1
|
Thompho S, Fritzsche S, Chokbunpiam T, Remsungnen T, Janke W, Hannongbua S. Adsorption and the Chemical Reaction N 2O 4 ↔ 2NO 2 in the Presence of N 2 in a Gas Phase Connected with a Carbon Nanotube. ACS OMEGA 2021; 6:17342-17352. [PMID: 34278120 PMCID: PMC8280629 DOI: 10.1021/acsomega.1c01459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/16/2021] [Indexed: 05/17/2023]
Abstract
The paper shows, by molecular simulations, that a CNT (9,9) carbon nanotube allows very efficient separation of nitrogen oxides (NO x ) from N2, that has in good approximation properties of the complete air mixture. Gibbs ensemble Monte Carlo simulations are used to describe the adsorption. The permanent chemical reaction between N2O4 and NO2, which occurs simultaneously to adsorption, is treated by the reactive Monte Carlo simulation. A very high selectivity has been found. For a low pressure and at T = 298 K, an adsorption/reaction selectivity between NO x and N2 can reach values up to 3 × 103.
Collapse
Affiliation(s)
- Somphob Thompho
- Pharmaceutical
Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| | - Siegfried Fritzsche
- Institute
of Theoretical Physics, Leipzig University, 04081 Leipzig, Germany
| | - Tatiya Chokbunpiam
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Tawun Remsungnen
- Faculty
of Interdisciplinary Studies, Khon Kaen
University, Nong Khai 43000, Thailand
| | - Wolfhard Janke
- Institute
of Theoretical Physics, Faculty of Physics and Geosciences, Leipzig University, 04081 Leipzig, Germany
| | - Supot Hannongbua
- Computational
Chemistry Unit Cell (CCUC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Dong B, Mansour N, Huang TX, Huang W, Fang N. Single molecule fluorescence imaging of nanoconfinement in porous materials. Chem Soc Rev 2021; 50:6483-6506. [PMID: 34100033 DOI: 10.1039/d0cs01568g] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers recent progress in using single molecule fluorescence microscopy imaging to understand the nanoconfinement in porous materials. The single molecule approach unveils the static and dynamic heterogeneities from seemingly equal molecules by removing the ensemble averaging effect. Physicochemical processes including mass transport, surface adsorption/desorption, and chemical conversions within the confined space inside porous materials have been studied at nanometer spatial resolution, at the single nanopore level, with millisecond temporal resolution, and under real chemical reaction conditions. Understanding these physicochemical processes provides the ability to quantitatively measure the inhomogeneities of nanoconfinement effects from the confining properties, including morphologies, spatial arrangement, and trapping domains. Prospects and limitations of current single molecule imaging studies on nanoconfinement are also discussed.
Collapse
Affiliation(s)
- Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA.
| | | | | | | | | |
Collapse
|
3
|
Abstract
AbstractNanoporous solids are ubiquitous in chemical, energy, and environmental processes, where controlled transport of molecules through the pores plays a crucial role. They are used as sorbents, chromatographic or membrane materials for separations, and as catalysts and catalyst supports. Defined as materials where confinement effects lead to substantial deviations from bulk diffusion, nanoporous materials include crystalline microporous zeotypes and metal–organic frameworks (MOFs), and a number of semi-crystalline and amorphous mesoporous solids, as well as hierarchically structured materials, containing both nanopores and wider meso- or macropores to facilitate transport over macroscopic distances. The ranges of pore sizes, shapes, and topologies spanned by these materials represent a considerable challenge for predicting molecular diffusivities, but fundamental understanding also provides an opportunity to guide the design of new nanoporous materials to increase the performance of transport limited processes. Remarkable progress in synthesis increasingly allows these designs to be put into practice. Molecular simulation techniques have been used in conjunction with experimental measurements to examine in detail the fundamental diffusion processes within nanoporous solids, to provide insight into the free energy landscape navigated by adsorbates, and to better understand nano-confinement effects. Pore network models, discrete particle models and synthesis-mimicking atomistic models allow to tackle diffusion in mesoporous and hierarchically structured porous materials, where multiscale approaches benefit from ever cheaper parallel computing and higher resolution imaging. Here, we discuss synergistic combinations of simulation and experiment to showcase theoretical progress and computational techniques that have been successful in predicting guest diffusion and providing insights. We also outline where new fundamental developments and experimental techniques are needed to enable more accurate predictions for complex systems.
