1
|
Colaizzi L, Ryabchuk S, Månsson EP, Saraswathula K, Wanie V, Trabattoni A, González-Vázquez J, Martín F, Calegari F. Few-femtosecond time-resolved study of the UV-induced dissociative dynamics of iodomethane. Nat Commun 2024; 15:9196. [PMID: 39455555 PMCID: PMC11511850 DOI: 10.1038/s41467-024-53183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Ultraviolet (UV) light that penetrates our atmosphere initiates various photochemical and photobiological processes. However, the absence of extremely short UV pulses has so far hindered our ability to fully capture the mechanisms at the very early stages of such processes. This is important because the concerted motion of electrons and nuclei in the first few femtoseconds often determines molecular reactivity. Here we investigate the dissociative dynamics of iodomethane following UV photoexcitation, utilizing mass spectrometry with a 5 fs time resolution. The short duration of the UV pump pulse (4.2 fs) allows the ultrafast dynamics to be investigated in the absence of any external field, from well before any significant vibrational displacement occurs until dissociation has taken place. The experimental results combined with semi-classical trajectory calculations provide the identification of the main dissociation channels and indirectly reveal the signature of a conical intersection in the time-dependent yield of the iodine ion. Furthermore, we demonstrate that the UV-induced breakage of the C-I bond can be prevented when the molecule is ionized by the probe pulse within 5 fs after the UV excitation, showcasing an ultrafast stabilization scheme against dissociation.
Collapse
Affiliation(s)
- Lorenzo Colaizzi
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Physics Department, Universität Hamburg, Hamburg, Germany.
| | - Sergey Ryabchuk
- Physics Department, Universität Hamburg, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| | - Erik P Månsson
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Krishna Saraswathula
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Vincent Wanie
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Andrea Trabattoni
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Institute of Quantum Optics, Leibniz Universität Hannover, Hannover, Germany
| | - Jesús González-Vázquez
- Departamento de Química, Universidad Autonoma de Madrid, Madrid, Spain.
- IADCHEM, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Fernando Martín
- Departamento de Química, Universidad Autonoma de Madrid, Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, Spain
| | - Francesca Calegari
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Physics Department, Universität Hamburg, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
2
|
Ding Y, Greenman L, Rolles D. Surface hopping molecular dynamics simulation of ultrafast methyl iodide photodissociation mapped by Coulomb explosion imaging. Phys Chem Chem Phys 2024; 26:22423-22432. [PMID: 39140357 DOI: 10.1039/d4cp01679c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
We present a highly efficient approach to directly and reliably simulate photodissociation followed by Coulomb explosion of methyl iodide. In order to achieve statistical reliability, more than 40 000 trajectories are calculated on accurate potential energy surfaces of both the neutral molecule and the doubly charged cation. Non-adiabatic effects during photodissociation are treated using a Landau-Zener surface hopping algorithm. The simulation is performed analogous to a recent pump-probe experiment using coincident ion momentum imaging [Ziaee et al., Phys. Chem. Chem. Phys., 2023, 25, 9999-10010]. At large pump-probe delays, the simulated delay-dependent kinetic energy release signals show overall good agreement with the experiment, with two major dissociation channels leading to I(2P3/2) and I*(2P1/2) products. At short pump-probe delays, the simulated kinetic energy release differs significantly from the values obtained by a purely Coulombic approximation or a one-dimensional description of the dicationic potential energy surfaces, and shows a clear bifurcation near 12 fs, owing to non-adiabatic transitions through a conical intersection. The proposed approach is particularly suitable and efficient in simulating processes that highly rely on statistics or for identifying rare reaction channels.
Collapse
Affiliation(s)
- Yijue Ding
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.
| | - Loren Greenman
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Sola IR, García-Vela A. Absolute control over the quantum yield of a photodissociation reaction mediated by nonadiabatic couplings. Chem Sci 2024:d4sc03235g. [PMID: 39220160 PMCID: PMC11350398 DOI: 10.1039/d4sc03235g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Control of molecular reaction dynamics with laser pulses has been developed in the last decades. Among the different magnitudes whose control has been actively pursued, the branching ratio between different product channels constitutes the clearest signature of quantum control. In polyatomic molecules, the dynamics in the excited state is quagmired by non-adiabatic couplings, which are not directly affected by the laser, making control over the branching ratio a very demanding challenge. Here we present a control scheme for the CH3I photodissociation in the A band, that modifies the quantum yield of the two fragmentation channels of the process. The scheme relies on the optimized preparation of an initial superposition of vibrational states in the ground potential, which further interfere upon the excitation with a broad pump pulse. This interference can suppress any of the channels, regardless of its dominance, and can be achieved over the whole spectral range of the A band. Furthermore, it can be accomplished without strong fields or direct intervention during the dynamics in the excited states: the whole control is predetermined from the outset. The present work thus opens the possibility of extensive and universal control of the channel branching ratio in complex photodissociation processes.
Collapse
Affiliation(s)
- Ignacio R Sola
- Departamento de Química Física, Universidad Complutense de Madrid (and Unidad Asociada I+D+I al CSIC) 28040 Madrid Spain
| | - Alberto García-Vela
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas Serrano 123 28006 Madrid Spain
| |
Collapse
|
4
|
Erickson M, Casañola-Martin G, Han Y, Rasulev B, Kilin D. Relationships between the Photodegradation Reaction Rate and Structural Properties of Polymer Systems. J Phys Chem B 2024; 128:2190-2200. [PMID: 38386478 DOI: 10.1021/acs.jpcb.3c06854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The development of reusable polymeric materials inspires an attempt to combine renewable biomass with upcycling to form a biorenewable closed system. It has been reported that 2,5-furandicarboxylic acid (FDCA) can be recovered for recycling when incorporated as monomers into photodegradable polymeric systems. Here, we develop a procedure to better understand the photodegradation reactions combining density functional theory (DFT) based time-dependent excited-state molecular dynamics (TDESMD) studies with machine learning-based quantitative structure-activity relationships (QSAR) methodology. This procedure allows for the unveiling of hidden structural features between active orbitals that affect the rate of photodegradation and is coined InfoTDESMD. Findings show that electrotopological features are influential factors affecting the rate of photodegradation in differing environments. Additionally, statistical validations and knowledge-based analysis of descriptors are conducted to further understand the structural features' influence on the rate of photodegradation of polymeric materials.
