1
|
Matos JCA, Giannakeas P, Ciardi M, Pohl T, Rost JM. Transitional Supersolidity in Ion Doped Helium Droplets. PHYSICAL REVIEW LETTERS 2025; 134:186001. [PMID: 40408663 DOI: 10.1103/physrevlett.134.186001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/21/2025] [Indexed: 05/25/2025]
Abstract
^{4}He nanodroplets doped with an alkali ion feature a snowball of crystallized layers surrounded by superfluid helium. For large droplets, we predict that a transitional supersolid layer can form, bridging between the solid core and the liquid bulk, where the ^{4}He density displays modulations of icosahedral group symmetry. To identify the different phases, we combine density functional theory with the semiclassical Gaussian time-dependent Hartree method for localized many-body systems. This hybrid approach can handle large particle numbers and provides insight into the physical origin of the supersolid layer. For small droplets, we verify that the predictions of our approach are in excellent agreement with Path-Integral Monte Carlo calculations.
Collapse
Affiliation(s)
- Juan Carlos Acosta Matos
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - P Giannakeas
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Matteo Ciardi
- Vienna University of Technology, Institute for Theoretical Physics, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| | - Thomas Pohl
- Vienna University of Technology, Institute for Theoretical Physics, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| | - Jan M Rost
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| |
Collapse
|
2
|
Albrechtsen SH, Christensen JK, Petersen CE, Schouder CA, Carchi-Villalta PJ, Sánchez-Pérez I, Bartolomei M, González-Lezana T, Pirani F, Stapelfeldt H. Femtosecond-and-atom-resolved solvation dynamics of a Na+ ion in a helium nanodroplet. J Chem Phys 2025; 162:174309. [PMID: 40314272 DOI: 10.1063/5.0260588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/14/2025] [Indexed: 05/03/2025] Open
Abstract
Recently, it was shown how the primary steps of solvation of a single Na+ ion, instantly created at the surface of a nanometer-sized droplet of liquid helium, can be followed at the atomic level [Albrechtsen et al., Nature 623, 319 (2023)]. This involved measuring, with femtosecond time resolution, the gradual attachment of individual He atoms to the Na+ ion as well as the energy dissipated from the local region of the ion. In this current work, we provide a more comprehensive and detailed description of the experimental findings of the solvation dynamics and present an improved Poisson-statistical analysis of the time-resolved yields of the Na+Hen ions recorded. For droplets containing an average of 5200 He atoms, this analysis gives a binding rate of 1.84 ± 0.09 atoms/ps for the binding of the first five He atoms to the Na+ ion. In addition, thanks to accurate theoretical values for the evaporation energies of the Na+Hen ions, obtained by path integral Monte Carlo methods using a new potential energy surface presented here for the first time, we improve the determination of the time-dependent removal of the solvation energy from the region around the sodium ion. We find that it follows Newton's law of cooling for the first 5 ps. Measurements were carried out for three different average droplet sizes, ⟨ND⟩ = 9000, 5200, and 3600 helium atoms, and differences between these results are discussed.
Collapse
Affiliation(s)
- Simon H Albrechtsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Jeppe K Christensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Christian E Petersen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Constant A Schouder
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | | | - Iker Sánchez-Pérez
- Instituto de Física Fundamental, CSIC (IFF-CSIC), Serrano 123, 28006 Madrid, Spain
| | | | | | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Universitá di Perugia, 06123 Perugia, Italy
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Yanes-Rodríguez R, Villarreal P, Prosmiti R. Microsolvation of cationic alkali dimers in helium: quantum delocalization and solid-like/liquid-like behaviors of He shells. Phys Chem Chem Phys 2025; 27:8259-8266. [PMID: 40178805 DOI: 10.1039/d5cp00318k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
We performed path-integral molecular dynamics (PIMD) simulations in the NVT ensemble to investigate the quantum solvation of Li2+ in He nanoclusters at a low temperature of 2 K. The interaction potentials were modeled using a sum-of-potentials approach, incorporating automated learning ab initio-based models up to three-body terms. Additionally, the semiclassical quadratic Feynman-Hibbs approach was applied to incorporate quantum effects into classical computations effectively, enabling the study of HeNLi2+ complexes with up to 50 He atoms. The quantum simulations revealed strong evidence of local solid-like behavior in the He atoms within the first solvation shell surrounding the Li2+ dimer cation. In contrast, the second and third solvation shells displayed delocalized He densities, allowing for the interchange of He atoms between these layers, indicative of a liquid-like structure. Our findings align with earlier studies of He-doped clusters, particularly in systems where the charged impurity interacts strongly with the solvent medium, significantly impacting the helium environment at the microscopic level.
Collapse
Affiliation(s)
| | - Pablo Villarreal
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain.
| | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain.
| |
Collapse
|
4
|
García-Alfonso E, Barranco M, Halberstadt N, Pi M. Time-resolved solvation of alkali ions in superfluid helium nanodroplets. J Chem Phys 2024; 160:164308. [PMID: 38651804 DOI: 10.1063/5.0205951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
The sinking of alkali cations in superfluid 4He nanodroplets is investigated theoretically using liquid 4He time-dependent density functional theory at zero temperature. The simulations illustrate the dynamics of the buildup of the first solvation shell around the ions. The number of helium atoms in this shell is found to linearly increase with time during the first stages of the dynamics. This points to a Poissonian capture process, as concluded in the work of Albrechtsen et al. on the primary steps of Na+ solvation in helium droplets [Albrechtsen et al., Nature 623, 319 (2023)]. The energy dissipation rate by helium atom ejection is found to be quite similar between all alkalis, the main difference being a larger energy dissipated per atom for the lighter alkalis at the beginning of the dynamics. In addition, the number of helium atoms in the first solvation shell is found to be lower at the end of the dynamics than at equilibrium for both Li+ and Na+, pointing to a kinetic rather than thermodynamical control of the snowball size for small and strongly attractive ions.
