1
|
Wagner J, Grabnic T, Sibener SJ. STM Visualization of N 2 Dissociative Chemisorption on Ru(0001) at High Impinging Kinetic Energies. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:18333-18342. [PMID: 36366757 PMCID: PMC9639351 DOI: 10.1021/acs.jpcc.2c05770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
This paper examines the reactive surface dynamics of energy- and angle-selected N2 dissociation on a clean Ru(0001) surface. Presented herein are the first STM images of highly energetic N2 dissociation on terrace sites utilizing a novel UHV instrument that combines a supersonic molecular beam with an in situ STM that is in-line with the molecular beam. Atomically resolved visualization of individual N2 dissociation events elucidates the fundamental reactive dynamics of the N2/Ru(0001) system by providing a detailed understanding of the on-surface dissociation dynamics: the distance and angle between nitrogen atoms from the same dissociated N2 molecule, site specificity and coordination of binding on terrace sites, and the local evolution of surrounding nanoscopic areas. These properties are precisely measured over a range of impinging N2 kinetic energies and angles, revealing previously unattainable information about the energy dissipation channels that govern the reactivity of the system. The experimental results presented in this paper provide insight into the fundamental N2 dissociation mechanism that, in conjunction with ongoing theoretical modeling, will help determine the role of dynamical processes such as energy transfer to surface phonons and nonadiabatic excitation of electron-hole pairs (ehps). These results will not only help uncover the underlying chemistry and physics that give rise to the unique behavior of this activated dissociative chemisorption system but also represent an exciting approach to studying reaction dynamics by pairing the angstrom-level spatiotemporal resolution of an in situ STM with nonequilibrium fluxes of reactive gases generated in a supersonic molecular beam to access highly activated chemical dynamics and observe the results of individual reaction events.
Collapse
|
2
|
Effects of vibrational and rotational excitations on the dissociative chemisorption dynamics of N 2 on Fe(111). CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2201009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
3
|
Zhou X, Zhang Y, Yin R, Hu C, Jiang B. Neural Network Representations for Studying
Gas‐Surface
Reaction Dynamics: Beyond the
Born‐Oppenheimer
Static Surface Approximation
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xueyao Zhou
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Rongrong Yin
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Ce Hu
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
4
|
Fallaque JG, Ramos M, Busnengo HF, Martín F, Díaz C. Normal and off-normal incidence dissociative dynamics of O 2(v,J) on ultrathin Cu films grown on Ru(0001). Phys Chem Chem Phys 2021; 23:7768-7776. [PMID: 33000830 DOI: 10.1039/d0cp03979a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dissociative adsorption of molecular oxygen on metal surfaces has long been controversial, mostly due to the spin-triplet nature of its ground state, to possible non-adiabatic effects, such as an abrupt charge transfer from the metal to the molecule, or even to the role played by the surface electronic state. Here, we have studied the dissociative adsorption of O2 on CuML/Ru(0001) at normal and off-normal incidence, from thermal to super-thermal energies, using quasi-classical dynamics, in the framework of the generalized Langevin oscillator model, and density functional theory based on a multidimensional potential energy surface. Our simulations reveal a rather intriguing behavior of dissociative adsorption probabilities, which exhibit normal energy scaling at incidence energies below the reaction barriers and total energy scaling above, irrespective of the reaction channel, either direct dissociation, trapping dissociation, or molecular adsorption. We directly compare our results with existing scanning tunneling spectroscopy and microscopy measurements. From this comparison, we infer that the observed experimental behavior at thermal energies may be due to ligand and strain effects, as already found for super-thermal incidence energies.
