Ruipérez F, Ugalde JM, Infante I. Electronic structure and bonding in heteronuclear dimers of V, Cr, Mo, and W: a CASSCF/CASPT2 study.
Inorg Chem 2011;
50:9219-29. [PMID:
21894920 DOI:
10.1021/ic200061h]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heteronuclear dimers like CrMo, CrW, MoW, VCr, VMo, VW, and their anions have been investigated by means of multiconfigurational quantum chemistry methods, using the complete active space self-consistent field followed by second-order perturbation theory, CASSCF/CASPT2. We explored in great detail several spectroscopic properties such as bond length, potential energy surfaces, dissociation energies, ionization potentials, electron affinities, low-lying excited states, vibrational frequencies, and dipole moments. All proposed dimers show ground states with a pronounced multireference character. The group VI heterodimers have a (1)Σ(+) ground state, while the mixed group V-group VI heterodimers show a (2)Δ ground state. Among all dimers, only VCr presents a potential energy profile with a deep minimum in the d-d region and a shelf-like potential in the s-s region. All the remaining dimers show only the short-range minimum. The largest effective bond order is obtained for the MoW, with a value of 5.2, that is, a weak sextuple bond. Most of the obtained results are valuable tools to drive future experimental investigations.
Collapse