Collapse
Affiliation(s)
- Ernesto García-Alfonso
- Laboratoire Collisions, Agrégats, Réactivité (LCAR), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Manuel Barranco
- Departament FQA, Facultat de Física, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Nadine Halberstadt
- Laboratoire Collisions, Agrégats, Réactivité (LCAR), Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Martí Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Albrechtsen SH, Schouder CA, Viñas Muñoz A, Christensen JK, Engelbrecht Petersen C, Pi M, Barranco M, Stapelfeldt H. Observing the primary steps of ion solvation in helium droplets. Nature 2023; 623:319-323. [PMID: 37938709 DOI: 10.1038/s41586-023-06593-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2023] [Indexed: 11/09/2023]
Abstract
Solvation is a ubiquitous phenomenon in the natural sciences. At the macroscopic level, it is well understood through thermodynamics and chemical reaction kinetics1,2. At the atomic level, the primary steps of solvation are the attraction and binding of individual molecules or atoms of a solvent to molecules or ions of a solute1. These steps have, however, never been observed in real time. Here we instantly create a single sodium ion at the surface of a liquid helium nanodroplet3,4, and measure the number of solvent atoms that successively attach to the ion as a function of time. We found that the binding dynamics of the first five helium atoms is well described by a Poissonian process with a binding rate of 2.0 atoms per picosecond. This rate is consistent with time-dependent density-functional-theory simulations of the solvation process. Furthermore, our measurements enable an estimate of the energy removed from the region around the sodium ion as a function of time, revealing that half of the total solvation energy is dissipated after four picoseconds. Our experimental method opens possibilities for benchmarking theoretical models of ion solvation and for time-resolved measurements of cation-molecule complex formation.
Collapse
Affiliation(s)
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Aarhus, Denmark
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette, France
| | | | | | | | - Martí Pi
- Departament FQA, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - Manuel Barranco
- Departament FQA, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
6
|
Zunzunegui-Bru E, Gruber E, Lázaro T, Bartolomei M, Hernández MI, Campos-Martínez J, González-Lezana T, Bergmeister S, Zappa F, Scheier P, Pérez de Tudela R, Hernández-Rojas J, Bretón J. Observation of Multiple Ordered Solvation Shells in Doped Helium Droplets: The Case of He NCa 2. J Phys Chem Lett 2023; 14:3126-3131. [PMID: 36952614 PMCID: PMC10084467 DOI: 10.1021/acs.jpclett.3c00224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this Letter, we report the experimental detection of likely the largest ordered structure of helium atoms surrounding a monatomic impurity observed to date using a recently developed technique. The mass spectrometry investigation of HeNCa2+ clusters, formed in multiply charged helium nanodroplets, reveals magic numbers at N = 12, 32, 44, and 74. Classical optimization and path integral Monte Carlo calculations suggest the existence of up to four shells surrounding the calcium dication which are closed with well-ordered Mozartkugel-like structures: He12Ca2+ with an icosahedron, the second at He32Ca2+ with a dodecahedron, the third at He44Ca2+ with a larger icosahedron, and finally for He74Ca2+, we find that the outermost He atoms form an icosidodecahedron which contains the other inner shells. We analyze the reasons for the formation of such ordered shells in order to guide the selection of possible candidates to exhibit a similar behavior.
Collapse
Affiliation(s)
- Eva Zunzunegui-Bru
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006, Spain
| | - Elisabeth Gruber
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Teresa Lázaro
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006, Spain
| | | | - Marta I Hernández
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006, Spain
| | | | | | - Stefan Bergmeister
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Fabio Zappa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | | | - Javier Hernández-Rojas
- Departamento de Física and IUdEA, Universidad de La Laguna, La Laguna, 38205, Tenerife, Spain
| | - José Bretón
- Departamento de Física and IUdEA, Universidad de La Laguna, La Laguna, 38205, Tenerife, Spain
| |
Collapse
|
7
|
Abstract
Observation of the free rotation of molecules in helium droplets enabled microscopic study of interaction of quantum rotors with a superfluid environment at T = 0.4 K. This work extends studies of rotation in helium to molecular cations, such as methenium, CH3+. The spectrum of the v3 band of CH3+ around 3130 cm-1 has three prominent peaks assigned to the rotational structure of the band. While the free CH3+ is an oblate top, in helium it behaves as a prolate top. This effect is ascribed to the strong binding of two He atoms along the figure axis of the ion. Our results indicate that the other He atoms within the first solvation shell remain fluxional and in disparity with the widely accepted model of a rigid He "snowball" surrounding ions.