Collapse
Affiliation(s)
- Meade Erickson
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Gerardo Casañola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
5
|
Pathan MAK, Gupta A, Vaida ME. Understanding the Effect of an Amorphous Surface on the Ultrafast Dynamics of a Heterogeneous Photoinduced Reaction: CD 3I Photoinduced Reaction on Amorphous Cerium Oxide Films. J Phys Chem Lett 2022; 13:9759-9765. [PMID: 36226789 DOI: 10.1021/acs.jpclett.2c02294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, to understand how an amorphous surface influences the dynamics of surface photoinduced reactions, pump-probe spectroscopy in conjunction with mass spectrometry is employed to track the ultrafast evolution of intermediates and final products with time, mass, and energy resolution. As a model system, the photoinduced reaction of CD3I adsorbed on amorphous cerium oxide films is investigated. A fraction of the first intermediates produced on a freshly prepared surface is trapped to passivate the surface. After the A-band excitation, the minimum dissociation time of CD3I indicates that CD3I adsorption geometries with either CD3 or I facing the gas phase exist; however, the transient data suggest that most molecules are adsorbed with the I atom facing the surface. CD3 and I are consumed to form I2 and reform CD3I, which are produced at a steady rate only after the intermediates have lost the excess translational energy released from photodissociation.
Collapse
Affiliation(s)
- Md Afjal Khan Pathan
- Department of Physics, University of Central Florida, Orlando, Florida32816, United States
| | - Aakash Gupta
- Department of Physics, University of Central Florida, Orlando, Florida32816, United States
| | - Mihai E Vaida
- Department of Physics, University of Central Florida, Orlando, Florida32816, United States
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida32816, United States
| |
Collapse
|
6
|
Donovan RJ, Kirrander A, Lawley KP. Heavy Rydberg and ion-pair states: chemistry, spectroscopy and theory. INT REV PHYS CHEM 2022. [DOI: 10.1080/0144235x.2022.2077024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Robert J. Donovan
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Kirrander
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenneth P. Lawley
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Matthíasson K, Koumarianou G, Jiang MX, Glodic P, Samartzis PC, Kvaran Á. Formation of highly excited iodine atoms from multiphoton excitation of CH 3I. Phys Chem Chem Phys 2020; 22:4984-4992. [PMID: 32083618 DOI: 10.1039/c9cp06242d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass resolved REMPI spectra, as well as CH3+and I+ ion and photoelectron images, were recorded for two-photon resonant excitations of CH3I via s, p and d Rydberg states (CH3I**) in the excitation region of 55 700 to 70 000 cm-1. Photoelectron (PE) and ion kinetic energy release spectra (KERs) were derived from the images. The data revealed that after the two-photon resonant excitation, an additional photon is absorbed to form one or more superexcited state(s) (CH3I#), followed by branching into three pathways. The major one is the dissociation of CH3I# to form excited Rydberg states of iodine atoms (I**) along with CH3(X), a phenomenon not commonly observed in methyl halides. The second (minor) pathway involves autoionization of CH3I# towards CH3I+(X), which absorbs another photon to form CH3+ along with I/I* and the third one (minor) is CH3I# dissociation towards the ion pair, CH3+ + I-, prior to I- electron ejection. Furthermore, one-photon non-resonant dissociation of CH3I to form CH3(X) and I/I* prior to three-photon ionization of the fragments is also detected.
Collapse
|
8
|
Murillo-Sánchez ML, González-Vázquez J, Corrales ME, de Nalda R, Martínez-Núñez E, García-Vela A, Bañares L. Femtochemistry under scrutiny: Clocking state-resolved channels in the photodissociation of CH3I in the A-band. J Chem Phys 2020; 152:014304. [DOI: 10.1063/1.5134473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Marta L. Murillo-Sánchez
- Departamento de Química Física, Facultad de Ciencias Químicas (Unidad Asociada de I+D+i al Consejo Superior de Investigaciones Científicas), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jesús González-Vázquez
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Módulo 13, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María E. Corrales
- Departamento de Química Física, Facultad de Ciencias Químicas (Unidad Asociada de I+D+i al Consejo Superior de Investigaciones Científicas), Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rebeca de Nalda
- Instituto de Química Física Rocasolano, CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - Emilio Martínez-Núñez
- Departamento de Química Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - Luis Bañares
- Departamento de Química Física, Facultad de Ciencias Químicas (Unidad Asociada de I+D+i al Consejo Superior de Investigaciones Científicas), Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
9
|
Kashimura T, Yabushita S. Importance of the Parallel Component of the Transition Moments to the 1Π 1 (5A') and 3Π 1 (3A') Excited States of ICN in the Ã-Band Photodissociation. J Phys Chem A 2019; 123:4000-4013. [PMID: 30990688 DOI: 10.1021/acs.jpca.9b01127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ICN is one of the few simple triatomic molecules whose photodissociation mechanisms have been thoroughly investigated. Since it has a linear structure in the electronic ground state, the dissociation follows a photoexcitation at a linear or slightly bent structure. It is generally believed that the Ã-band consists of the dominant excitation to 3Π0+ (4A') with the transition dipole moment (TDM) parallel to the molecular axis ( z), a slightly weaker transition to 1Π1 (5A', 4A″), and a much weaker transition to 3Π1 (3A', 2A″), both of the latter two having perpendicular TDMs. In the present work, we have theoretically studied the geometry dependence of these TDMs and found a pronounced θ (bending angle) dependence in the parallel ( z) component of the TDMs to 1Π1 (5A') and 3Π1 (3A'), both of which should be zero at a linear geometry by symmetry and thus have been previously ignored. We estimated that the z component TDM to 1Π1 (5A') has a contribution of 15-20% to the total absorption cross-section at 249 nm at room temperature. Interestingly, the TDM to 3Π0+ (4A') does not exhibit such θ dependency and thus has only the z component. We compare the TDMs of ICN and CH3I molecules having similar excited states. The fact that all the TDMs to 3A', 4A', and 5A' have nonnegligible z components implies the importance of the coherent excitation contributions to various observables of CN fragment, such as the anisotropy parameter, the orientation parameter, and the rotational level distribution as well as the rotational fine structure level distribution.