Collapse
|
4
|
Rahbari A, Hens R, Ramdin M, Moultos OA, Dubbeldam D, Vlugt TJH. Recent advances in the continuous fractional component Monte Carlo methodology. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1828585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. Rahbari
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - R. Hens
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - M. Ramdin
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - O. A. Moultos
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - D. Dubbeldam
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - T. J. H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
5
|
Dong B, Mansour N, Pei Y, Wang Z, Huang T, Filbrun SL, Chen M, Cheng X, Pruski M, Huang W, Fang N. Single Molecule Investigation of Nanoconfinement Hydrophobicity in Heterogeneous Catalysis. J Am Chem Soc 2020; 142:13305-13309. [PMID: 32687344 DOI: 10.1021/jacs.0c05905] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoconfinement imposes physical constraints and chemical effects on reactivity in nanoporous catalyst systems. In the present study, we lay the groundwork for quantitative single-molecule measurements of the effects of chemical environment on heterogeneous catalysis in nanoconfinement. Choosing hydrophobicity as an exemplary chemical environmental factor, we compared a range of essential parameters for an oxidation reaction on platinum nanoparticles (NPs) confined in hydrophilic and hydrophobic nanopores. Single-molecule experimental measurements at the single particle level showed higher catalytic activity, stronger adsorption strength, and higher activation energy in hydrophobic nanopores than those in hydrophilic nanopores. Interestingly, different dissociation kinetic behaviors of the product molecules in the two types of nanopores were deduced from the single-molecule imaging data.
Collapse
Affiliation(s)
- Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Nourhan Mansour
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yuchen Pei
- Department of Chemistry, Iowa State University Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Zhuoran Wang
- Department of Chemistry, Iowa State University Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Tengxiang Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Seth L Filbrun
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Minda Chen
- Department of Chemistry, Iowa State University Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Xiaodong Cheng
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Marek Pruski
- Department of Chemistry, Iowa State University Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Wenyu Huang
- Department of Chemistry, Iowa State University Ames, Iowa 50011, United States.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011, United States
| | - Ning Fang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
6
|
Fritzsche S, Chokbunpiam T, Caro J, Hannongbua S, Janke W, Remsungnen T. Combined Adsorption and Reaction in the Ternary Mixture N 2, N 2O 4, NO 2 on MIL-127 Examined by Computer Simulations. ACS OMEGA 2020; 5:13023-13033. [PMID: 32548487 PMCID: PMC7288586 DOI: 10.1021/acsomega.9b04494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/13/2020] [Indexed: 05/28/2023]
Abstract
A high selectivity of NO x over N2 (simulating air) is found in silico when studying the adsorption of the ternary mixture N2O4/NO2/N2 on the metal-organic framework MIL-127(Fe) by molecular simulations under consideration of the recombination reaction N2O4 ↔ 2NO2. The number of N atoms in nitrogen oxides NO x and that in N2 is used to define a selectivity of the combined adsorption and chemical recombination that can reach values of about 1000.