Collapse
Affiliation(s)
- Swetha Erukala
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Deepak Verma
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Andrey Vilesov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Alharzali N, Rodríguez-Segundo R, Prosmiti R. Modelling interactions of cationic dimers in He droplets: microsolvation trends in He nK 2+ clusters. Phys Chem Chem Phys 2021; 23:7849-7859. [PMID: 33220666 DOI: 10.1039/d0cp05406b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the results of a detailed theoretical investigation of small K2+-doped He clusters. The structural characteristics and stabilities of such cations are determined from ab initio electronic structure calculations at the MRCI+Q level of theory. The underlying interactions show a multireference character and such effects are analyzed. The interaction potentials are constructed employing an interpolation technique within the inverse problem theory method, while the nuclear quantum effects are computed for the trimers, their spatial arrangements are discussed, and information was extracted on the orientational anisotropy of the forces. We found that energetically the most stable conformer corresponds to linear arrangements that are taking place under large amplitude vibrations, with high zero-point energy. We have further looked into the behavior of higher-order species with various He atoms surrounding the cationic dopant. By using a sum of potentials approach and an evolutionary programming method, we analyzed the structural stability of clusters with up to six He atoms in comparison with interactions energies obtained from MRCI+Q quantum chemistry computations. Structures containing Hen motifs that characterize pure rare gas clusters, appear for the larger K2+-doped He clusters, showing selective growth during the microsolvation process of the alkali-dimer cation surrounded by He atoms. Such results indicate the existence of local solvation microstructures in these aggregates, where the cationic impurity could get trapped for a short time, contributing to the slow ionic mobility observed experimentally in ultra-cold He-droplets.
Collapse
Affiliation(s)
- Nissrin Alharzali
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain.
| | | | | |
Collapse
|
9
|
González-Lezana T, Echt O, Gatchell M, Bartolomei M, Campos-Martínez J, Scheier P. Solvation of ions in helium. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1794585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tomás González-Lezana
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas IFF-CSIC, Madrid, Spain
| | - Olof Echt
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
- Department of Physics, University of New Hampshire, Durham, NH, USA
| | - Michael Gatchell
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - Massimiliano Bartolomei
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas IFF-CSIC, Madrid, Spain
| | - José Campos-Martínez
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas IFF-CSIC, Madrid, Spain
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Brieuc F, Schran C, Uhl F, Forbert H, Marx D. Converged quantum simulations of reactive solutes in superfluid helium: The Bochum perspective. J Chem Phys 2020; 152:210901. [DOI: 10.1063/5.0008309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Fabien Brieuc
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christoph Schran
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Felix Uhl
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Harald Forbert
- Center for Solvation Science ZEMOS, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
11
|
Laajimi M, Mtiri S, Ghalla H. Structure and stability of sodium-doped helium snowballs through DFT calculations. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-2556-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Pérez de Tudela R, Martini P, Goulart M, Scheier P, Pirani F, Hernández-Rojas J, Bretón J, Ortiz de Zárate J, Bartolomei M, González-Lezana T, Hernández MI, Campos-Martínez J, Villarreal P. A combined experimental and theoretical investigation of Cs + ions solvated in He N clusters. J Chem Phys 2019; 150:154304. [PMID: 31005067 DOI: 10.1063/1.5092566] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Solvation of Cs+ ions inside helium droplets has been investigated both experimentally and theoretically. On the one hand, mass spectra of doped helium clusters ionized with a crossed electron beam, HeNCs+, have been recorded for sizes up to N = 60. The analysis of the ratio between the observed peaks for each size N reveals evidences of the closure of the first solvation shell when 17 He atoms surround the alkali ion. On the other hand, we have obtained energies and geometrical structures of the title clusters by means of basin-hopping, diffusion Monte Carlo (DMC), and path integral Monte Carlo (PIMC) methods. The analytical He-Cs+ interaction potential employed in our calculations is represented by the improved Lennard-Jones expression optimized on high level ab initio energies. The weakness of the existing interaction between helium and Cs+ in comparison with some other alkali ions such as Li+ is found to play a crucial role. Our theoretical findings confirm that the first solvation layer is completed at N = 17 and both evaporation and second difference energies obtained with the PIMC calculation seem to reproduce a feature observed at N = 12 for the experimental ion abundance. The analysis of the DMC probability distributions reveals the important contribution from the icosahedral structure to the overall configuration for He12Cs+.
Collapse
Affiliation(s)
| | - Paul Martini
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Marcelo Goulart
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Universitá di Perugia, 06123 Perugia, Italy
| | - Javier Hernández-Rojas
- Departamento de Física and IUdEA, Universidad de La Laguna, La Laguna, 38205 Tenerife, Spain
| | - José Bretón
- Departamento de Física and IUdEA, Universidad de La Laguna, La Laguna, 38205 Tenerife, Spain
| | | | | | | | - Marta I Hernández
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid, Spain
| | | | - Pablo Villarreal
- Instituto de Física Fundamental, IFF-CSIC, Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
13
|
Ortiz de Zárate J, Bartolomei M, González-Lezana T, Campos-Martínez J, Hernández MI, Pérez de Tudela R, Hernández-Rojas J, Bretón J, Pirani F, Kranabetter L, Martini P, Kuhn M, Laimer F, Scheier P. Snowball formation for Cs + solvation in molecular hydrogen and deuterium. Phys Chem Chem Phys 2019; 21:15662-15668. [PMID: 31271179 DOI: 10.1039/c9cp02017a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interactions of atomic cations with molecular hydrogen are of interest for a wide range of applications in hydrogen technologies. These interactions are fairly strong despite being non-covalent, hence one can ask whether hydrogen molecules would form dense, solid-like, solvation shells around the ion (snowballs) or rather a more weakly bound compound. In this work, the interactions between Cs+ and H2 are studied both experimentally and computationally. Isotopic substitution of H2 by D2 is also investigated. On the one hand, helium nanodroplets doped with cesium and hydrogen or deuterium are ionized by electron impact and the (H2/D2)nCs+ (up to n = 30) clusters formed are identified via mass spectrometry. On the other hand, a new analytical potential energy surface, based on ab initio calculations, is developed and used to study cluster energies and structures by means of classical and quantum-mechanical Monte Carlo methods. The most salient features of the measured ion abundances are remarkably mimicked by the computed evaporation energies, particularly for the clusters composed of deuterium. This result supports the reliability of the present potential energy surface and allows us to recommend its use in related systems. Clusters with either twelve H2 or D2 molecules stand out for their stability and quasi-rigid icosahedral structures. However, the first solvation shell involves thirteen or fourteen molecules for hydrogenated or deuterated clusters, respectively. This shell retains its internal structure when extra molecules are added to the second shell and is nearly solid-like, especially for the deuterated clusters. The role played by three-body induction interactions as well as the rotational degrees of freedom is analyzed and they are found to be significant (up to 15% and 18%, respectively) for the molecules belonging to the first solvation shell.