Collapse
Affiliation(s)
- Tatsuhiko Kashimura
- Department of Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi, Kohoku-ku , Yokohama 223-8522 , Japan
| | - Satoshi Yabushita
- Department of Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi, Kohoku-ku , Yokohama 223-8522 , Japan
| |
Collapse
|
10
|
Serrano-Jiménez A, Bañares L, García-Vela A. Weak-field coherent control of photodissociation in polyatomic molecules. Phys Chem Chem Phys 2019; 21:7885-7893. [PMID: 30916089 DOI: 10.1039/c9cp01214a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A coherent control scheme is suggested to modify the output of photodissociation in a polyatomic system. The performance of the scheme is illustrated by applying it to the ultrafast photodissociation of CH3I in the A-band. The control scheme uses a pump laser weak field that combines two pulses of a few femtoseconds delayed in time. By varying the time delay between the pulses, the shape of the laser field spectral profile is modulated, which causes a change in the initial relative populations excited by the pump laser to the different electronic states involved in the photodissociation. Such a change in the relative populations produces different photodissociation outputs, which is the basis of the control achieved. The degree of control obtained over different photodissociation observables, like the branching ratio between the two dissociation channels of CH3I yielding I(2P3/2) and I*(2P1/2) and the fragment angular distributions associated with each channel, is investigated. These magnitudes are found to oscillate strongly with the time delay, with the branching ratio changing by factors between two and three. Substantial variations of the angular distributions also indicate that the scheme provides a high degree of control. Experimental application of the scheme to general polyatomic photodissociation processes should be straightforward.
Collapse
Affiliation(s)
- A Serrano-Jiménez
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain.
| | | | | |
Collapse
|
11
|
Warne EM, Downes-Ward B, Woodhouse J, Parkes MA, Bellshaw D, Springate E, Majchrzak P, Zhang Y, Karras G, Wyatt AS, Chapman RT, Kirrander A, Minns RS. Photodissociation dynamics of CH3I probed via multiphoton ionisation photoelectron spectroscopy. Phys Chem Chem Phys 2019; 21:11142-11149. [DOI: 10.1039/c9cp01477b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Femtosecond photoelectron spectroscopy measurements of dissociation CH3I show complex dynamics in the high energy region of absorption band A.
Collapse
|
12
|
Kamiya M, Taketsugu T. Ab initio surface hopping excited-state molecular dynamics approach on the basis of spin-orbit coupled states: An application to the A-band photodissociation of CH 3 I. J Comput Chem 2018; 40:456-463. [PMID: 30451310 DOI: 10.1002/jcc.25727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/06/2022]
Abstract
Ab initio molecular dynamics approach has been extended to multi-state dynamics on the basis of the spin-orbit coupled electronic states that are obtained through diagonalization of the spin-orbit coupling matrix with the multi-state second-order multireference perturbation theory energies in diagonal elements and the spin-orbit coupling terms at the state-averaged complete active space self-consistent field level in off-diagonal elements. Nonadiabatic transitions over the spin-orbit coupled states were taken into account explicitly by a surface hopping scheme with utilizing the nonadiabatic coupling terms calculated by numerical differentiation of the spin-orbit coupled wavefunctions and analytical nonadiabatic coupling terms. The present method was applied to the A-band photodissociation of methyl iodide, CH3 I + hv → CH3 + I (2 P3/2 )/I* (2 P1/2 ), for which a pioneering theoretical work was reported by Amatatsu, Yabushita, and Morokuma. The present results reproduced well the experimental branching ratio and energy distributions in the dissociative products. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Muneaki Kamiya
- Faculty of Regional Studies, Gifu University, Gifu, 501-1132, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
13
|
Pan C, Zhang Y, Lee JD, Kidwell NM. Imaging the Dynamics of CH2BrI Photodissociation in the Near Ultraviolet Region. J Phys Chem A 2018; 122:3728-3734. [PMID: 29600858 DOI: 10.1021/acs.jpca.7b12268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Changen Pan
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Yi Zhang
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Joseph D. Lee
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| | - Nathanael M. Kidwell
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23187-8795, United States
| |
Collapse
|
14
|
Wittenbrink N, Eisfeld W. Extension of the effective relativistic coupling by asymptotic representation (ERCAR) approach to multi-dimensional potential energy surfaces: 3D model for CH3I. J Chem Phys 2018. [DOI: 10.1063/1.5011757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nils Wittenbrink
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Wolfgang Eisfeld
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| |
Collapse
|
15
|
Marggi Poullain S, Chicharro DV, Navarro E, Rubio-Lago L, González-Vázquez J, Bañares L. Photodissociation dynamics of bromoiodomethane from the first and second absorption bands. A combined velocity map and slice imaging study. Phys Chem Chem Phys 2018; 20:3490-3503. [PMID: 29335697 DOI: 10.1039/c7cp07077b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion imaging is applied to disentangle the selective bond cleavage in the photodissociation of bromoiodomethane from the two first absorption bands.
Collapse
Affiliation(s)
- Sonia Marggi Poullain
- Departamento de Qumica Fsica I
- Facultad de Ciencias Qumicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - David V. Chicharro
- Departamento de Qumica Fsica I
- Facultad de Ciencias Qumicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Eduardo Navarro
- Departamento de Qumica Fsica I
- Facultad de Ciencias Qumicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Luis Rubio-Lago
- Departamento de Qumica Fsica I
- Facultad de Ciencias Qumicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| | - Jesús González-Vázquez
- Departamento de Qumica
- Módulo 13
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
| | - Luis Bañares
- Departamento de Qumica Fsica I
- Facultad de Ciencias Qumicas
- Universidad Complutense de Madrid
- 28040 Madrid
- Spain
| |
Collapse
|
16
|
Hayakawa S. Study of Ion Dynamics by Electron Transfer Dissociation: Alkali Metals as Targets. Mass Spectrom (Tokyo) 2017; 6:A0062. [PMID: 28966899 DOI: 10.5702/massspectrometry.a0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/14/2017] [Indexed: 11/23/2022] Open
Abstract
High energy collision processes for singly charged positive ions using an alkali metal target are confirmed, as a charge inversion mass spectrometry, to occur by electron transfers in successive collisions and the dissociation processes involve the formation of energy-selected neutral species from near-resonant neutralization with alkali metal targets. A doubly charged thermometer molecule was made to collide with alkali metal targets to give singly and doubly charged positive ions. The internal energy resulting from the electron transfer with the alkali metal target was very narrow and centered at a particular energy. This narrow internal energy distribution can be attributed to electron transfer by Landau-Zener potential crossing between the precursor ion and an alkali metal atom, and the coulombic repulsion between singly charged ions in the exit channel. A large cross section of more than 10-14 cm2 was estimated for high-energy electron transfer dissociation (HE-ETD). Doubly protonated phosphorylated peptides obtained by electrospray ionization were collided with Xe and Cs targets to give singly and doubly charged positive ions. Whereas doubly charged fragment ions resulting from CAD were dominant in the case of the Xe target, singly charged fragment ions resulting from ETD were dominant with the Cs target. HE-ETD using the Cs target provided all of the z-type ions by N-Cα bond cleavage without the loss of the phosphate groups. The results demonstrate that HE-ETD with an alkali metal target allowed the position of phosphorylation and the amino acid sequence of peptides with post translational modifications (PTM) to be determined.