Collapse
Affiliation(s)
- J G Fallaque
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
5
|
Spiering P, Shakouri K, Behler J, Kroes GJ, Meyer J. Orbital-Dependent Electronic Friction Significantly Affects the Description of Reactive Scattering of N 2 from Ru(0001). J Phys Chem Lett 2019; 10:2957-2962. [PMID: 31088059 PMCID: PMC6558642 DOI: 10.1021/acs.jpclett.9b00523] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/15/2019] [Indexed: 05/18/2023]
Abstract
Electron-hole pair (ehp) excitation is thought to substantially affect the dynamics of molecules on metal surfaces, but it is not clear whether this can be better addressed by orbital-dependent friction (ODF) or the local density friction approximation (LDFA). We investigate the effect of ehp excitation on the dissociative chemisorption of N2 on and its inelastic scattering from Ru(0001), which is the benchmark system of highly activated dissociation, with these two different models. ODF is in better agreement with the best experimental estimates for the reaction probabilities than LDFA, yields results for vibrational excitation in better agreement with experiment, but slightly overestimates the translational energy loss during scattering. N2 on Ru(0001) is thus the first system for which the ODF and LDFA approaches are shown to yield substantially different results for easily accessible experimental observables, including reaction probabilities.
Collapse
Affiliation(s)
- Paul Spiering
- Gorlaeus Laberatories, Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Khosrow Shakouri
- Gorlaeus Laberatories, Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Jörg Behler
- Universität Göttingen , Institut für Physikalische Chemie, Theoretische Chemie, Tammannstr. 6 , 37077 Göttingen , Germany
| | - Geert-Jan Kroes
- Gorlaeus Laberatories, Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Jörg Meyer
- Gorlaeus Laberatories, Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|
6
|
Shakouri K, Behler J, Meyer J, Kroes GJ. Analysis of Energy Dissipation Channels in a Benchmark System of Activated Dissociation: N 2 on Ru(0001). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:23470-23480. [PMID: 30364480 PMCID: PMC6196344 DOI: 10.1021/acs.jpcc.8b06729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/18/2018] [Indexed: 05/20/2023]
Abstract
The excitation of electron-hole pairs in reactive scattering of molecules at metal surfaces often affects the physical and dynamical observables of interest, including the reaction probability. Here, we study the influence of electron-hole pair excitation on the dissociative chemisorption of N2 on Ru(0001) using the local density friction approximation method. The effect of surface atom motion has also been taken into account by a high-dimensional neural network potential. Our nonadiabatic molecular dynamics simulations with electronic friction show that the reaction of N2 is more strongly affected by the energy transfer to surface phonons than by the energy loss to electron-hole pairs. The discrepancy between the computed reaction probabilities and experimental results is within the experimental error both with and without friction; however, the incorporation of electron-hole pairs yields somewhat better agreement with experiments, especially at high collision energies. We also calculate the vibrational efficacy for the N2 + Ru(0001) reaction and demonstrate that the N2 reaction is more enhanced by exciting the molecular vibrations than by adding an equivalent amount of energy into translation.
Collapse
Affiliation(s)
- Khosrow Shakouri
- Gorlaeus
Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jörg Behler
- Institut
für Physikalische Chemie, Theoretische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Jörg Meyer
- Gorlaeus
Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Geert-Jan Kroes
- Gorlaeus
Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
7
|
Montemore MM, Hoyt R, Kolesov G, Kaxiras E. Reaction-Induced Excitations and Their Effect on Surface Chemistry. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew M. Montemore
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Robert Hoyt
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Grigory Kolesov
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Efthimios Kaxiras
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Peña-Torres A, Busnengo HF, Juaristi JI, Larregaray P, Crespos C. Dynamics of N2 sticking on W(100): the decisive role of van der Waals interactions. Phys Chem Chem Phys 2018; 20:19326-19331. [DOI: 10.1039/c8cp03515f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The reactive dynamics of N2 on W(100) has been investigated by means of quasi-classical trajectory calculations using an interpolated six-dimensional potential energy surface (PES) based on density functional theory energies obtained employing the vdW-DF2 functional.