Collapse
Affiliation(s)
- Josu Ortiz de Zárate
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Massimiliano Bartolomei
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Tomás González-Lezana
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - José Campos-Martínez
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | - Marta I Hernández
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas (IFF-CSIC), Serrano 123, 28006 Madrid, Spain.
| | | | - Javier Hernández-Rojas
- Departamento de Fsica and IUdEA, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain
| | - José Bretón
- Departamento de Fsica and IUdEA, Universidad de La Laguna, 38205, La Laguna, Tenerife, Spain
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Lorenz Kranabetter
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Paul Martini
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin Kuhn
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Felix Laimer
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Paul Scheier
- Universität Innsbruck, Institut für Ionenphyisk und Angewandte Physik, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Rastogi M, Leidlmair C, An der Lan L, Ortiz de Zárate J, Pérez de Tudela R, Bartolomei M, Hernández MI, Campos-Martínez J, González-Lezana T, Hernández-Rojas J, Bretón J, Scheier P, Gatchell M. Lithium ions solvated in helium. Phys Chem Chem Phys 2018; 20:25569-25576. [PMID: 30112553 PMCID: PMC6194493 DOI: 10.1039/c8cp04522d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 01/18/2023]
Abstract
We report on a combined experimental and theoretical study of Li+ ions solvated by up to 50 He atoms. The experiments show clear enhanced abundances associated with HenLi+ clusters where n = 2, 6, 8, and 14. We find that classical methods, e.g. basin-hopping (BH), give results that qualitatively agree with quantum mechanical methods such as path integral Monte Carlo, diffusion Monte Carlo and quantum free energy, regarding both energies and the solvation structures that are formed. The theory identifies particularly stable structures for n = 4, 6 and 8 which line up with some of the most abundant features in the experiments.
Collapse
Affiliation(s)
- Monisha Rastogi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25
,
A-6020 Innsbruck
, Austria
.
| | - Christian Leidlmair
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25
,
A-6020 Innsbruck
, Austria
.
| | - Lukas An der Lan
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25
,
A-6020 Innsbruck
, Austria
.
| | - Josu Ortiz de Zárate
- Instituto de Física Fundamental, IFF-CSIC
, Serrano 123
,
28006 Madrid
, Spain
.
| | | | | | - Marta I. Hernández
- Instituto de Física Fundamental, IFF-CSIC
, Serrano 123
,
28006 Madrid
, Spain
.
| | - José Campos-Martínez
- Instituto de Física Fundamental, IFF-CSIC
, Serrano 123
,
28006 Madrid
, Spain
.
| | | | | | - José Bretón
- Departamento de Física and IUdEA, Universidad de La Laguna
,
38205 Tenerife
, Spain
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25
,
A-6020 Innsbruck
, Austria
.
| | - Michael Gatchell
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25
,
A-6020 Innsbruck
, Austria
.
- Department of Physics, Stockholm University
,
106 91 Stockholm
, Sweden
| |
Collapse
|
15
|
Uhl F, Marx D. Helium Tagging of Protonated Methane in Messenger Spectroscopy: Does It Interfere with the Fluxionality of CH5
+
? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Felix Uhl
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
| |
Collapse
|
16
|
Uhl F, Marx D. Helium Tagging of Protonated Methane in Messenger Spectroscopy: Does It Interfere with the Fluxionality of CH5
+
? Angew Chem Int Ed Engl 2018; 57:14792-14795. [DOI: 10.1002/anie.201808531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Felix Uhl
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie; Ruhr-Universität Bochum; 44780 Bochum Germany
| |
Collapse
|
17
|
Calvo F, Yurtsever E. The quantum structure of anionic hydrogen clusters. J Chem Phys 2018; 148:102305. [DOI: 10.1063/1.4990612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- F. Calvo
- University Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| | - E. Yurtsever
- Koç University, Rumelifeneriyolu, Sariyer, Istanbul 34450, Turkey
| |
Collapse
|
18
|
Schran C, Uhl F, Behler J, Marx D. High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium. J Chem Phys 2018; 148:102310. [DOI: 10.1063/1.4996819] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Christoph Schran
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Felix Uhl
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jörg Behler
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Theoretische Chemie, Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
19
|
Liu MM, Wu MS, Han HL, Shi TY. Hyperspherical coupled channel calculations of energy and structure of (4)He-(4)He-Li(+) and its isotopic combinations. J Chem Phys 2017; 145:034304. [PMID: 27448884 DOI: 10.1063/1.4955445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ground state vibrational energy and spatial features of (4)He-(4)He-Li(+) and its triatomic isotopic complexes are studied using the slow variable discretization (SVD) method in the hyperspherical coordinates for the zero total angular momentum. Our results show that the dominant structure of the system is an isosceles triangle with the shorter side associated with the two Li(+)-He distances using the sum-of-potential approximation. Corrections caused by the induced dipole-induced dipole interactions on the He atoms are also investigated. The effects are seen to be small and have a minor influence on the binding energy and the structure of present system. The results are also compared with the full ab initio calculations including all the three-body interactions and information of three-body corrections is obtained.