Collapse
Affiliation(s)
- Siegfried Fritzsche
- Institute
of Theoretical Physics, Faculty of Physics and Geosciences, Leipzig University, Postfach 100920, D-04009 Leipzig, Germany
- Integrated
Research Group for Energy and Environment, Faculty of Applied Science
and Engineering, Khon Kaen University, Nong Khai Campus, Nong Khai 43000, Thailand
| | - Tatiya Chokbunpiam
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Jürgen Caro
- Institute
of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3-3A, D-30167 Hannover, Germany
| | - Supot Hannongbua
- Computational
Chemistry Unit Cell (CCUC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wolfhard Janke
- Institute
of Theoretical Physics, Faculty of Physics and Geosciences, Leipzig University, Postfach 100920, D-04009 Leipzig, Germany
| | - Tawun Remsungnen
- Integrated
Research Group for Energy and Environment, Faculty of Applied Science
and Engineering, Khon Kaen University, Nong Khai Campus, Nong Khai 43000, Thailand
| |
Collapse
|
7
|
Dong B, Pei Y, Mansour N, Lu X, Yang K, Huang W, Fang N. Deciphering nanoconfinement effects on molecular orientation and reaction intermediate by single molecule imaging. Nat Commun 2019; 10:4815. [PMID: 31645571 PMCID: PMC6811571 DOI: 10.1038/s41467-019-12799-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/25/2019] [Indexed: 11/10/2022] Open
Abstract
Nanoconfinement could dramatically change molecular transport and reaction kinetics in heterogeneous catalysis. Here we specifically design a core-shell nanocatalyst with aligned linear nanopores for single-molecule studies of the nanoconfinement effects. The quantitative single-molecule measurements reveal unusual lower adsorption strength and higher catalytic activity on the confined metal reaction centres within the nanoporous structure. More surprisingly, the nanoconfinement effects on enhanced catalytic activity are larger for catalysts with longer and narrower nanopores. Experimental evidences, including molecular orientation, activation energy, and intermediate reactive species, have been gathered to provide a molecular level explanation on how the nanoconfinement effects enhance the catalyst activity, which is essential for the rational design of highly-efficient catalysts.
Collapse
Affiliation(s)
- Bin Dong
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuchen Pei
- Department of Chemistry, Iowa State University, and Ames Laboratory, U.S. Department of Energy, Ames, IA, 50011, USA
| | - Nourhan Mansour
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Xuemei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, 215006, Suzhou, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, 215006, Suzhou, P. R. China
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, and Ames Laboratory, U.S. Department of Energy, Ames, IA, 50011, USA.
| | - Ning Fang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
8
|
Affiliation(s)
- Braden Kelly
- Department of Mathematics and Statistics, University of Guelph, Guelph, Canada
| | - William R. Smith
- Department of Mathematics and Statistics, University of Guelph, Guelph, Canada
- Department of Chemistry, University of Guelph, Guelph, Canada
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Faculty of Science, University of Ontario Institute of Technology, Oshawa Canada
| |
Collapse
|
9
|
Smith WR, Qi W. Molecular Simulation of Chemical Reaction Equilibrium by Computationally Efficient Free Energy Minimization. ACS CENTRAL SCIENCE 2018; 4:1185-1193. [PMID: 30276252 PMCID: PMC6161046 DOI: 10.1021/acscentsci.8b00361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 05/25/2023]
Abstract
The molecular simulation of chemical reaction equilibrium (CRE) is a challenging and important problem of broad applicability in chemistry and chemical engineering. The primary molecular-based approach for solving this problem has been the reaction ensemble Monte Carlo (REMC) algorithm [Turner et al. Molec. Simulation2008, 34, (2), 119-146], based on classical force-field methodology. In spite of the vast improvements in computer hardware and software since its original development almost 25 years ago, its more widespread application is impeded by its computational inefficiency. A fundamental problem is that its MC basis inhibits the implementation of significant parallelization, and its successful implementation often requires system-specific tailoring and the incorporation of special MC approaches such as replica exchange, expanded ensemble, umbrella sampling, configurational bias, and continuous fractional component methodologies. We describe herein a novel CRE algorithm (reaction ensemble molecular dynamics, ReMD) that exploits modern computer hardware and software capabilities, and which can be straightforwardly implemented for systems of arbitrary size and complexity by exploiting the parallel computing methodology incorporated within many MD software packages (herein, we use GROMACS for illustrative purposes). The ReMD algorithm utilizes these features in the context of a macroscopically inspired and generally applicable free energy minimization approach based on the iterative approximation of the system Gibbs free energy function by a mathematically simple convex ideal solution model using the composition at each iteration as a reference state. Finally, we additionally describe a simple and computationally efficient a posteriori method to estimate the equilibrium concentrations of species present in very small amounts relative to others in the primary calculation. To demonstrate the algorithm, we show its application to two classic example systems considered previously in the literature: the N2-O2-NO system and the ammonia synthesis system.
