:184302. [DOI: 10.1063/1.3008057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
39
|
Jayasekharan T, Ghanty TK. Significant increase in the stability of rare gas hydrides on insertion of beryllium atom. J Chem Phys 2007; 127:114314. [PMID: 17887844 DOI: 10.1063/1.2768936] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chemical binding between a rare gas atom with other elements leading to the formation of stable chemical compounds has received considerable attention in recent years. With an intention to predict highly stable novel rare gas compounds, the process of insertion of beryllium atom into rare gas hydrides (HRgF with Rg=Ar, Kr, and Xe) has been investigated, which leads to the prediction of HBeRgF species. The structures, energetic, and charge distributions have been obtained using MP2, density functional theory, and CCSD(T) methods. Analogous to the well-known rare gas hydrides, HBeRgF species are found to be metastable in nature; however, the stabilization energy of the newly predicted species has been calculated to be significantly higher than that of HRgF species. Particularly, for HBeArF molecule, it has been found to be an order of magnitude higher. Strong chemical binding between beryllium and rare gas atom has also been found in the HBeArF, HBeKrF, and HBXeF molecules. In fact, the basis set superposition error and zero-point energy corrected Be-Ar bond energy calculated using CCSD(T) method has been found to be 112 kJ/mol, which is the highest bond energy ever achieved for a bond involving an argon atom in any chemically bound neutral species. Vibrational analysis reveals a large blueshift (approximately 200 cm(-1)) of the H-Be stretching frequency in HBeRgF with respect to that in BeH and HBeF species. This feature may be used to characterize these species after their preparation by the laser ablation of Be metal along with the photolysis of HF precursor in a suitable rare gas matrix. An analysis of the nature of interactions involved in the present systems has been performed using theory of atoms in molecules (AIM). Geometric as well as energetic considerations along with the AIM results suggest a substantial covalent nature of Be-Rg bond in these systems. Thus, insertion of a suitable metal atom into rare gas hydrides is a promising way to energetically stabilize the HRgX species, which eventually leads to the formation of a new class of insertion compounds, viz., rare gas metallohydrides.
Collapse
Affiliation(s)
- T Jayasekharan
- Spectroscopy Division, Physics Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | |
Collapse
|