Collapse
Affiliation(s)
- Min-Min Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Meng-Shan Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hui-Li Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ting-Yun Shi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
20
|
Calvo F, Yurtsever E, Birer Ö. Possible Formation of Metastable PAH Dimers upon Pickup by Helium Droplets. J Phys Chem A 2016; 120:1727-36. [DOI: 10.1021/acs.jpca.5b12394] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- F. Calvo
- Univ. Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - E. Yurtsever
- Koç University, Chemistry Department, Rumeli
Feneri Yolu, Sariyer 34450, Istanbul, Turkey
| | - Ö. Birer
- Koç University, Chemistry Department, Rumeli
Feneri Yolu, Sariyer 34450, Istanbul, Turkey
| |
Collapse
|
21
|
Chen L, Zhang J, Freund WM, Kong W. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets. J Chem Phys 2015; 143:044310. [PMID: 26233132 PMCID: PMC4522010 DOI: 10.1063/1.4927471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/15/2015] [Indexed: 11/14/2022] Open
Abstract
We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs(+) is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs(+)-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10(6) helium atoms when the source temperature is between 14 K and 17 K.
Collapse
Affiliation(s)
- Lei Chen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - William M Freund
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
22
|
Calvo F. Coating Polycyclic Aromatic Hydrocarbon Cations with Helium Clusters: Snowballs and Slush. J Phys Chem A 2014; 119:5959-70. [DOI: 10.1021/jp510799h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Florent Calvo
- University of Grenoble Alpes, LIPHY, F-38000 Grenoble, France and
- CNRS, LIPHY, F-38000 Grenoble, France
| |
Collapse
|
23
|
Bartl P, Leidlmair C, Denifl S, Scheier P, Echt O. On the size and structure of helium snowballs formed around charged atoms and clusters of noble gases. J Phys Chem A 2014; 118:8050-9. [PMID: 24128371 PMCID: PMC4166691 DOI: 10.1021/jp406540p] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/04/2013] [Indexed: 11/30/2022]
Abstract
Helium nanodroplets doped with argon, krypton, or xenon are ionized by electrons and analyzed in a mass spectrometer. HenNgx(+) ions containing up to seven noble gas (Ng) atoms and dozens of helium atoms are identified; the high resolution of the mass spectrometer combined with advanced data analysis make it possible to unscramble contributions from isotopologues that have the same nominal mass but different numbers of helium or Ng atoms, such as the magic He20(84)Kr2(+) and the isobaric, nonmagic He41(84)Kr(+). Anomalies in these ion abundances reveal particularly stable ions; several intriguing patterns emerge. Perhaps most astounding are the results for HenAr(+), which show evidence for three distinct, solid-like solvation shells containing 12, 20, and 12 helium atoms. This observation runs counter to the common notion that only the first solvation shell is solid-like but agrees with calculations by Galli et al. for HenNa(+) [J. Phys. Chem. A 2011, 115, 7300] that reveal three shells of icosahedral symmetry. HenArx(+) (2 ≤ x ≤ 7) ions appear to be especially stable if they contain a total of n + x = 19 atoms. A sequence of anomalies in the abundance distribution of HenKrx(+) suggests that rings of six helium atoms are inserted into the solvation shell each time a krypton atom is added to the ionic core, from Kr(+) to Kr3(+). Previously reported strong anomalies at He12Kr2(+) and He12Kr3(+) [Kim , J. H.; et al. J. Chem. Phys. 2006, 124, 214301] are attributed to a contamination. Only minor local anomalies appear in the distributions of HenXex(+) (x ≤ 3). The distributions of HenKr(+) and HenXe(+) show strikingly similar, broad features that are absent from the distribution of HenAr(+); differences are tentatively ascribed to the very different fragmentation dynamics of these ions.
Collapse
Affiliation(s)
- Peter Bartl
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Christian Leidlmair
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | - Olof Echt
- Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
- Department of Physics, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
24
|
Walewski Ł, Forbert H, Marx D. Solvation of molecules in superfluid helium enhances the “interaction induced localization” effect. J Chem Phys 2014; 140:144305. [DOI: 10.1063/1.4870595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Bartl P, Denifl S, Scheier P, Echt O. On the stability of cationic complexes of neon with helium--solving an experimental discrepancy. Phys Chem Chem Phys 2013; 15:16599-604. [PMID: 23958826 DOI: 10.1039/c3cp52550c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Helium nanodroplets are doped with neon and ionized by electrons. The size-dependence of the ion abundance of HenNex(+), identified in high-resolution mass spectra, is deduced for complexes containing up to seven neon atoms and dozens of helium atoms. Particularly stable ions are inferred from anomalies in the abundance distributions. Two pronounced anomalies at n = 11 and 13 in the HenNe(+) series confirm drift-tube data reported by Kojima et al. [T. M. Kojima et al., Z. Phys. D, 1992, 22, 645]. The discrepancy with previously published spectra of neon-doped helium droplets, which did not reveal any abundance anomalies [T. Ruchti et al., J. Chem. Phys., 1998, 109, 10679-10687; C. A. Brindle et al., J. Chem. Phys., 2005, 123, 064312], is most likely due to limited mass resolution, which precluded unambiguous analysis of contributions from different ions with identical nominal mass. However, calculated dissociation energies of HenNe(+) reported so far do not correlate with the present data, possibly because of challenges in correctly treating the linear, asymmetric [He-Ne-He](+) ionic core in HenNe(+). Anomalies identified in the distributions of HenNex(+) for x > 1, including prominent ones at He12Ne2(+) and He14Ne2(+), may help to better understand solvation of Ne(+) and Nex(+) in helium.