Collapse
Affiliation(s)
| | - H. Fabio Busnengo
- Instituto de Física de Rosario (CONICET-UNR) and Facultad de Ciencias Exactas
- Ingeniería y Agrimensura
- Universidad Nacional de Rosario
- 2000 Rosario
- Argentina
| | - J. Iñaki Juaristi
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU)
- 20018 Donostia-San Sebastián
- Spain
- Departamento de Física de Materiales
- Facultad de Químicas (UPV/EHU)
| | | | | |
Collapse
|
9
|
Shakouri K, Behler J, Meyer J, Kroes GJ. Accurate Neural Network Description of Surface Phonons in Reactive Gas-Surface Dynamics: N 2 + Ru(0001). J Phys Chem Lett 2017; 8:2131-2136. [PMID: 28441867 PMCID: PMC5439174 DOI: 10.1021/acs.jpclett.7b00784] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/25/2017] [Indexed: 05/20/2023]
Abstract
Ab initio molecular dynamics (AIMD) simulations enable the accurate description of reactive molecule-surface scattering especially if energy transfer involving surface phonons is important. However, presently, the computational expense of AIMD rules out its application to systems where reaction probabilities are smaller than about 1%. Here we show that this problem can be overcome by a high-dimensional neural network fit of the molecule-surface interaction potential, which also incorporates the dependence on phonons by taking into account all degrees of freedom of the surface explicitly. As shown for N2 + Ru(0001), which is a prototypical case for highly activated dissociative chemisorption, the method allows an accurate description of the coupling of molecular and surface atom motion and accurately accounts for vibrational properties of the employed slab model of Ru(0001). The neural network potential allows reaction probabilities as low as 10-5 to be computed, showing good agreement with experimental results.
Collapse
Affiliation(s)
- Khosrow Shakouri
- Gorlaeus Laboratories, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- E-mail: . Phone: +31 (0)71 527
4533. Fax: +31 (0)71 527
4397 (K.S.)
| | - Jörg Behler
- Universität
Göttingen, Institut für Physikalische
Chemie, Theoretische Chemie, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Jörg Meyer
- Gorlaeus Laboratories, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Geert-Jan Kroes
- Gorlaeus Laboratories, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- E-mail: . Phone: +31 (0)71 527
4396. Fax: +31 (0)71 527
4397 (G.-J.K.)
| |
Collapse
|
10
|
Nihill KJ, Hund ZM, Muzas A, Díaz C, Del Cueto M, Frankcombe T, Plymale NT, Lewis NS, Martín F, Sibener SJ. Experimental and theoretical study of rotationally inelastic diffraction of H2(D2) from methyl-terminated Si(111). J Chem Phys 2016; 145:084705. [PMID: 27586939 DOI: 10.1063/1.4961257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fundamental details concerning the interaction between H2 and CH3-Si(111) have been elucidated by the combination of diffractive scattering experiments and electronic structure and scattering calculations. Rotationally inelastic diffraction (RID) of H2 and D2 from this model hydrocarbon-decorated semiconductor interface has been confirmed for the first time via both time-of-flight and diffraction measurements, with modest j = 0 → 2 RID intensities for H2 compared to the strong RID features observed for D2 over a large range of kinematic scattering conditions along two high-symmetry azimuthal directions. The Debye-Waller model was applied to the thermal attenuation of diffraction peaks, allowing for precise determination of the RID probabilities by accounting for incoherent motion of the CH3-Si(111) surface atoms. The probabilities of rotationally inelastic diffraction of H2 and D2 have been quantitatively evaluated as a function of beam energy and scattering angle, and have been compared with complementary electronic structure and scattering calculations to provide insight into the interaction potential between H2 (D2) and hence the surface charge density distribution. Specifically, a six-dimensional potential energy surface (PES), describing the electronic structure of the H2(D2)/CH3-Si(111) system, has been computed based on interpolation of density functional theory energies. Quantum and classical dynamics simulations have allowed for an assessment of the accuracy of the PES, and subsequently for identification of the features of the PES that serve as classical turning points. A close scrutiny of the PES reveals the highly anisotropic character of the interaction potential at these turning points. This combination of experiment and theory provides new and important details about the interaction of H2 with a hybrid organic-semiconductor interface, which can be used to further investigate energy flow in technologically relevant systems.