Collapse
Affiliation(s)
- William R. Smith
- Department
of Mathematics and Statistics, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department
of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Faculty
of Science, University of Ontario Institute
of Technology, Oshawa, Ontario L1H 7K4, Canada
| | - Weikai Qi
- Department
of Mathematics and Statistics, University
of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
10
|
Mullen RG, Corcelli SA, Maginn EJ. Reaction Ensemble Monte Carlo Simulations of CO 2 Absorption in the Reactive Ionic Liquid Triethyl(octyl)phosphonium 2-Cyanopyrrolide. J Phys Chem Lett 2018; 9:5213-5218. [PMID: 30136851 DOI: 10.1021/acs.jpclett.8b02304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The absorption of CO2 into an aprotic heterocyclic anion ionic liquid (IL) is modeled using reaction ensemble Monte Carlo (RxMC) with the semigrand reaction move. RxMC has previously been unable to sample chemical equilibrium involving molecular ions in nanostructured liquids due to the high free-energy requirements to open and close cavities and restructure the surrounding environment. Our results are validated by experiments in the modeled IL, triethyl(octyl)phosphonium 2-cyanopyrrolide ([P2228][cnp]), and in a close analog with longer alkyl chains on the cation. Heats of absorption and reaction from both experiment and simulation are exothermic and of comparable magnitude. Replacing experimental Henry's constants with their simulated counterparts improves the accuracy of a Langmuir-type model at moderate pressures. Nonidealities that affect chemical equilibrium are identified and calculated with high precision.
Collapse
Affiliation(s)
- Ryan Gotchy Mullen
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
- Physical and Life Sciences Directorate , Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
11
|
Oyarzún B, Mognetti BM. Programming configurational changes in systems of functionalised polymers using reversible intramolecular linkages. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1503745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bernardo Oyarzún
- Université Libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Brussels, Belgium
| | - Bortolo Matteo Mognetti
- Université Libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Brussels, Belgium
| |
Collapse
|
12
|
Matito-Martos I, Rahbari A, Martin-Calvo A, Dubbeldam D, Vlugt TJH, Calero S. Adsorption equilibrium of nitrogen dioxide in porous materials. Phys Chem Chem Phys 2018; 20:4189-4199. [PMID: 29362749 DOI: 10.1039/c7cp08017d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of confinement on the equilibrium reactive system containing nitrogen dioxide and dinitrogen tetroxide is studied by molecular simulation and the reactive Monte Carlo (RxMC) approach. The bulk-phase reaction was successfully reproduced and five all-silica zeolites (i.e. FAU, FER, MFI, MOR, and TON) with different topologies were selected to study their adoption behavior. Dinitrogen tetroxide showed a stronger affinity than nitrogen dioxide in all the zeolites due to size effects, but exclusive adsorption sites in MOR allowed the adsorption of nitrogen dioxide with no competition at these sites. From the study of the adsorption isotherms and isobars of the reacting mixture, confinement enhanced the formation of dimers over the full range of pressure and temperature, finding the largest deviations from bulk fractions at low temperature and high pressure. The channel size and shape of the zeolite have a noticeable influence on the dinitrogen tetroxide formation, being more important in MFI, closely followed by TON and MOR, and finally FER and FAU. Preferential adsorption sites in MOR lead to an unusually strong selective adsorption towards nitrogen dioxide, demonstrating that the topological structure has a crucial influence on the composition of the mixture and must be carefully considered in systems containing nitrogen dioxide.