Collapse
Affiliation(s)
- Peter Bartl
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
26
|
An der Lan L, Bartl P, Leidlmair C, Jochum R, Denifl S, Echt O, Scheier P. Solvation of Na+, K+, and their dimers in helium. Chemistry 2012; 18:4411-8. [PMID: 22374575 PMCID: PMC3350777 DOI: 10.1002/chem.201103432] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Indexed: 11/10/2022]
Abstract
Helium atoms bind strongly to alkali cations which, when embedded in liquid helium, form so-called snowballs. Calculations suggest that helium atoms in the first solvation layer of these snowballs form rigid structures and that their number (n) is well defined, especially for the lighter alkalis. However, experiments have so far failed to accurately determine values of n. We present high-resolution mass spectra of Na+Hen, K+Hen, Na2+Hen and K2+Hen, formed by electron ionization of doped helium droplets; the data allow for a critical comparison with several theoretical studies. For sodium and potassium monomers the spectra indicate that the value of n is slightly smaller than calculated. Na2+Hen displays two distinct anomalies at n=2 and n=6, in agreement with theory; dissociation energies derived from experiment closely track theoretical values. K2+Hen distributions are fairly featureless, which also agrees with predictions.
Collapse
Affiliation(s)
- Lukas An der Lan
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
27
|
Mella M. Higher order diffusion Monte Carlo propagators for linear rotors as diffusion on a sphere: development and application to O2@He(n). J Chem Phys 2011; 135:114504. [PMID: 21950868 DOI: 10.1063/1.3639190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exploiting the theoretical treatment of particles diffusing on corrugated surfaces and the isomorphism between the "particle on a sphere" and a linear molecule rotation, a new diffusion kernel is introduced to increase the order of diffusion Monte Carlo (DMC) simulations involving linear rotors. Tests carried out on model systems indicate the superior performances of the new rotational diffusion kernel with respect to the simpler alternatives previously employed. In particular, it is evidenced a second order convergence toward exact results with respect to the time step of dynamical correlation functions, a fact that guarantees an identical order for the diffusion part of the DMC projector. The algorithmic advantages afforded by the latter are discussed, especially with respect to the "a posteriori" and "on the fly" extrapolation schemes. As a first application to the new algorithm, the structure and energetics of O(2)@He(n) (n = 1-40) clusters have been studied. This was done to investigate the possible cause of the quenching of the reaction between O(2) and Mg witnessed upon increasing the size of superfluid He droplets used as a solvent. With the simulations on O(2) indicating a strong localization in the cluster core, the behaviour as a function of n is ascribed to the extremely fluxional comportment of Mg@He(n), which dwells far from the droplet center, albeit being solvated, when n is large.
Collapse
Affiliation(s)
- Massimo Mella
- Dipartimento di Scienze Chimiche ed Ambientali, Università degli Studi dell'Insubria, via Lucini 3, 22100 Como, Italy.
| |
Collapse
|
28
|
Theisen M, Lackner F, Ernst WE. Cs atoms on helium nanodroplets and the immersion of Cs+ into the nanodroplet. J Chem Phys 2011; 135:074306. [PMID: 21861569 DOI: 10.1063/1.3624840] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Moritz Theisen
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
| | | | | |
Collapse
|
29
|
Galli DE, Ceperley DM, Reatto L. Path integral Monte Carlo study of 4He clusters doped with alkali and alkali-earth ions. J Phys Chem A 2011; 115:7300-9. [PMID: 21568337 DOI: 10.1021/jp200617a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Path integral Monte Carlo calculations of (4)He nanodroplets doped with alkali (Na(+), K(+) and Cs(+)) and alkali-earth (Be(+) and Mg(+)) ions are presented. We study the system at T = 1 K and between 14 and 128 (4)He atoms. For all studied systems, we find that the ion is well localized at the center of the droplet with the formation of a "snowball" of well-defined shells of localized (4)He atoms forming solid-like order in at least the first surrounding shell. The number of surrounding helium shells (two or three) and the number of atoms per shell and the degree of localization of the helium atoms are sensitive to the type of ion. The number of (4)He atoms in the first shell varies from 12 for Na(+) to 18 for Mg(+) and depends weakly on the size of the droplet. The study of the density profile and of the angular correlations shows that the local solid-like order is more pronounced for the alkali ions with Na(+) giving a very stable icosahedral order extending up to three shells.
Collapse
Affiliation(s)
- D E Galli
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, 20133 Milano, Italy.
| | | | | |
Collapse
|
30
|
Cargnoni F, Mella M. Solubility of Metal Atoms in Helium Droplets: Exploring the Effect of the Well Depth Using the Coinage Metals Cu and Ag. J Phys Chem A 2011; 115:7141-52. [PMID: 21425774 DOI: 10.1021/jp112408d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Massimo Mella
- School of Chemistry, Cardiff University, Main Building, CF10 3AT Cardiff, United Kingdom
- Dipartimento di Scienze Chimiche ed Ambientali, Università degli Studi dell’Insubria, via Lucini 3, 22100 Como (I), Italy
| |
Collapse
|
31
|
Marinetti F, Gianturco FA. Water as a solute: competitive shell formation in (He,Ne) mixed microdroplets. Phys Chem Chem Phys 2011; 13:2136-44. [PMID: 21116567 DOI: 10.1039/c0cp01342k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum Monte Carlo (QMC) stochastic calculations are carried out for a series of mixed rare gas clusters containing He and Ne which further include one H(2)O molecule as a single dopant. The ab initio potentials employed in the calculations, and the structural details provided by the QMC results, clearly reveal that the differences in the interaction forces which exist between the two solvent adatoms and the molecular solute are causing strongly competing environments that generate preferential shell structuring when surrounding the water molecule. The different behaviour of the two solvents, and the energetics of mixing, are analyzed in detail for small aggregates and for larger mixtures, revealing structural effects which originate from the different networking between solvent adatoms.