Collapse
|
17
|
Chicharro DV, Marggi Poullain S, González-Vázquez J, Bañares L. Slice imaging of the UV photodissociation of CH 2BrCl from the maximum of the first absorption band. J Chem Phys 2017; 147:013945. [PMID: 28688417 DOI: 10.1063/1.4984789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photodissociation dynamics of bromochloromethane (CH2BrCl) have been investigated at the maximum of the first absorption band, at the excitation wavelengths 203 and 210 nm, using the slice imaging technique in combination with a probe detection of bromine-atom fragments, Br(2P3/2) and Br*(2P1/2), via (2 + 1) resonance enhanced multiphoton ionization. Translational energy distributions and angular distributions reported for both Br(2P3/2) and Br*(2P1/2) fragments show two contributions for the Br(2P3/2) channel and a single contribution for the Br*(2P1/2) channel. High level ab initio calculations have been performed in order to elucidate the dissociation mechanisms taking place. The computed absorption spectrum and potential energy curves indicate the main contribution of the populated 4A″, 5A', and 6A' excited states leading to a C-Br cleavage. Consistently with the results, the single contribution for the Br*(2P1/2) channel has been attributed to direct dissociation through the 6A' state as well as an indirect dissociation of the 5A' state requiring a 5A' → 4A' reverse non-adiabatic crossing. Similarly, a faster contribution for the Br(2P3/2) channel characterized by a similar energy partitioning and anisotropy than those for the Br*(2P1/2) channel is assigned to a direct dissociation through the 5A' state, while the slower component appears to be due to the direct dissociation on the 4A″ state.
Collapse
Affiliation(s)
- D V Chicharro
- Departmento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - S Marggi Poullain
- Departmento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J González-Vázquez
- Departamento de Química and Institute for Advanced Research in Chemistry, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - L Bañares
- Departmento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
18
|
Poullain SM, Chicharro DV, Rubio-Lago L, García-Vela A, Bañares L. A velocity-map imaging study of methyl non-resonant multiphoton ionization from the photodissociation of CH 3I in the A-band. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0205. [PMID: 28320907 PMCID: PMC5360903 DOI: 10.1098/rsta.2016.0205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Chemical reaction dynamics and, particularly, photodissociation in the gas phase are generally studied using pump-probe schemes where a first laser pulse induces the process under study and a second one detects the produced fragments. Providing an efficient detection of ro-vibrationally state-selected photofragments, the resonance enhanced multiphoton ionization (REMPI) technique is, without question, the most popular approach used for the probe step, while non-resonant multiphoton ionization (NRMPI) detection of the products is scarce. The main goal of this work is to test the sensitivity of the NRMPI technique to fragment vibrational distributions arising from molecular photodissociation processes. We revisit the well-known process of methyl iodide photodissociation in the A-band at around 280 nm, using the velocity-map imaging technique in conjunction with NRMPI of the methyl fragment. The detection wavelength, carefully selected to avoid any REMPI transition, was scanned between 325 and 335 nm seeking correlations between the different observables-the product vibrational, translational and angular distributions-and the excitation wavelength of the probe laser pulse. The experimental results have been discussed on the base of quantum dynamics calculations of photofragment vibrational populations carried out on available ab initio potential-energy surfaces using a four-dimensional model.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.
Collapse
Affiliation(s)
- Sonia Marggi Poullain
- Departamento de Química Física I (Unidad Asociada de I+D+I al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - David V Chicharro
- Departamento de Química Física I (Unidad Asociada de I+D+I al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Luis Rubio-Lago
- Departamento de Química Física I (Unidad Asociada de I+D+I al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Luis Bañares
- Departamento de Química Física I (Unidad Asociada de I+D+I al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
19
|
Bhattacherjee A, Attar AR, Leone SR. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study. J Chem Phys 2016; 144:124311. [DOI: 10.1063/1.4944930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Aditi Bhattacherjee
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Andrew R. Attar
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen R. Leone
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of California, Berkeley, California 94720, USA
| |
Collapse
|
20
|
Merrill WG, Crim FF, Case AS. Dynamics and yields for CHBrCl2photodissociation from 215–265 nm. Phys Chem Chem Phys 2016; 18:32999-33008. [PMID: 27886282 DOI: 10.1039/c6cp05061a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We characterize the energy partitioning and spin–orbit yields for CHBrCl2photodissociation. Resonance enhanced multiphoton ionization selectively detects the Br and Br* product channels. Time of flight mass spectrometry and velocity-map imaging permit measurement of relative quantum yields, as well as kinetic and internal energy distributions. We further interpret the energy partitioning through use of impulsive models.
