Jackson B. The trapping of methane on Ir(111): A first-principles quantum study.
J Chem Phys 2021;
155:044705. [PMID:
34340380 DOI:
10.1063/5.0058672]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We implement a fully quantum mechanical study of methane trapping on Ir(111), where the phonons, the molecule-surface interaction, and the molecule-phonon coupling are all computed from first-principles. We find that both the surface corrugation and the phonon coupling vary strongly with molecular orientation and that there is a "chemical" aspect to this due to the catalytic nature of the metal. For example, molecules with reactive orientations can approach close to surface sites with low barriers to dissociation. Moreover, lattice motion can lower the barrier to dissociation, leading to unusual behavior for the phonon coupling. We find good agreement with experiment and two recent classical studies if we average our potential energy surface over several orientations of the molecule. We also find reasonable agreement with a recent study of methane diffraction, although we show that diffraction does not play a major role in trapping on the smooth Ir(111) surface and that trapping obeys normal energy scaling, consistent with experiment. We show that the trapping probability can be sensitive to the temperature at both high and low incidence energies. Relaxation and desorption of trapped particles are examined.
Collapse