Collapse
Affiliation(s)
- F Marinetti
- Department of Chemistry and CNISM, University of Rome La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy
| | | |
Collapse
|
32
|
Grandinetti F. Review: gas-phase ion chemistry of the noble gases: recent advances and future perspectives. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:423-463. [PMID: 22173538 DOI: 10.1255/ejms.1151] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This review article surveys recent experimental and theoretical advances in the gas-phase ion chemistry of the noble gases. Covered issues include the interaction of the noble gases with metal and non-metal cations, the conceivable existence of covalent noble-gas anions, the occurrence of ion-molecule reactions involving singly-charged xenon cations, and the occurrence of bond-forming reactions involving doubly-charged cations. Research themes are also highlighted, that are expected to attract further interest in the future.
Collapse
Affiliation(s)
- Felice Grandinetti
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy.
| |
Collapse
|
33
|
Theisen M, Lackner F, Ernst WE. Forming Rb(+) snowballs in the center of He nanodroplets. Phys Chem Chem Phys 2010; 12:14861-3. [PMID: 20856976 DOI: 10.1039/c0cp01283a] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helium nanodroplets doped with rubidium atoms are ionized by applying a resonant two-step ionization scheme. Subsequent immersion of rubidium ions is observed in time-of-flight mass spectra. While alkali-metal atoms usually desorb from the surface of a helium nanodroplet upon electronic excitation, rubidium in its excited 5(2)P(1/2) state provides an exception from this rule (Auböck et al., Phys. Rev. Lett., 2008, 101, 35301). In our new experiment, Rb atoms are selectively excited either to the 5(2)P(1/2) or to the 5(2)P(3/2) state. From there they are ionized by a laser pulse. Time-of-flight mass spectra of the ionization products reveal that the intermediate population of the 5(2)P(1/2) state does not only make the ionization process Rb-monomer selective, but also gives rise to a very high yield of Rb(+)-He(N) complexes. Ions with masses of up to several thousand amu have been monitored, which can be explained by an immersion of the single Rb ion into the He nanodroplet, where most likely a snowball is formed in the center of the He nanodroplet. As the most stable position for an ion is in the center of a He nanodroplet, our results agree well with theory.
Collapse
Affiliation(s)
- Moritz Theisen
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria.
| | | | | |
Collapse
|
34
|
Marinetti F, Yurtsever E, Gianturco FA. HCHO in a Cold, Quantum Solvent: Size and Shape of Its “Bubbles” in 4He Droplets from Stochastic Simulations. J Phys Chem A 2010; 114:9725-32. [DOI: 10.1021/jp1018857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- F. Marinetti
- Department of Chemistry and CNISM, University of Rome La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy, and Department of Chemistry, Koç, University, Rumelifeneriyolu, 34450 Sariyer, Istanbul, Turkey
| | - E. Yurtsever
- Department of Chemistry and CNISM, University of Rome La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy, and Department of Chemistry, Koç, University, Rumelifeneriyolu, 34450 Sariyer, Istanbul, Turkey
| | - F. A. Gianturco
- Department of Chemistry and CNISM, University of Rome La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy, and Department of Chemistry, Koç, University, Rumelifeneriyolu, 34450 Sariyer, Istanbul, Turkey
| |
Collapse
|
35
|
Slavícek P, Lewerenz M. Snowballs, quantum solvation and coordination: lead ions inside small helium droplets. Phys Chem Chem Phys 2009; 12:1152-61. [PMID: 20094680 DOI: 10.1039/b918186e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ab initio calculations are used to construct an analytical many-body potential for Pb(2+)He(n) and Pb(+)He(n) clusters which accounts for non pairwise additive interactions. The potential surface reproduces the global minima for cluster sizes ranging from n = 1 to n = 16 obtained from explicit ab initio calculations and found in a previous search for ultrahigh coordination numbers. Ground state energies and structures obtained by accurate diffusion quantum Monte Carlo calculations are used to investigate if quantum effects qualitatively affect the formation of coordination shells. For Pb(2+) doped clusters a first solvation shell is closed at n = 12 and gradually softened by additional helium atoms which start to form a distinct second shell only at n = 16. Spin-orbit coupling profoundly influences the structure of Pb(+)He(n) clusters and causes a gradual structural evolution without pronounced solvation shells.
Collapse
Affiliation(s)
- Petr Slavícek
- Department of Physical Chemistry, Institute of Chemical Technology Prague, Technická 6, 166 28 Prague 6, Czech Republic
| | | |
Collapse
|
36
|
Müller S, Mudrich M, Stienkemeier F. Alkali-helium snowball complexes formed on helium nanodroplets. J Chem Phys 2009; 131:044319. [PMID: 19655879 DOI: 10.1063/1.3180819] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We systematically investigate the formation and stability of snowballs formed by femtosecond photoionization of small alkali clusters bound to helium nanodroplets. For all studied alkali species Ak = (Na,K,Rb,Cs) we observe the formation of snowballs Ak(+)He(N) when multiply doping the droplets. Fragmentation of clusters Ak(N) upon ionization appears to enhance snowball formation. In the case of Na and Cs we also detect snowballs Ak(2) (+)He(N) formed around Ak dimer ions. While the snowball progression for Na and K is limited to less than 11 helium atoms, the heavier atoms Rb and Cs feature wide distributions at least up to Ak(+)He(41). Characteristic steps in the mass spectra of Cs-doped helium droplets are found at positions consistent with predictions on the closure of the first shell of helium atoms around the Ak(+) ion based on variational Monte Carlo simulations.