Collapse
Affiliation(s)
- Wyatt G. Merrill
- Department of Chemistry
- University of Wisconsin – Madison
- Madison
- USA
| | - F. Fleming Crim
- Department of Chemistry
- University of Wisconsin – Madison
- Madison
- USA
| | - Amanda S. Case
- Department of Chemistry
- University of Wisconsin – Madison
- Madison
- USA
| |
Collapse
|
21
|
Xu H, Pratt ST. Photodissociation of Methyl Iodide via Selected Vibrational Levels of the B̃ ((2)E3/2)6s Rydberg State. J Phys Chem A 2015; 119:7548-58. [PMID: 25946320 DOI: 10.1021/acs.jpca.5b00860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have determined the I (2)P3/2 and (2)P1/2 branching fractions following the photodissociation of methyl iodide (CH3I) via a number of vibronic bands associated with the B̃ ((2)E3/2)6s Rydberg state at excitation wavelengths between 201.2 and 192.7 nm. Vacuum ultraviolet light at 118.2 nm was used to ionize both the product iodine atoms and the methyl radical cofragments, and velocity map ion imaging was used to determine the product translational energy distributions and angular distributions. The known relative photoionization cross sections for I (2)P3/2 and (2)P1/2 at 118.2 nm were used to determine the corresponding branching fractions. The results extend our earlier work at 193 nm by Xu et al. (J. Chem. Phys. 2013, 139, 214310), and complement the closely related work of González et al. (J. Chem. Phys. 2011, 135, 021102). We find that for most of the excited vibronic levels of the B̃ state studied, the I (2)P3/2 branching ratio is small, but nonzero, and that this channel is associated with internally excited CH3 radicals. The results are discussed in relation to the recent theoretical results of Alekseyev et al. (J. Chem. Phys. 2011, 134, 044303).
Collapse
Affiliation(s)
- Hong Xu
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - S T Pratt
- Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
22
|
Gardiner SH, Lipciuc ML, Karsili TNV, Ashfold MNR, Vallance C. Dynamics of the A-band ultraviolet photodissociation of methyl iodide and ethyl iodide via velocity-map imaging with ‘universal’ detection. Phys Chem Chem Phys 2015; 17:4096-106. [DOI: 10.1039/c4cp04654d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Universal ionization combined with velocity-map imaging allows a comprehensive investigation into the photodissociation dynamics of methyl iodide and ethyl iodide at a range of UV wavelengths within their A-bands.
Collapse
Affiliation(s)
- Sara H. Gardiner
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - M. Laura Lipciuc
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | | | | | - Claire Vallance
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| |
Collapse
|
23
|
Control of ultrafast molecular photodissociation by laser-field-induced potentials. Nat Chem 2014; 6:785-90. [DOI: 10.1038/nchem.2006] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/16/2014] [Indexed: 11/09/2022]
|
24
|
González MG, Rodríguez JD, Rubio-Lago L, Bañares L. Imaging the stereodynamics of methyl iodide photodissociation in the second absorption band: fragment polarization and the interplay between direct and predissociation. Phys Chem Chem Phys 2014; 16:26330-41. [DOI: 10.1039/c4cp03823a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stereodynamics imaging disentangles the interplay between direct and predissociation in the onset of the second absorption band of methyl iodide.
Collapse
Affiliation(s)
- Marta G. González
- Departamento de Química Física
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid, Spain
| | - Javier D. Rodríguez
- Departamento de Química Física
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid, Spain
| | - Luis Rubio-Lago
- Departamento de Química Física
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid, Spain
| | - Luis Bañares
- Departamento de Química Física
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- 28040 Madrid, Spain
| |
Collapse
|
25
|
Xu H, Pratt ST. A new look at the photodissociation of methyl iodide at 193 nm. J Chem Phys 2013; 139:214310. [DOI: 10.1063/1.4829747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Arbelo-González W, Bonnet L, García-Vela A. New insights into the semiclassical Wigner treatment of photodissociation dynamics. Phys Chem Chem Phys 2013; 15:9994-10011. [PMID: 23712618 DOI: 10.1039/c3cp50524c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The semiclassical Wigner treatment of Brown and Heller [J. Chem. Phys. 1981, 75, 186] is applied to direct triatomic (or triatomic-like polyatomic) photodissociations with the aim of accurately predicting final state distributions at relatively low computational cost, and having available a powerful interpretative tool. For the first time, the treatment takes rotational motions into account. The proposed formulation closely parallels the quantum description as far as possible. An approximate version is proposed, which is still accurate while numerically much more efficient. In addition to being weighted by usual vibrational Wigner distributions, final phase space states appear to be weighted by new rotational Wigner distributions. These densities have remarkable structures clearly showing that classical trajectories most contributing to rotational state j are those reaching the products with a rotational angular momentum close to [j(j + 1)](1/2) (in ℏ units). The previous methods involve running trajectories from the reagent molecule onto the products. The alternative backward approach [L. Bonnet, J. Chem. Phys., 2010, 133, 174108], in which trajectories are run in the reverse direction, is shown to strongly improve the numerical efficiency of the most rigorous method in addition to being state-selective, and thus, ideally suited to the description of state-correlated distributions measured in velocity imaging experiments. The results obtained by means of the previous methods are compared with rigorous quantum results in the case of Guo's triatomic-like model of methyl iodide photodissociation [J. Chem. Phys., 1992, 96, 6629] and close agreement is found. In comparison, the standard method of Goursaud et al. [J. Chem. Phys., 1976, 65, 5453] is only semi-quantitative.
Collapse
|
27
|
Wittenbrink N, Ndome H, Eisfeld W. Toward spin-orbit coupled diabatic potential energy surfaces for methyl iodide using effective relativistic coupling by asymptotic representation. J Phys Chem A 2013; 117:7408-20. [PMID: 23590710 DOI: 10.1021/jp401438x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The theoretical treatment of state-state interactions and the development of coupled multidimensional potential energy surfaces (PESs) is of fundamental importance for the theoretical investigation of nonadiabatic processes. Usually, only derivative or vibronic coupling is considered, but the presence of heavy atoms in a system can render spin-orbit (SO) coupling important as well. In the present study, we apply a new method recently developed by us (J. Chem. Phys. 2012, 136, 034103, and J. Chem. Phys. 2012, 137, 064101) to generate SO coupled diabatic PESs along the C-I dissociation coordinate for methyl iodide (CH3I). This is the first and mandatory step toward the development of fully coupled full-dimensional PESs to describe the multistate photodynamics of this benchmark system. The method we use here is based on the diabatic asymptotic representation of the molecular fine structure states and an effective relativistic coupling operator. It therefore is called effective relativistic coupling by asymptotic representation (ERCAR). This approach allows the efficient and accurate generation of fully coupled PESs including derivative and SO coupling based on high-level ab initio calculations. In this study we develop a specific ERCAR model for CH3I that so far accounts only for the C-I bond cleavage. Details of the diabatization and the accuracy of the results are investigated in comparison to reference ab initio calculations and experiments. The energies of the adiabatic fine structure states are reproduced in excellent agreement with ab initio SO-CI data. The model is also compared to available literature data, and its performance is evaluated critically. This shows that the new method is very promising for the construction of fully coupled full-dimensional PESs for CH3I to be used in future quantum dynamics studies.