Collapse
Affiliation(s)
- I Matito-Martos
- Department of Physical, Chemical and Natural Systems, University Pablo de Olavide, Sevilla 41013, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Poursaeidesfahani A, Hens R, Rahbari A, Ramdin M, Dubbeldam D, Vlugt TJH. Efficient Application of Continuous Fractional Component Monte Carlo in the Reaction Ensemble. J Chem Theory Comput 2017; 13:4452-4466. [PMID: 28737933 PMCID: PMC5597954 DOI: 10.1021/acs.jctc.7b00092] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new formulation of the Reaction Ensemble Monte Carlo technique (RxMC) combined with the Continuous Fractional Component Monte Carlo method is presented. This method is denoted by serial Rx/CFC. The key ingredient is that fractional molecules of either reactants or reaction products are present and that chemical reactions always involve fractional molecules. Serial Rx/CFC has the following advantages compared to other approaches: (1) One directly obtains chemical potentials of all reactants and reaction products. Obtained chemical potentials can be used directly as an independent check to ensure that chemical equilibrium is achieved. (2) Independent biasing is applied to the fractional molecules of reactants and reaction products. Therefore, the efficiency of the algorithm is significantly increased, compared to the other approaches. (3) Changes in the maximum scaling parameter of intermolecular interactions can be chosen differently for reactants and reaction products. (4) The number of fractional molecules is reduced. As a proof of principle, our method is tested for Lennard-Jones systems at various pressures and for various chemical reactions. Excellent agreement was found both for average densities and equilibrium mixture compositions computed using serial Rx/CFC, RxMC/CFCMC previously introduced by Rosch and Maginn (Journal of Chemical Theory and Computation, 2011, 7, 269-279), and the conventional RxMC approach. The serial Rx/CFC approach is also tested for the reaction of ammonia synthesis at various temperatures and pressures. Excellent agreement was found between results obtained from serial Rx/CFC, experimental results from literature, and thermodynamic modeling using the Peng-Robinson equation of state. The efficiency of reaction trial moves is improved by a factor of 2 to 3 (depending on the system) compared to the RxMC/CFCMC formulation by Rosch and Maginn.
Collapse
Affiliation(s)
- Ali Poursaeidesfahani
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology , Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Remco Hens
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology , Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Ahmadreza Rahbari
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology , Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Mahinder Ramdin
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology , Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - David Dubbeldam
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam , Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology , Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
15
|
Yang X, Rees RJ, Conway W, Puxty G, Yang Q, Winkler DA. Computational Modeling and Simulation of CO2 Capture by Aqueous Amines. Chem Rev 2017; 117:9524-9593. [PMID: 28517929 DOI: 10.1021/acs.chemrev.6b00662] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Yang
- CSIRO Manufacturing, Bayview Avenue, Clayton 3169, Australia
- College
of Chemistry, Key Lab of Green Chemistry and Technology in Ministry
of Education, Sichuan University, Chengdu 610064, People’s Republic of China
| | - Robert J. Rees
- Data61
- CSIRO, Door 34 Goods
Shed, Village Street, Docklands VIC 3008, Australia
| | | | | | - Qi Yang
- CSIRO Manufacturing, Bayview Avenue, Clayton 3169, Australia
| | - David A. Winkler
- CSIRO Manufacturing, Bayview Avenue, Clayton 3169, Australia
- Monash Institute of Pharmaceutical Sciences, 392 Royal Parade, Parkville 3052, Australia
- Latrobe Institute for Molecular Science, Bundoora 3046, Australia
- School
of
Chemical and Physical Science, Flinders University, Bedford Park 5042, Australia
| |
Collapse
|
16
|
Furmaniak S, Gauden PA, Kowalczyk P, Patrykiejew A. Monte Carlo study of chemical reaction equilibria in pores of activated carbons. RSC Adv 2017. [DOI: 10.1039/c7ra08992a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Systematic Monte Carlo studies concerning relationships between the porous structure of activated carbons and the equilibria of reactions under confinement are presented.