Collapse
Affiliation(s)
- S Müller
- Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany
| | | | | |
Collapse
|
37
|
Ferreira da Silva F, Waldburger P, Jaksch S, Mauracher A, Denifl S, Echt O, Märk TD, Scheier P. On the size of ions solvated in helium clusters. Chemistry 2009; 15:7101-8. [PMID: 19533729 DOI: 10.1002/chem.200802554] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Helium nanodroplets are doped with SF(6), C(4)F(8), CCl(4), C(6)H(5)Br, CH(3)I, and I(2). Upon interaction with free electrons a variety of positively and negatively charged cluster ions X(+/-)He(n) are observed where X(+/-) = F(+/-), Cl(+/-), Br(+/-), I(+), I(2) (+), or CH(3)I(+). The yield of these ions versus cluster size n drops at characteristic sizes n(s) that range from n(s) = 10.2+/-0.6 for F(+) to n(s) = 22.2+/-0.2 for Br(-). n(s) values for halide anions are about 70% larger than for the corresponding cations. The steps in the ion yield suggest closure of the first solvation shell. We propose a simple classical model to estimate ionic radii from n(s). Assuming the helium density in the first solvation shell equals the helium bulk density one finds that radii of halide anions in helium are nearly twice as large as in alkali halide crystals, indicating the formation of an anion bubble due to the repulsive forces that derive from the exchange interaction. In spite of the simplicity of our model, anion radii derived from it agree within approximately 10% with values derived from the mobility of halide anions in superfluid bulk helium, and with values computed by quantum Monte Carlo methods for X(-)He(n) cluster anions.
Collapse
Affiliation(s)
- Filipe Ferreira da Silva
- Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität, Technikerstrasse 25, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Bovino S, Coccia E, Bodo E, Lopez-Durán D, Gianturco FA. Spin-driven structural effects in alkali doped (4)He clusters from quantum calculations. J Chem Phys 2009; 130:224903. [PMID: 19530785 DOI: 10.1063/1.3147466] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we carry out variational Monte Carlo and diffusion Monte Carlo (DMC) calculations for Li(2)((1)Sigma(g) (+))((4)He)(N) and Li(2)((3)Sigma(u) (+))((4)He)(N) with N up to 30 and discuss in detail the results of our computations. After a comparison between our DMC energies with the "exact" discrete variable representation values for the species with one (4)He, in order to test the quality of our computations at 0 K, we analyze the structural features of the whole range of doped clusters. We find that both species reside on the droplet surface, but that their orientation is spin driven, i.e., the singlet molecule is perpendicular and the triplet one is parallel to the droplet's surface. We have also computed quantum vibrational relaxation rates for both dimers in collision with a single (4)He and we find them to differ by orders of magnitude at the estimated surface temperature. Our results therefore confirm the findings from a great number of experimental data present in the current literature and provide one of the first attempts at giving an accurate, fully quantum picture for the nanoscopic properties of alkali dimers in (4)He clusters.
Collapse
Affiliation(s)
- S Bovino
- Department of Chemistry and CNISM, The University of Rome Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
39
|
Coccia E, Bodo E, Gianturco FA. Size-dependent solvation of p-H2 in H4e clusters: A quantum Monte Carlo analysis. J Chem Phys 2009; 130:094906. [DOI: 10.1063/1.3078705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
40
|
Coccia E, Marinetti F, Bodo E, Gianturco FA. Chemical solutions in a quantum solvent: anionic electrolytes in 4He nanodroplets. Chemphyschem 2008; 9:1323-30. [PMID: 18461589 DOI: 10.1002/cphc.200800132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Variational and diffusion Monte Carlo (VMC and DMC) calculations are presented for anionic electrolytes solvated in (4)He. The electrolytes have the general structure X(-)(He)(N), with X=F, Cl, Br and I, and N varying up to 40 (41 for I(-)). The overall interaction potential is obtained from accurate ab initio data for the two-body components and then using the sum-of-potentials approximation. Our computational scheme is a robust procedure, giving us accurate trial wavefunctions that can be used to perform high-quality DMC calculations. The results indicate very marked delocalization and permanence of the liquid-like quantum features of the solvent adatoms surrounding the anionic impurities. This finding stands in contrast to the more structured, solid-like behavior of the quantum solutions with alkali metal cations embedded in He nanodroplets. While other negatively charged species such as H(-) have shown an overall repulsive interaction with He, the present calculations clearly indicate that the halogen anions remain solvated within liquid-like solvent "bubbles" of species-dependent size.
Collapse
Affiliation(s)
- Emanuele Coccia
- Department of Chemistry and CNISM, University of Rome La Sapienza, Piazzale A. Moro, 00185 Rome, Italy.
| | | | | | | |
Collapse
|
41
|
Coccia E, Marinetti F, Bodo E, Gianturco FA. Anionic microsolvation in helium droplets: OH−(He)N structures from classical and quantum calculations. J Chem Phys 2008; 128:134511. [DOI: 10.1063/1.2842082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|