1
|
Mao R, Bao Y, Huang Z, Liu Q, Liu G. High-Resolution Mapping of the Urban Built Environment Stocks in Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5345-5355. [PMID: 32275823 DOI: 10.1021/acs.est.9b07229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Improving our comprehension of the weight and spatial distribution of urban built environment stocks is essential for informing urban resource, waste, and environmental management, but this is often hampered by inaccuracy and inconsistency of the typology and material composition data of buildings and infrastructure. Here, we have integrated big data mining and analytics techniques and compiled a local material composition database to address these gaps, for a detailed characterization of the quantity, quality, and spatial distribution (in 500 m × 500 m grids) of the urban built environment stocks in Beijing in 2018. We found that 3621 megatons (140 ton/cap) of construction materials were accumulated in Beijing's buildings and infrastructure, equaling to 1141 Mt of embodied greenhouse gas emissions. Buildings contribute the most (63% of total, roughly half in residential and half in nonresidential) to the total stock and the subsurface stocks account for almost half. Spatially, the belts between 3 and 7 km from city center (approximately 5 t/m2) and commercial grids (approximately 8 t/m2) became the densest. Correlation analyses between material stocks and socioeconomic factors at a high resolution reveal an inverse relationship between building and road stock densities and suggest that Beijing is sacrificing skylines for space in urban expansion. Our results demonstrate that harnessing emerging big data and analytics (e.g., point of interest data and web crawling) could help realize more spatially refined characterization of built environment stocks and highlight the role of such information and urban planning in urban resource, waste, and environmental strategies.
Collapse
Affiliation(s)
- Ruichang Mao
- SDU Life Cycle Engineering, Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern Denmark, 5230 Odense, Denmark
| | - Yi Bao
- Institute of Remote Sensing and Geographical Information Systems, Peking University, Beijing, China
- Beijing Key Lab of Spatial Information Integration & Its Applications, Peking University, Beijing, China
| | - Zhou Huang
- Institute of Remote Sensing and Geographical Information Systems, Peking University, Beijing, China
- Beijing Key Lab of Spatial Information Integration & Its Applications, Peking University, Beijing, China
| | - Qiance Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Gang Liu
- SDU Life Cycle Engineering, Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern Denmark, 5230 Odense, Denmark
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
2
|
Ice-Crystal Nucleation in Water: Thermodynamic Driving Force and Surface Tension. Part I: Theoretical Foundation. ENTROPY 2019; 22:e22010050. [PMID: 33285825 PMCID: PMC7516481 DOI: 10.3390/e22010050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022]
Abstract
A recently developed thermodynamic theory for the determination of the driving force of crystallization and the crystal–melt surface tension is applied to the ice-water system employing the new Thermodynamic Equation of Seawater TEOS-10. The deviations of approximative formulations of the driving force and the surface tension from the exact reference properties are quantified, showing that the proposed simplifications are applicable for low to moderate undercooling and pressure differences to the respective equilibrium state of water. The TEOS-10-based predictions of the ice crystallization rate revealed pressure-induced deceleration of ice nucleation with an increasing pressure, and acceleration of ice nucleation by pressure decrease. This result is in, at least, qualitative agreement with laboratory experiments and computer simulations. Both the temperature and pressure dependencies of the ice-water surface tension were found to be in line with the le Chatelier–Braun principle, in that the surface tension decreases upon increasing degree of metastability of water (by decreasing temperature and pressure), which favors nucleation to move the system back to a stable state. The reason for this behavior is discussed. Finally, the Kauzmann temperature of the ice-water system was found to amount TK=116K, which is far below the temperature of homogeneous freezing. The Kauzmann pressure was found to amount to pK=−212MPa, suggesting favor of homogeneous freezing on exerting a negative pressure on the liquid. In terms of thermodynamic properties entering the theory, the reason for the negative Kauzmann pressure is the higher mass density of water in comparison to ice at the melting point.