Collapse
Affiliation(s)
- Nils Wittenbrink
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | |
Collapse
|
28
|
DeSimone AJ, Olanrewaju BO, Grieves GA, Orlando TM. Photodissociation of methyl iodide adsorbed on low-temperature amorphous ice surfaces. J Chem Phys 2013; 138:084703. [DOI: 10.1063/1.4790585] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Alekseyev AB, Liebermann HP, Buenker RJ. Potential energy surfaces for ground and excited electronic states of the CF3I molecule and their relevance to its A-band photodissociation. Phys Chem Chem Phys 2013; 15:6660-6. [DOI: 10.1039/c3cp44237c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Hayakawa S, Tsujinaka T, Fujihara A. Dissociation mechanisms of excited CH3X (X = Cl, Br, and I) formed via high-energy electron transfer using alkali metal targets. J Chem Phys 2012; 137:184308. [PMID: 23163372 DOI: 10.1063/1.4765103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-energy electron transfer dissociation (HE-ETD) on collisions with alkali metal targets (Cs, K, and Na) was investigated for CH(3)X(+) (X = Cl, Br, and I) ions by a charge inversion mass spectrometry. Relative peak intensities of the negative ions formed via HE-ETD strongly depend on the precursor ions and the target alkali metals. The dependency is explained by the exothermicities of the respective dissociation processes. Peak shapes of the negative ions, especially of the X(-) ions, which comprise a triangle and a trapezoid, also strongly depend on the precursor ions and the target alkali metals. The trapezoidal part of the I(-) peak observed with the Na target is more dominant and much broader than that with the Cs target. This dependence on the targets shows an inverse relation between the peak width and the available energy, which corresponds to the exothermicity assuming formation of fragment pair in their ground internal states. From a comparison of the kinetic energy release value calculated from the trapezoidal shape of I(-) with the available energy of the near-resonant level on the CH(3)I potential energy curve reported by ab initio calculations, the trapezoidal part is attributed to the dissociation to CH(3) + I((2)P(3/2)) via the repulsive (3)Q(1) state of CH(3)I, which is not dominant in the photo-dissociation of CH(3)I. The observation of trapezoid shape of the CH(2)I(-) peak with the Cs target indicates spontaneous dissociation via repulsive potential from the (3)R(2) Rydberg state, although the correlation between the (3)R(2) Rydberg state and relevant repulsive states has not been reported by any theoretical calculation.
Collapse
Affiliation(s)
- Shigeo Hayakawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | | | | |
Collapse
|
31
|
Campbell EK, Alekseyev AB, Balint-Kurti GG, Brouard M, Brown A, Buenker RJ, Johnsen AJ, Kokh DB, Lucas S, Winter B. The vibrationally mediated photodissociation of Cl2. J Chem Phys 2012; 137:124310. [PMID: 23020334 DOI: 10.1063/1.4754160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photodissociation of vibrationally excited Cl(2)(v = 1) has been investigated experimentally using the velocity mapped ion imaging technique. The experimental measurements presented here are compared with the results of time-dependent wavepacket calculations performed on a set of ab initio potential energy curves. The high level calculations allow prediction of all the dynamical information regarding the dissociation, including electronic polarization effects. Using a combination of theory and experiment it was found that there was negligible cooling of the vibrational degree of freedom of the parent molecule in the molecular beam. The results presented are compared with those following the photodissociation of Cl(2)(v = 0). Although the same electronic states are found to be important for Cl(2)(v = 1) as for Cl(2)(v = 0), significant differences were found regarding many of the observables. The overall level of agreement between theory and experiment was found to be reasonable and confirms previous assignments of the photodissociation mechanism.
Collapse
Affiliation(s)
- E K Campbell
- The Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Murdock D, Crow MB, Ritchie GAD, Ashfold MNR. UV photodissociation dynamics of iodobenzene: Effects of fluorination. J Chem Phys 2012; 136:124313. [DOI: 10.1063/1.3696892] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
García-Vela A, de Nalda R, Durá J, González-Vázquez J, Bañares L. A 4D wave packet study of the CH3I photodissociation in the A-band. Comparison with femtosecond velocity map imaging experiments. J Chem Phys 2012; 135:154306. [PMID: 22029312 DOI: 10.1063/1.3650718] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The time-resolved photodissociation dynamics of CH(3)I in the A-band has been studied theoretically using a wave packet model including four degrees of freedom, namely the C-I dissociation coordinate, the I-CH(3) bending mode, the CH(3) umbrella mode, and the C-H symmetric stretch mode. Clocking times and final product state distributions of the different dissociation (nonadiabatic) channels yielding spin-orbit ground and excited states of the I fragment and vibrationless and vibrationally excited (symmetric stretch ν(1) and umbrella ν(2) modes) CH(3) fragments have been obtained and compared with the results of femtosecond velocity map imaging experiments. The wave packet calculations are able to reproduce with very good agreement the experimental reaction times for the CH(3)(ν(1), ν(2))+I*((2)P(1/2)) dissociation channels with ν(1) = 0 and ν(2) = 0,1,2, and also for the channel CH(3)(ν(1) = 0, ν(2) = 0)+I((2)P(3/2)). However, the model fails to predict the experimental clocking times for the CH(3)(ν(1), ν(2))+I((2)P(3/2)) channels with (ν(1), ν(2)) = (0, 1), (0, 2), and (1, 0), that is, when the CH(3) fragment produced along with spin-orbit ground state I atoms is vibrationally excited. These results are similar to those previously obtained with a three-dimensional wave packet model, whose validity is discussed in the light of the results of the four-dimensional treatment. Possible explanations for the disagreements found between theory and experiment are also discussed.
