1
|
Semasaka C, Dekiwadia C, Buckow R, Kasapis S. Modeling counterion partition in composite gels of BSA with gelatin following high pressure treatment. Food Chem 2019; 285:104-110. [PMID: 30797324 DOI: 10.1016/j.foodchem.2019.01.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/15/2022]
Abstract
We examine the morphology of hydrogels made of bovine serum albumin and gelatin following high pressure processing at 300 MPa for 15 min at 10 and 80 °C. Emphasis is on the distribution of added calcium counterions between the polymeric phases seen in changes in the structural properties of the composite gel. Protocol includes thermal and HPP treatments, dynamic oscillation rheology, ESEM, and modeling from the "synthetic polymer approach" to rationalize results. Pressurization at 10 °C produced continuous gelatin networks with dispersed BSA inclusions whereas pressurization at 80 °C yielded an inverse dispersion of BSA as the continuous phase supporting liquid gelatin inclusions. Lewis and Nielsen equations were adapted to predict the counterion distribution between the polymeric phases that profoundly affected the structural properties of the pressurized gels. The concept of counterion partition (pc) is introduced to the literature to follow the phase behavior of the composites in the presence of added calcium counterions.
Collapse
Affiliation(s)
- Carine Semasaka
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, Vic 3083, Australia
| | - Chaitali Dekiwadia
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, Vic 3083, Australia
| | - Roman Buckow
- CSIRO, Food and Nutrition, Werribee, VIC 3030, Australia
| | - Stefan Kasapis
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, Vic 3083, Australia.
| |
Collapse
|
2
|
Mathesan S, Tripathy M, Srivastava A, Ghosh P. Non-affine deformation of free volume during strain dependent diffusion in polymer thin films. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Modeling counterion partition in composite gels of BSA with gelatin following thermal treatment. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Mathesan S, Rath A, Ghosh P. Insights on Water Dynamics in the Hygromorphic Phenomenon of Biopolymer Films. J Phys Chem B 2017; 121:4273-4282. [DOI: 10.1021/acs.jpcb.7b00980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Santhosh Mathesan
- Nanomechanics and Nanomaterials Laboratory, Department of Applied Mechanics & Soft Matter Center, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Amrita Rath
- Nanomechanics and Nanomaterials Laboratory, Department of Applied Mechanics & Soft Matter Center, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Pijush Ghosh
- Nanomechanics and Nanomaterials Laboratory, Department of Applied Mechanics & Soft Matter Center, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
5
|
Singh AP, Gardas RL, Senapati S. How water manifests the structural regimes in ionic liquids. SOFT MATTER 2017; 13:2348-2361. [PMID: 28275768 DOI: 10.1039/c6sm02539k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ionic liquids (ILs) are being considered as greener alternatives to the conventional organic solvents. However, highly viscous nature of ILs often limits their applications. Hence studies on IL/water binary mixtures have received tremendous attention. These mixtures exhibit much lower viscosity, but almost similar density, compressibility and other properties as that of the neat ILs, up to certain water content. Hence, determining the IL-water ratio till which the solution behaves like IL and subsequently changes to a state of solute IL dissolved in continuous water phase is of paramount importance. Noting the very different and characteristic behaviours of neat ILs and pure water over a temperature range, herein, we measured the various thermophysical properties of the binary mixtures of tetramethylguanidinium benzoate/water and tetramethylguanidinium salicylate/water with water content varying from 20 wt% to 95 wt% for a temperature range of 298 K to 343 K. The results show that similar to neat ILs, the measured densities and compressibility of these mixtures display a linear change, and viscosity decreases rapidly as temperature is increased for water content up to 50 wt%. At higher water concentrations, the measured density and compressibility exhibit nonlinear behaviour and the decrease in viscosity with increased temperature is minute, mimicking the behaviour of bulk water. MD simulations were carried out to explain the experimental observations. Simulation results show a greater temperature-induced disintegration of IL ion-water interactions in dense systems, explaining the rapid decay of the properties with temperature. The results also exhibit the presence of a neat, IL-like, H-bond mediated expanded structure in concentrated solution versus a collapsed IL structure in dilute solution.
Collapse
Affiliation(s)
- Akhil Pratap Singh
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India. and Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ramesh L Gardas
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
6
|
Zhang X, Yi H, Bai H, Zhao Y, Min F, Song S. Correlation of montmorillonite exfoliation with interlayer cations in the preparation of two-dimensional nanosheets. RSC Adv 2017. [DOI: 10.1039/c7ra07816a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Varying exfoliation properties of Na– and Ca–MMTs were first investigated through AFM and molecular dynamics simulation.