Collapse
Affiliation(s)
- Kevin J Nihill
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Zachary M Hund
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Alberto Muzas
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Díaz
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marcos Del Cueto
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Terry Frankcombe
- School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Canberra ACT 2610, Australia
| | - Noah T Plymale
- Division of Chemistry and Chemical Engineering, Beckman Institute and Kavli Nanoscience Institute, California Institute of Technology, 210 Noyes Laboratory, 127-72, Pasadena, California 91125, USA
| | - Nathan S Lewis
- Division of Chemistry and Chemical Engineering, Beckman Institute and Kavli Nanoscience Institute, California Institute of Technology, 210 Noyes Laboratory, 127-72, Pasadena, California 91125, USA
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - S J Sibener
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
11
|
Luo X, Jiang B, Juaristi JI, Alducin M, Guo H. Electron-hole pair effects in methane dissociative chemisorption on Ni(111). J Chem Phys 2016; 145:044704. [DOI: 10.1063/1.4959288] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xuan Luo
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - J. Iñaki Juaristi
- Centro de Física de Materiales CFM/MPC(CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián, Spain
- Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián, Spain
| | - Maite Alducin
- Centro de Física de Materiales CFM/MPC(CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
12
|
Diesing D, Hasselbrink E. Chemical energy dissipation at surfaces under UHV and high pressure conditions studied using metal–insulator–metal and similar devices. Chem Soc Rev 2016; 45:3747-55. [DOI: 10.1039/c5cs00932d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thin film metal heterostructures have allowed new light to be shed on the dissipation of chemical energy into electric excitations on metal surfaces.
Collapse
Affiliation(s)
- Detlef Diesing
- Fakultät f. Chemie
- Universität Duisburg-Essen
- 45141 Essen
- Germany
| | | |
Collapse
|
13
|
Golibrzuch K, Bartels N, Auerbach DJ, Wodtke AM. The Dynamics of Molecular Interactions and Chemical Reactions at Metal Surfaces: Testing the Foundations of Theory. Annu Rev Phys Chem 2015; 66:399-425. [DOI: 10.1146/annurev-physchem-040214-121958] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai Golibrzuch
- Institute for Physical Chemistry, University of Göttingen, D-37077 Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany;
| | - Nils Bartels
- Institute for Physical Chemistry, University of Göttingen, D-37077 Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany;
| | - Daniel J. Auerbach
- Institute for Physical Chemistry, University of Göttingen, D-37077 Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany;
| | - Alec M. Wodtke
- Institute for Physical Chemistry, University of Göttingen, D-37077 Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany;
| |
Collapse
|
14
|
Martin-Gondre L, Juaristi JI, Blanco-Rey M, Díez Muiño R, Alducin M. Influence of the van der Waals interaction in the dissociation dynamics of N2 on W(110) from first principles. J Chem Phys 2015; 142:074704. [DOI: 10.1063/1.4908060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- L. Martin-Gondre
- Institut UTINAM-CNRS UMR 6213, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - J. I. Juaristi
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Departamento de Física de Materiales, Facultad de Químicas (UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián, Spain
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - M. Blanco-Rey
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Departamento de Física de Materiales, Facultad de Químicas (UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián, Spain
| | - R. Díez Muiño
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - M. Alducin
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
15
|
Goikoetxea I, Meyer J, Juaristi JI, Alducin M, Reuter K. Role of physisorption states in molecular scattering: a semilocal density-functional theory study on O2/Ag(111). PHYSICAL REVIEW LETTERS 2014; 112:156101. [PMID: 24785056 DOI: 10.1103/physrevlett.112.156101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Indexed: 06/03/2023]
Abstract
We simulate the scattering of O2 from Ag(111) with classical dynamics simulations performed on a six-dimensional potential energy surface calculated within semilocal density-functional theory. The enigmatic experimental trends that originally required the conjecture of two types of repulsive walls, arising from a physisorption and chemisorption part of the interaction potential, are fully reproduced. Given the inadequate description of the physisorption properties in semilocal density-functional theory, our work casts severe doubts on the prevalent notion to use molecular scattering data as indirect evidence for the existence of such states.