Collapse
|
3
|
Bachler J, Handle PH, Giovambattista N, Loerting T. Glass polymorphism and liquid-liquid phase transition in aqueous solutions: experiments and computer simulations. Phys Chem Chem Phys 2019; 21:23238-23268. [PMID: 31556899 DOI: 10.1039/c9cp02953b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most intriguing anomalies of water is its ability to exist as distinct amorphous ice forms (glass polymorphism or polyamorphism). This resonates well with the possible first-order liquid-liquid phase transition (LLPT) in the supercooled state, where ice is the stable phase. In this Perspective, we review experiments and computer simulations that search for LLPT and polyamorphism in aqueous solutions containing salts and alcohols. Most studies on ionic solutes are devoted to NaCl and LiCl; studies on alcohols have mainly focused on glycerol. Less attention has been paid to protein solutions and hydrophobic solutes, even though they reveal promising avenues. While all solutions show polyamorphism and an LLPT only in dilute, sub-eutectic mixtures, there are differences regarding the nature of the transition. Isocompositional transitions for varying mole fractions are observed in alcohol but not in ionic solutions. This is because water can surround alcohol molecules either in a low- or high-density configuration whereas for ionic solutes, the water ion hydration shell is forced into high-density structures. Consequently, the polyamorphic transition and the LLPT are prevented near the ions, but take place in patches of water within the solutions. We highlight discrepancies and different interpretations within the experimental community as well as the key challenges that need consideration when comparing experiments and simulations. We point out where reinterpretation of past studies helps to draw a unified, consistent picture. In addition to the literature review, we provide original experimental results. A list of eleven open questions that need further consideration is identified.
Collapse
Affiliation(s)
- Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
4
|
Souda R. Probing the solid-liquid transition of thin propanol and butanol films through interactions with LiI. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
5
|
González MA, Valeriani C, Caupin F, Abascal JLF. A comprehensive scenario of the thermodynamic anomalies of water using the TIP4P/2005 model. J Chem Phys 2017; 145:054505. [PMID: 27497563 DOI: 10.1063/1.4960185] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The striking behavior of water has deserved it to be referred to as an "anomalous" liquid. The water anomalies are greatly amplified in metastable (supercooled and/or stretched) regions. This makes difficult a complete experimental description since, beyond certain limits, the metastable phase necessarily transforms into the stable one. Theoretical interpretation of the water anomalies could then be based on simulation results of well validated water models. But the analysis of the simulations has not yet reached a consensus. In particular, one of the most popular theoretical scenarios-involving the existence of a liquid-liquid critical point (LLCP)-is disputed by several authors. In this work, we propose to use a number of exact thermodynamic relations which may shed light on this issue. Interestingly, these relations may be tested in a region of the phase diagram which is outside the LLCP thus avoiding the problems associated to the coexistence region. The central property connected to other water anomalies is the locus of temperatures at which the density along isobars attain a maximum (TMD line) or a minimum (TmD). We have performed computer simulations to evaluate the TMD and TmD for a successful water model, namely, TIP4P/2005. We have also evaluated the vapor-liquid (VL) spinodal in the region of large negative pressures. The shape of these curves and their connection to the extrema of some response functions, in particular the isothermal compressibility and heat capacity at constant pressure, provides very useful information which may help to elucidate the validity of the theoretical proposals. In this way, we are able to present for the first time a comprehensive scenario of the thermodynamic water anomalies for TIP4P/2005 and their relation to the vapor-liquid spinodal. The overall picture shows a remarkable similarity with the corresponding one for the ST2 water model, for which the existence of a LLCP has been demonstrated in recent years. It also provides a hint as to where the long-sought for extrema in response functions might become accessible to experiments.
Collapse
Affiliation(s)
- Miguel A González
- Departamento Química Física I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Chantal Valeriani
- Departamento Química Física I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Frédéric Caupin
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex, France
| | - José L F Abascal
- Departamento Química Física I, Facultad Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Souda R. Interactions of methanol, ethanol, and 1-propanol with polar and nonpolar species in water at cryogenic temperatures. Phys Chem Chem Phys 2017; 19:2583-2590. [PMID: 28059424 DOI: 10.1039/c6cp07313a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methanol is known as a strong inhibitor of hydrate formation, but clathrate hydrates of ethanol and 1-propanol can be formed in the presence of help gases. To elucidate the hydrophilic and hydrophobic effects of alcohols, their interactions with simple solute species are investigated in glassy, liquid, and crystalline water using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. Nonpolar solute species embedded underneath amorphous solid water films are released during crystallization, but they tend to withstand water crystallization under the coexistence of methanol additives. The CO2 additives are released after crystallization along with methanol desorption. These results suggest strongly that nonpolar species that are hydrated (i.e., caged) associatively with methanol can withstand water crystallization. In contrast, ethanol and 1-propanol additives weakly affect the dehydration of nonpolar species during water crystallization, suggesting that the former tend to be caged separately from the latter. The hydrophilic vs. hydrophobic behavior of alcohols, which differs according to the aliphatic group length, also manifests itself in the different abilities of surface segregation of alcohols and their effects on the water crystallization kinetics.