Collapse
Affiliation(s)
- A García-Vela
- Instituto de Física Fundamental, CSIC, C/ Serrano, 123, 28006 Madrid, Spain.
| | | | | | | | | |
Collapse
|
34
|
Zaouris DK, Wenge AM, Murdock D, Oliver TAA, Richmond G, Ritchie GAD, Dixon RN, Ashfold MNR. Conformer specific dissociation dynamics of iodocyclohexane studied by velocity map imaging. J Chem Phys 2011; 135:094312. [PMID: 21913768 DOI: 10.1063/1.3628682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photodissociation dynamics of iodocyclohexane has been studied using velocity map imaging following excitation at many wavelengths within its A-band (230 ≤ λ ≤ 305 nm). This molecule exists in two conformations (axial and equatorial), and one aim of the present experiment was to explore the extent to which conformer-specific fragmentation dynamics could be distinguished. Ground (I) and spin-orbit excited (I∗) state iodine atom products were monitored by 2 + 1 resonance enhanced multiphoton ionization, and total kinetic energy release (TKER) spectra and angular distributions derived from analysis of images recorded at all wavelengths studied. TKER spectra obtained at the longer excitation wavelengths show two distinct components, which can be attributed to the two conformers and the different ways in which these partition the excess energy upon C-I bond fission. Companion calculations based on a simple impulsive model suggest that dissociation of the equatorial (axial) conformer preferentially yields vibrationally (rotationally) excited cyclohexyl co-fragments. Both I and I∗ products are detected at the longest parent absorption wavelength (λ ∼ 305 nm), and both sets of products show recoil anisotropy parameters, β > 1, implying prompt dissociation following excitation via a transition whose dipole moment is aligned parallel to the C-I bond. The quantum yield for forming I∗ products, Φ(I∗), has been determined by time resolved infrared diode laser absorption methods to be 0.14 ± 0.02 (at λ = 248 nm) and 0.22 ± 0.05 (at λ = 266 nm). Electronic structure calculations indicate that the bulk of the A-band absorption is associated with transition to the 4A(') state, and that the (majority) I atom products arise via non-adiabatic transfer from the 4A(') potential energy surface (PES) via conical intersection(s) with one or more PESs correlating with ground state products.
Collapse
Affiliation(s)
- D K Zaouris
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
35
|
González MG, Rodríguez JD, Rubio-Lago L, García-Vela A, Bañares L. Slice imaging and wave packet study of the photodissociation of CH3I in the blue edge of the A-band: evidence of reverse 3Q0 ← 1Q1 non-adiabatic dynamics. Phys Chem Chem Phys 2011; 13:16404-15. [PMID: 21847502 DOI: 10.1039/c1cp21378d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photodissociation of CH(3)I in the blue edge (217-230 nm) of the A-band has been studied using a combination of slice imaging and resonance enhanced multiphoton ionization (REMPI) detection of the CH(3) fragment in the vibrational ground state (ν = 0). The profiles of the CH(3) (ν = 0) kinetic energy distributions and the photofragment anisotropies are interpreted in terms of the contribution of the excited surfaces involved in the photodissociation process, as well as the probability of non-adiabatic curve crossing between the (3)Q(0) and (1)Q(1) states. In the studied region, unlike in the central part of the A-band where absorption to the (3)Q(0) state dominates, the I((2)P(J)), with J = 1/2, 3/2, in correlation with CH(3) (ν = 0) kinetic energy distributions show clearly two contributions of different anisotropy, signature of the competing adiabatic and non-adiabatic dynamics, whose ratio strongly depends on the photolysis wavelength. The experimental results are compared with multisurface wave packet calculations carried out using the available ab initio potential energy surfaces, transition moments, and non-adiabatic couplings, employing a reduced dimensionality model. A good qualitative agreement is found between experiment and theory and both show evidence of reverse (3)Q(0)←(1)Q(1) non-adiabatic dynamics at the bluest excitation wavelengths both in the fragment kinetic energy and angular distributions.
Collapse
Affiliation(s)
- M G González
- Departamento de Químicas Física, Facultad de Ciencias, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | | | | | | | | |
Collapse
|
36
|
Kim J, Kim TK, Ihee H. Density functional and spin-orbit ab initio study of CF3Br: molecular properties and electronic curve crossing. J Phys Chem A 2011; 115:1264-71. [PMID: 21271728 DOI: 10.1021/jp109456v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Quantum chemical calculations of CF(3)Br and the CF(3) radical are performed using density functional theory (DFT) and time-dependent DFT (TDDFT). Molecular structures, vibrational frequencies, dipole moment, bond dissociation energy, and vertical excitation energies of CF(3)Br are calculated and compared with available experimental results. The performance of six hybrid and five hybrid meta functionals in DFT and TDDFT calculations are evaluated. The ωB97X, B3PW91, and M05-2X functionals give very good results for molecular structures, vibrational frequencies, and vertical excitation energies, respectively. The ωB97X functional calculates well the dipole moment of CF(3)Br. B3LYP, one of the most widely used functionals, does not perform well for calculations of the C-Br bond length, bond dissociation energy, and vertical excitation energies. Potential energy curves of the low-lying excited states of CF(3)Br are obtained using the multiconfigurational spin-orbit ab initio method. The crossing point between 2A(1) and 3E states is located near the C-Br bond length of 2.45 Å. Comparison with CH(3)Br shows that fluorination does not alter the location of the crossing point. The relation between the calculated potential energy curves and recent experimental result is briefly discussed.