Collapse
Affiliation(s)
- I Goikoetxea
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - J Meyer
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| | - J I Juaristi
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain and Departamento de Física de Materiales, Facultad de Químicas, UPV/EHU, Apartado 1072, E-20080 San Sebastián, Spain and Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - M Alducin
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain and Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - K Reuter
- Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching, Germany
| |
Collapse
|
16
|
|
17
|
Schindler B, Diesing D, Hasselbrink E. Electronic Excitations in the Course of the Reaction of H with Coinage and Noble Metal Surfaces: A Comparison. Z PHYS CHEM 2013. [DOI: 10.1524/zpch.2013.0408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Frankcombe TJ, Collins MA, Zhang DH. Modified Shepard interpolation of gas-surface potential energy surfaces with strict plane group symmetry and translational periodicity. J Chem Phys 2012; 137:144701. [DOI: 10.1063/1.4757149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
19
|
Kroes GJ. Towards chemically accurate simulation of molecule-surface reactions. Phys Chem Chem Phys 2012; 14:14966-81. [PMID: 23037951 DOI: 10.1039/c2cp42471a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective addresses four challenges facing theorists whose aim is to make quantitatively accurate predictions for reactions of molecules on metal surfaces, and suggests ways of meeting these challenges, focusing on dissociative chemisorption reactions of H(2), N(2), and CH(4). Addressing these challenges is ultimately of practical importance to a more accurate description of overall heterogeneously catalysed reactions, which play a role in the production of more than 90% of man-made chemicals. One challenge is to describe the interaction of a molecule with a metal surface with chemical accuracy, i.e., with errors in reaction barrier heights less than 1 kcal mol(-1). In this framework, the potential of a new implementation of specific reaction parameter density functional theory (SRP-DFT) will be discussed, with emphasis on applications to reaction of H(2) with metal surfaces. Two additional challenges are to come up with improved descriptions of the effects of phonons and electron-hole pairs on reaction of molecules like N(2) on metal surfaces. Phonons can be tackled using sudden approximations in quantum dynamics, and through Ab Initio Molecular Dynamics (AIMD) calculations using classical dynamics. To additionally achieve an accurate description of the effect of electron-hole pair excitation on dissociative chemisorption within a classical dynamics framework, it may be possible to combine AIMD with electronic friction. The fourth challenge we will consider is how to achieve an accurate quantum mechanical description of the dissociative chemisorption of a polyatomic molecule, like methane, on a metal surface. A method of potential interest is the Multi-Configuration Time-Dependent Hartree (MCTDH) method.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
20
|
Muzas AS, Juaristi JI, Alducin M, Muiño RD, Kroes GJ, Díaz C. Vibrational deexcitation and rotational excitation of H2 and D2 scattered from Cu(111): Adiabatic versus non-adiabatic dynamics. J Chem Phys 2012; 137:064707. [DOI: 10.1063/1.4742907] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Goikoetxea I, Alducin M, Díez Muiño R, Juaristi JI. Dissociative and non-dissociative adsorption dynamics of N2 on Fe(110). Phys Chem Chem Phys 2012; 14:7471-80. [DOI: 10.1039/c2cp40229g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Chen JC, Juanes-Marcos JC, Woittequand S, Somers MF, Díaz C, Olsen RA, Kroes GJ. Six-dimensional quasiclassical and quantum dynamics of H2 dissociation on the c(2 × 2)-Ti/Al(100) surface. J Chem Phys 2011; 134:114708. [DOI: 10.1063/1.3567397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
23
|
Olsen T, Schiøtz J. Memory effects in nonadiabatic molecular dynamics at metal surfaces. J Chem Phys 2010; 133:134109. [DOI: 10.1063/1.3490247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Frankcombe TJ, Collins MA, Worth GA. Converged quantum dynamics with modified Shepard interpolation and Gaussian wave packets. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.02.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Díaz C, Olsen RA. A note on the vibrational efficacy in molecule-surface reactions. J Chem Phys 2009; 130:094706. [DOI: 10.1063/1.3080613] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
26
|
Bocan GA, Díez Muiño R, Alducin M, Busnengo HF, Salin A. The role of exchange-correlation functionals in the potential energy surface and dynamics of N2 dissociation on W surfaces. J Chem Phys 2008; 128:154704. [DOI: 10.1063/1.2897757] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Díaz C, Perrier A, Kroes G. Associative desorption of N2 from Ru(0001): A computational study. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2006.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|