Collapse
Affiliation(s)
- Ryutaro Souda
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
7
|
Bag S, Bhuin RG, Natarajan G, Pradeep T. Probing molecular solids with low-energy ions. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:97-118. [PMID: 23495731 DOI: 10.1146/annurev-anchem-062012-092547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ion/surface collisions in the ultralow- to low-energy (1-100-eV) window represent an excellent technique for investigation of the properties of condensed molecular solids at low temperatures. For example, this technique has revealed the unique physical and chemical processes that occur on the surface of ice, versus the liquid and vapor phases of water. Such instrument-dependent research, which is usually performed with spectroscopy and mass spectrometry, has led to new directions in studies of molecular materials. In this review, we discuss some interesting results and highlight recent developments in the area. We hope that access to the study of molecular solids with extreme surface specificity, as described here, will encourage investigators to explore new areas of research, some of which are outlined in this review.
Collapse
Affiliation(s)
- Soumabha Bag
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | | | |
Collapse
|
8
|
Cyriac J, Pradeep T, Kang H, Souda R, Cooks RG. Low-Energy Ionic Collisions at Molecular Solids. Chem Rev 2012; 112:5356-411. [DOI: 10.1021/cr200384k] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jobin Cyriac
- DST Unit of
Nanoscience, Department
of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United
States
| | - T. Pradeep
- DST Unit of
Nanoscience, Department
of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - H. Kang
- Department of Chemistry, Seoul National University, Gwanak-gu, Seoul 151-747,
Republic of Korea
| | - R. Souda
- International
Center for Materials
Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - R. G. Cooks
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United
States
| |
Collapse
|
9
|
Souda R. Adsorption, diffusion, dewetting, and entrapment of acetone on Ni(111), surface-modified silicon, and amorphous solid water studied by time-of-flight secondary ion mass spectrometry and temperature programmed desorption. J Chem Phys 2011; 135:164703. [PMID: 22047259 DOI: 10.1063/1.3656071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Interactions of acetone with the silicon surfaces terminated with hydrogen, hydroxyl, and perfluorocarbon are investigated; results are compared to those on amorphous solid water (ASW) to gain insights into the roles of hydrogen bonds in surface diffusion and hydration of acetone adspecies. The surface mobility of acetone occurs at ∼60 K irrespective of the surface functional groups. Cooperative diffusion of adspecies results in a 2D liquid phase on the H- and perfluorocarbon-terminated surfaces, whereas cooperativity tends to be quenched via hydrogen bonding on the OH-terminated surface, thereby forming residues that diffuse slowly on the surface after evaporation of the physisorbed species (i.e., 2D liquid). The interaction of acetone adspecies on the non-porous ASW surface resembles that on the OH-terminated Si surface, but the acetone molecules tend to be hydrated on the porous ASW film, as evidenced by their desorption during the glass-liquid transition and crystallization of water. The roles of micropores in hydration of acetone molecules are discussed from comparison with the results using mesoporous Si substrates.
Collapse
Affiliation(s)
- Ryutaro Souda
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
10
|
Corradini D, Gallo P. Liquid-liquid coexistence in NaCl aqueous solutions: a simulation study of concentration effects. J Phys Chem B 2011; 115:14161-6. [PMID: 21851078 DOI: 10.1021/jp2045977] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper we investigate by means of molecular dynamics computer simulations how the hypothesized liquid-liquid critical point of water shifts in supercooled aqueous solutions of salt as a function of concentration. We study sodium chloride solutions in TIP4P water, NaCl(aq), for concentrations c = 1.36 mol/kg and c = 2.10 mol/kg. The liquid-liquid critical point is found up to the highest concentration investigated, and its position in the P-T plane shifts to higher temperatures and lower pressures upon increasing concentration. For c = 2.10 mol/kg it is also located very close to the temperature of maximum density line of the system. The results are discussed and compared with previous results for bulk TIP4P water and for c = 0.67 mol/kg NaCl(aq) and with experimental findings. We observe a progressive shrinkage of the low-density liquid region when the concentration of salt increases; this suggests an eventual disappearance of the liquid-liquid coexistence upon further increase of NaCl concentration.
Collapse
Affiliation(s)
- D Corradini
- Dipartimento di Fisica, Università Roma Tre , Via della Vasca Navale 84, I-00146 Roma, Italy
| | | |
Collapse
|
11
|
Abascal JLF, Vega C. Widom line and the liquid-liquid critical point for the TIP4P/2005 water model. J Chem Phys 2011; 133:234502. [PMID: 21186870 DOI: 10.1063/1.3506860] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Widom line and the liquid-liquid critical point of water in the deeply supercooled region are investigated via computer simulation of the TIP4P/2005 model. The Widom line has been calculated as the locus of compressibility maxima. It is quite close to the experimental homogeneous nucleation line and, in the region studied, it is almost parallel to the curve of temperatures of maximum density at fixed pressure. The critical temperature is determined by examining which isotherm has a region with flat slope. An interpolation in the Widom line gives the rest of the critical parameters. The computed critical parameters are T(c)=193 K, p(c)=1350 bar, and ρ(c)=1.012 g/cm(3). Given the performance of the model for the anomalous properties of water and for the properties of ice phases, the calculated critical parameters are probably close to those of real water.