Collapse
Affiliation(s)
| | - Piotr A. Gauden
- Physicochemistry of Carbon Materials Research Group
- Faculty of Chemistry
- Nicolaus Copernicus University in Toruń
- 87-100 Toruń
- Poland
| | - Piotr Kowalczyk
- School of Engineering and Information Technology
- Murdoch University
- Australia
| | - Andrzej Patrykiejew
- Department for the Modelling of Physico-Chemical Processes
- Faculty of Chemistry
- Maria Curie Skłodowska University in Lublin
- 20-031 Lublin
- Poland
| |
Collapse
|
17
|
Balaji SP, Gangarapu S, Ramdin M, Torres-Knoop A, Zuilhof H, Goetheer EL, Dubbeldam D, Vlugt TJ. Simulating the Reactions of CO2 in Aqueous Monoethanolamine Solution by Reaction Ensemble Monte Carlo Using the Continuous Fractional Component Method. J Chem Theory Comput 2015; 11:2661-9. [DOI: 10.1021/acs.jctc.5b00160] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sayee Prasaad Balaji
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Satesh Gangarapu
- Laboratory
of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703HB Wageningen, The Netherlands
| | - Mahinder Ramdin
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Ariana Torres-Knoop
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science
Park 904, 1098XH Amsterdam, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Dreijenplein 8, 6703HB Wageningen, The Netherlands
- Department
of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - David Dubbeldam
- Van’t
Hoff Institute for Molecular Sciences, University of Amsterdam, Science
Park 904, 1098XH Amsterdam, The Netherlands
| | - Thijs J.H. Vlugt
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
18
|
Dubbeldam D, Calero S, Ellis DE, Snurr RQ. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1010082] [Citation(s) in RCA: 703] [Impact Index Per Article: 78.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Shao J, Yuan L, Hu X, Wu Y, Zhang Z. The effect of nano confinement on the C-h activation and its corresponding structure-activity relationship. Sci Rep 2014; 4:7225. [PMID: 25428459 PMCID: PMC4245521 DOI: 10.1038/srep07225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 11/11/2014] [Indexed: 11/15/2022] Open
Abstract
The C–H activation of methane, ethane, and t-butane on inner and outer surfaces of nitrogen-doped carbon nanotube (NCNTs) are investigated using density functional theory. It includes NCNTs with different diameters, different N and O concentrations, and different types (armchair and zigzag). A universal structure-reactivity relationship is proposed to characterize the C–H activation occurring both on the inner and outer surfaces of the nano channel. The C–O bond distance, spin density and charge carried by active oxygen are found to be highly related to the C–H activation barriers. Based on these theoretical results, some useful strategies are suggested to guide the rational design of more effective catalysts by nano channel confinement.
Collapse
Affiliation(s)
- Jing Shao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Linghua Yuan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Xingbang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Youting Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Zhibing Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
20
|
Sun W, Lin LC, Peng X, Smit B. Computational screening of porous metal-organic frameworks and zeolites for the removal of SO2and NOxfrom flue gases. AIChE J 2014. [DOI: 10.1002/aic.14467] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Weizhen Sun
- State-Key Laboratory of Chemical Engineering; East China University of Science and Technology; Shanghai 200237 China
- Dept. of Chemical and Biomolecular Engineering; University of California; Berkeley CA 94720
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology; Shanghai 200237 China
| | - Li-Chiang Lin
- Dept. of Chemical and Biomolecular Engineering; University of California; Berkeley CA 94720
| | - Xuan Peng
- Dept. of Chemical and Biomolecular Engineering; University of California; Berkeley CA 94720
- Dept. of Automation; College of Information Science and Technology, Beijing University of Chemical Technology; Beijing 100029 China
| | - Berend Smit
- Dept. of Chemical and Biomolecular Engineering; University of California; Berkeley CA 94720
- Dept. of Chemistry; University of California; Berkeley CA 94720
- Materials Sciences Div.; Lawrence Berkeley National Laboratory; Berkeley CA 94720