Collapse
Affiliation(s)
- Xian Zhang
- School of Resources and Environmental Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Hao Yi
- School of Resources and Environmental Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Haoyu Bai
- School of Resources and Environmental Engineering
- Wuhan University of Technology
- Wuhan
- China
| | - Yunliang Zhao
- School of Resources and Environmental Engineering
- Wuhan University of Technology
- Wuhan
- China
- Hubei Key Laboratory of Mineral Resources Processing and Environment
| | - Fanfei Min
- School of Materials Science and Engineering
- Anhui University of Science and Technology
- Huainan
- China
| | - Shaoxian Song
- School of Resources and Environmental Engineering
- Wuhan University of Technology
- Wuhan
- China
- Hubei Key Laboratory of Mineral Resources Processing and Environment
| |
Collapse
|
7
|
Ghoshdastidar D, Senapati S. Ion-water wires in imidazolium-based ionic liquid/water solutions induce unique trends in density. SOFT MATTER 2016; 12:3032-3045. [PMID: 26911708 DOI: 10.1039/c6sm00117c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ionic liquid/water binary mixtures are rapidly gaining popularity as solvents for dissolution of cellulose, nucleobases, and other poorly water-soluble biomolecules. Hence, several studies have focused on measuring the thermophysical properties of these versatile mixtures. Among these, 1-ethyl-3-methylimidazolium ([emim]) cation-based ILs containing different anions exhibit unique density behaviours upon addition of water. While [emim][acetate]/water binary mixtures display an unusual rise in density with the addition of low-to-moderate amounts of water, those containing the [trifluoroacetate] ([Tfa]) anion display a sluggish decrease in density. The density of [emim][tetrafluoroborate] ([emim][BF4])/water mixtures, on the other hand, declines rapidly in close accordance with the experimental reports. Here, we unravel the structural basis underlying this unique density behavior of [emim]-based IL/water mixtures using all-atom molecular dynamics (MD) simulations. The results revealed that the distinct nature of anion-water hydrogen bonded networks in the three systems was a key in modulating the observed unique density behaviour. Vast expanses of uninterrupted anion-water-anion H-bonded stretches, denoted here as anion-water wires, induced significant structuring in [emim][Ac]/water mixtures that resulted in the density rise. Conversely, the presence of intermittent large water clusters disintegrated the anion-water wires in [emim][Tfa]/water and [emim][BF4]/water mixtures to cause a monotonic density decrease. The differential nanostructuring affected the dynamics of the solutions proportionately, with the H-bond making and breaking dynamics found to be greatly retarded in [emim][Ac]/water mixtures, while it exhibited a faster relaxation in the other two binary solutions.
Collapse
Affiliation(s)
- Debostuti Ghoshdastidar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institution of Technology Madras, Chennai 600 036, India.
| | - Sanjib Senapati
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institution of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
8
|
Bongiorno D, Ceraulo L, Indelicato S, Turco Liveri V, Indelicato S. Charged supramolecular assemblies of surfactant molecules in gas phase. MASS SPECTROMETRY REVIEWS 2016; 35:170-187. [PMID: 26113001 DOI: 10.1002/mas.21476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 06/04/2023]
Abstract
The aim of this review is to critically analyze recent literature on charged supramolecular assemblies formed by surfactant molecules in gas phase. Apart our specific interest on this research area, the stimuli to undertake the task arise from the widespread theoretical and applicative benefits emerging from a comprehensive view of this topic. In fact, the study of the formation, stability, and physicochemical peculiarities of non-covalent assemblies of surfactant molecules in gas phase allows to unveil interesting aspects such as the role of attractive, repulsive, and steric intermolecular interactions as driving force of supramolecular organization in absence of interactions with surrounding medium and the size and charge state dependence of aggregate structural and dynamical properties. Other interesting aspects worth to be investigated are joined to the ability of these assemblies to incorporate selected solubilizates molecules as well as to give rise to chemical reactions within a single organized structure. In particular, the incorporation of large molecules such as proteins has been of recent interest with the objective to protect their structure and functionality during the transition from solution to gas phase. Exciting fall-out of the study of gas phase surfactant aggregates includes mass and energy transport in the atmosphere, origin of life and simulation of supramolecular aggregation in the interstellar space. Moreover, supramolecular assemblies of amphiphilic molecules in gas phase could find remarkable applications as atmospheric cleaning agents, nanosolvents and nanoreactors for specialized chemical processes in confined space. Mass spectrometry techniques have proven to be particularly suitable to generate these assemblies and to furnish useful information on their size, size polydispersity, stability, and structural organization. On the other hand molecular dynamics simulations have been very useful to rationalize many experimental findings and to furnish a vivid picture of the structural and dynamic features of these aggregates. Thus, in this review, we will focus on the most important achievements gained in recent years by both these investigative tools.
Collapse
Affiliation(s)
- David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
- Centro Grandi Apparecchiature-UniNetLab, Università degli Studi di Palermo, Via Marini 14, I-90128, Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
- Centro Grandi Apparecchiature-UniNetLab, Università degli Studi di Palermo, Via Marini 14, I-90128, Palermo, Italy
| | - Sergio Indelicato
- Core Laboratory of Quality control and Chemical Risk, Policlinico P. Giaccone, Università di Palermo, via del Vespro 129, I-90127, Palermo, Italy
| | - Vincenzo Turco Liveri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
| | - Serena Indelicato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, I-90123, Palermo, Italy
- Centro Grandi Apparecchiature-UniNetLab, Università degli Studi di Palermo, Via Marini 14, I-90128, Palermo, Italy
| |
Collapse
|
9
|
Owrutsky JC, Pomfret MB, Barton DJ, Kidwell DA. Fourier transform infrared spectroscopy of azide and cyanate ion pairs in AOT reverse micelles. J Chem Phys 2008; 129:024513. [DOI: 10.1063/1.2952522] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|