Collapse
Affiliation(s)
- José L F Abascal
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | |
Collapse
|
12
|
Corradini D, Rovere M, Gallo P. Structural Properties of High and Low Density Water in a Supercooled Aqueous Solution of Salt. J Phys Chem B 2011; 115:1461-8. [DOI: 10.1021/jp1101237] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- D. Corradini
- Dipartimento di Fisica, Università “Roma Tre”, Via della Vasca Navale 84, I-00146 Roma, Italy
| | - M. Rovere
- Dipartimento di Fisica, Università “Roma Tre”, Via della Vasca Navale 84, I-00146 Roma, Italy
| | - P. Gallo
- Dipartimento di Fisica, Università “Roma Tre”, Via della Vasca Navale 84, I-00146 Roma, Italy
| |
Collapse
|
13
|
Corradini D, Rovere M, Gallo P. A route to explain water anomalies from results on an aqueous solution of salt. J Chem Phys 2010; 132:134508. [DOI: 10.1063/1.3376776] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Souda R. The glass-liquid transition of water on hydrophobic surfaces. J Chem Phys 2008; 129:124707. [DOI: 10.1063/1.2980041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
15
|
Souda R. Dewetting of Thin Amorphous Solid Water Films and Liquid-Cubic Ice Coexistence in Droplets Studied Using Infrared-Absorption and Secondary-Ion-Mass Spectroscopy. J Phys Chem B 2008; 112:11976-80. [DOI: 10.1021/jp8047828] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ryutaro Souda
- Nanoscale Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
16
|
Bahr S, Toubin C, Kempter V. Interaction of methanol with amorphous solid water. J Chem Phys 2008; 128:134712. [DOI: 10.1063/1.2901970] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Souda R. Hydration of NaCl on Glassy, Supercooled-Liquid, and Crystalline Water. J Phys Chem B 2007; 111:11209-13. [PMID: 17760437 DOI: 10.1021/jp0725580] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interactions of sodium chloride with amorphous and crystalline water films, leading to the possible formation of a dilute NaCl solution, were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature. A monolayer of NaCl tends to remain on the surface or in subsurface sites of thick amorphous solid water films (200 monolayers); the Na+ ion is hydrated preferentially, whereas the Cl- ion is segregated at the surface. The hydration structure of NaCl is fundamentally unchanged for viscous liquid water that appears at temperatures higher than 136 K. The solubility of NaCl increases abruptly at 160 K because of the evolution of supercooled liquid water, which can hydrate the Cl- ion efficiently. However, the diffusion of the ions toward the bulk of supercooled liquid water is interrupted by crystallization; therefore, the dilute NaCl solution that is characterized by completely separated Na+-Cl- pairs may not be formed. When NaCl is deposited on the crystalline ice film, hydration of NaCl is enhanced above 160 K as well, indicating that a liquidlike phase coexists with crystals.
Collapse
Affiliation(s)
- Ryutaro Souda
- Nanoscale Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|
18
|
Souda R. Two Liquid Phases of Water in the Deeply Supercooled Region and Their Roles in Crystallization and Formation of LiCl Solution. J Phys Chem B 2007; 111:5628-34. [PMID: 17465534 DOI: 10.1021/jp0672050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The properties of supercooled liquid water and the mechanism of crystallization in it were investigated using time-of-flight secondary ion mass spectrometry and reflection absorption infrared spectroscopy. The self-diffusion of the water molecules commences at 136 K, and then the liquid-liquid phase transition occurs at 160-165 K. The latter is evidenced not only by the occurrence of fluidity but also by the formation of a LiCl solution. The infrared absorption band also changes drastically above 160 K due to crystallization of water (on the Au film) and the formation of LiCl solution (on the LiCl film). The immediate crystallization and dissolution of LiCl are thought to be characteristic of normal water that is created in a deeply supercooled region, indicating that viscous liquid water (T > 136 K) is transformed into supercooled liquid water at around 160 K. The crystallization kinetics is different between these two phases because the former (latter) involves nuclear growth (spontaneous nucleation). Without nuclei, crystallization is quenched below 160 K in the present experiment. It is suggested that the viscous liquid phase coexists at the surface or grain boundaries of metastable ice Ic.
Collapse
Affiliation(s)
- Ryutaro Souda
- Nanoscale Materials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| |
Collapse
|