| |
Collapse
|
21
|
Dubbeldam D, Torres-Knoop A, Walton KS. On the inner workings of Monte Carlo codes. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.819102] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Mahdizadeh SJ, Tayyari SF. Methane storage in homogeneous armchair open-ended single-walled boron nitride nanotube triangular arrays: a grand canonical Monte Carlo simulation study. J Mol Model 2011; 18:2699-708. [DOI: 10.1007/s00894-011-1246-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/14/2011] [Indexed: 10/15/2022]
|
23
|
|
24
|
Rosch TW, Maginn EJ. Reaction Ensemble Monte Carlo Simulation of Complex Molecular Systems. J Chem Theory Comput 2011; 7:269-79. [PMID: 26596150 DOI: 10.1021/ct100615j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acceptance rules for reaction ensemble Monte Carlo (RxMC) simulations containing classically modeled atomistic degrees of freedom are derived for complex molecular systems where insertions and deletions are achieved gradually by utilizing the continuous fractional component (CFC) method. A self-consistent manner in which to utilize statistical mechanical data contained in ideal gas free energy parameters during RxMC moves is presented. The method is tested by applying it to two previously studied systems containing intramolecular degrees of freedom: the propene metathesis reaction and methyl-tert-butyl-ether (MTBE) synthesis. Quantitative agreement is found between the current results and those of Keil et al. (J. Chem. Phys. 2005, 122, 164705) for the propene metathesis reaction. Differences are observed between the equilibrium concentrations of the present study and those of Lísal et al. (AIChE J. 2000, 46, 866-875) for the MTBE reaction. It is shown that most of this difference can be attributed to an incorrect formulation of the Monte Carlo acceptance rule. Efficiency gains using CFC MC as opposed to single stage molecule insertions are presented.
Collapse
Affiliation(s)
- Thomas W Rosch
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 182 Fitzpatrick Hall, Notre Dame, Indiana 46556-5637, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 182 Fitzpatrick Hall, Notre Dame, Indiana 46556-5637, United States
| |
Collapse
|
25
|
Gubbins KE, Liu YC, Moore JD, Palmer JC. The role of molecular modeling in confined systems: impact and prospects. Phys Chem Chem Phys 2011; 13:58-85. [DOI: 10.1039/c0cp01475c] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
26
|
Mahdizadeh SJ, Tayyari SF. Influence of temperature, pressure, nanotube’s diameter and intertube distance on methane adsorption in homogeneous armchair open-ended SWCNT triangular arrays. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0836-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Hansen N, Krishna R, van Baten J, Bell A, Keil F. Reactor simulation of benzene ethylation and ethane dehydrogenation catalyzed by ZSM-5: A multiscale approach. Chem Eng Sci 2010. [DOI: 10.1016/j.ces.2009.12.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Lísal M, Brennan JK, Smith WR. Mesoscale simulation of polymer reaction equilibrium: Combining dissipative particle dynamics with reaction ensemble Monte Carlo. II. Supramolecular diblock copolymers. J Chem Phys 2009; 130:104902. [DOI: 10.1063/1.3079139] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Jakobtorweihen S, Keil F. Adsorption of alkanes, alkenes and their mixtures in single-walled carbon nanotubes and bundles. MOLECULAR SIMULATION 2009. [DOI: 10.1080/08927020802378936] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Chatterjee A, Chatterjee M. Computational designing of gradient type catalytic membrane: application to the conversion of methanol to ethylene. MOLECULAR SIMULATION 2008. [DOI: 10.1080/08927020802225848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Abhijit Chatterjee
- a Accelrys K. K., Nishishinbashi TS Bldg. 11F, 3-3-1 Nishishinbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Maya Chatterjee
- b Research Center for Compact Chemical Process , AIST, Tohoku, 4-2-1 Nigatake, Miyagino-ku, Sendai, 983-8551, Japan
| |
Collapse
|
31
|
Heath Turner C, Brennan JK, Lísal M, Smith WR, Karl Johnson J, Gubbins KE. Simulation of chemical reaction equilibria by the reaction ensemble Monte Carlo method: a review†. MOLECULAR SIMULATION 2008. [DOI: 10.1080/08927020801986564] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|