Collapse
Affiliation(s)
- Joonghan Kim
- Center for Time-Resolved Diffraction, Department of Chemistry, Graduate School of Nanoscience & Technology (WCU), KAIST, Daejeon 305-701, Republic of Korea
| | | | | |
Collapse
|
37
|
Evenhuis CR, Manthe U. Photodissociation of CH3I: A Full-Dimensional (9D) Quantum Dynamics Study. J Phys Chem A 2011; 115:5992-6001. [DOI: 10.1021/jp1103998] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian R. Evenhuis
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
38
|
Alekseyev AB, Liebermann HP, Buenker RJ. Ab initioconfiguration interaction study of theB- andC-band photodissociation of methyl iodide. J Chem Phys 2011; 134:044303. [DOI: 10.1063/1.3532926] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
39
|
Cheng M, Yu Z, Hu L, Yu D, Dong C, Du Y, Zhu Q. Vibrationally Resolved Photofragment Translational Spectroscopy of CH3I from 277 to 304 nm with Increasing Effect of the Hot Band. J Phys Chem A 2011; 115:1153-60. [DOI: 10.1021/jp106624q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Min Cheng
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zijun Yu
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lili Hu
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Dan Yu
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Changwu Dong
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yikui Du
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qihe Zhu
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
40
|
García-Vela A, Bañares L. Wave packet calculations on the effect of the femtosecond pulse width in the time-resolved photodissociation of CH3I in the A-band. Phys Chem Chem Phys 2011; 13:2228-36. [DOI: 10.1039/c0cp01508c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Rubio-Lago L, Rodríguez JD, García-Vela A, González MG, Amaral GA, Bañares L. A slice imaging and multisurface wave packet study of the photodissociation of CH3I at 304 nm. Phys Chem Chem Phys 2011; 13:8186-94. [DOI: 10.1039/c0cp02515a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Sage AG, Oliver TAA, Murdock D, Crow MB, Ritchie GAD, Harvey JN, Ashfold MNR. nσ* and πσ* excited states in aryl halide photochemistry: a comprehensive study of the UV photodissociation dynamics of iodobenzene. Phys Chem Chem Phys 2011; 13:8075-93. [DOI: 10.1039/c0cp02390f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Vaida ME, Tchitnga R, Bernhardt TM. Femtosecond time-resolved photodissociation dynamics of methyl halide molecules on ultrathin gold films. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2011; 2:618-27. [PMID: 22003467 PMCID: PMC3190631 DOI: 10.3762/bjnano.2.65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/16/2011] [Indexed: 05/12/2023]
Abstract
The photodissociation of small organic molecules, namely methyl iodide, methyl bromide, and methyl chloride, adsorbed on a metal surface was investigated in real time by means of femtosecond-laser pump-probe mass spectrometry. A weakly interacting gold surface was employed as substrate because the intact adsorption of the methyl halide molecules was desired prior to photoexcitation. The gold surface was prepared as an ultrathin film on Mo(100). The molecular adsorption behavior was characterized by coverage dependent temperature programmed desorption spectroscopy. Submonolayer preparations were irradiated with UV light of 266 nm wavelength and the subsequently emerging methyl fragments were probed by photoionization and mass spectrometric detection. A strong dependence of the excitation mechanism and the light-induced dynamics on the type of molecule was observed. Possible photoexcitation mechanisms included direct photoexcitation to the dissociative A-band of the methyl halide molecules as well as the attachment of surface-emitted electrons with transient negative ion formation and subsequent molecular fragmentation. Both reaction pathways were energetically possible in the case of methyl iodide, yet, no methyl fragments were observed. As a likely explanation, the rapid quenching of the excited states prior to fragmentation is proposed. This quenching mechanism could be prevented by modification of the gold surface through pre-adsorption of iodine atoms. In contrast, the A-band of methyl bromide was not energetically directly accessible through 266 nm excitation. Nevertheless, the one-photon-induced dissociation was observed in the case of methyl bromide. This was interpreted as being due to a considerable energetic down-shift of the electronic A-band states of methyl bromide by about 1.5 eV through interaction with the gold substrate. Finally, for methyl chloride no photofragmentation could be detected at all.
Collapse
Affiliation(s)
- Mihai E Vaida
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | - Robert Tchitnga
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | - Thorsten M Bernhardt
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| |
Collapse
|
44
|
Kim J, Ihee H, Lee YS. Spin–orbit ab initio study of two low-lying states of chloroiodomethane cation. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0849-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Vaida ME, Bernhardt TM. Surface pump-probe femtosecond-laser mass spectrometry: time-, mass-, and velocity-resolved detection of surface reaction dynamics. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:104103. [PMID: 21034102 DOI: 10.1063/1.3488098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A detailed account of the experimental methodology of surface pump-probe femtosecond-laser mass spectrometry is presented. This recently introduced technique enables the direct time-resolved investigation of surface reaction dynamics by monitoring the mass and the relative velocity of intermediates and products of a photoinduced surface reaction via multiphoton ionization. As a model system, the photodissociation dynamics of methyl iodide adsorbed at submonolayer coverage on magnesia ultrathin films is investigated. The magnesia surface preparation and characterization as well as the pulsed deposition of methyl iodide are described. The femtosecond-laser excitation (pump) and, in particular, the resonant multiphoton ionization surface detection (probe) schemas are discussed in detail. Results of pump-probe time-resolved methyl and iodine atom detection experiments are presented and the potential of this method for velocity-resolved photofragment analysis is evaluated.
Collapse
Affiliation(s)
- Mihai E Vaida
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | | |
Collapse
|
46
|
Vaida ME, Bernhardt TM. Surface-Aligned Femtochemistry: Real-Time Dynamics of Photoinduced I2Formation from CD3I on MgO(100). Chemphyschem 2010; 11:804-7. [DOI: 10.1002/cphc.200900920] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Rubio-Lago L, García-Vela A, Arregui A, Amaral GA, Bañares L. The photodissociation of CH3I in the red edge of the A-band: Comparison between slice imaging experiments and multisurface wave packet calculations. J Chem Phys 2009; 131:174309. [DOI: 10.1063/1.3257692] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
|
49
|
Shubert VA, Rednic M, Pratt ST. Photodissociation of i-C3H7I within the A band and anisotropy-based decomposition of the translational energy distributions. J Chem Phys 2009; 130:134306. [PMID: 19355731 DOI: 10.1063/1.3094321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The photodissociation of i-propyl iodide in the A absorption band was studied by using velocity map ion imaging following excitation between 304 and 253 nm. The translational energy distributions and translational energy dependence of the angular distributions of the I (2)P(3/2) and (2)P(1/2) photofragments were recorded as a function of the photodissociation wavelength. These distributions are used to decompose the i-C(3)H(7)+I (2)P(3/2) channel into contributions from two processes: Excitation to the (3)Q(0(+)) state followed by crossing onto the (1)Q(1) surface, and direct excitation to the (3)Q(1) surface followed by dissociation on that surface. As in the case of methyl iodide, the former process dominates; the latter process contributes only in the red wing of the absorption band, with its contribution peaking at approximately 287 nm with an absorption of approximately 1% of the band maximum. The data for the i-C(3)H(7)+I(*) (2)P(1/2) channel display a smooth behavior across the full energy range of the present study, and are consistent with direct excitation to the (3)Q(0(+)) surface followed by dissociation on that surface.
Collapse
|
50
|
García-Vela A, Bañares L. Wave packet study of the CD3I photodissociation dynamics in the A band. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|