1
|
El Hadki H, Gámez VG, Dalbouha S, Marakchi K, Kabbaj OK, Komiha N, Carvajal M, Senent Diez ML. Theoretical spectroscopic study of acetyl (CH 3CO), vinoxy (CH 2CHO), and 1-methylvinoxy (CH 3COCH 2) radicals. Barrierless formation processes of acetone in the gas phase. OPEN RESEARCH EUROPE 2022; 1:116. [PMID: 37645120 PMCID: PMC10445905 DOI: 10.12688/openreseurope.14073.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 08/31/2023]
Abstract
Background: Acetone is present in the earth´s atmosphere and extra-terrestrially. The knowledge of its chemical history in these environments represents a challenge with important implications for global tropospheric chemistry and astrochemistry. The results of a search for efficient barrierless pathways producing acetone from radicals in the gas phase are described in this paper. The spectroscopic properties of radicals needed for their experimental detection are provided. Methods: The reactants were acetone fragments of low stability and small species containing C, O and H atoms. Two exergonic bimolecular addition reactions involving the radicals CH 3, CH 3CO, and CH 3COCH 2, were found to be competitive according to the kinetic rates calculated at different temperatures. An extensive spectroscopic study of the radicals CH 3COCH 2 and CH 3CO, as well as the CH 2CHO isomer, was performed. Rovibrational parameters, anharmonic vibrational transitions, and excitations to the low-lying excited states are provided. For this purpose, RCCSD(T)-F12 and MRCI/CASSCF calculations were performed. In addition, since all the species presented non-rigid properties, a variational procedure of reduced dimensionality was employed to explore the far infrared region. Results: The internal rotation barriers were determined to be V 3=143.7 cm -1 (CH 3CO), V 2=3838.7 cm -1 (CH 2CHO) and V 3=161.4 cm -1 and V 2=2727.5 cm -1 (CH 3COCH 2).The splitting of the ground vibrational state due to the torsional barrier have been computed to be 2.997 cm -1, 0.0 cm -1, and 0.320 cm -1, for CH 3CO, CH 2CHO, and CH 3COCH 2, respectively. Conclusions: Two addition reactions, H+CH 3COCH 2 and CH 3+CH 3CO, could be considered barrierless formation processes of acetone after considering all the possible formation routes, starting from 58 selected reactants, which are fragments of the molecule. The spectroscopic study of the radicals involved in the formation processes present non-rigidity. The interconversion of their equilibrium geometries has important spectroscopic effects on CH 3CO and CH 3COCH 2, but is negligible for CH 2CHO.
Collapse
Affiliation(s)
- Hamza El Hadki
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, BP1014, Morocco
| | - Victoria Guadalupe Gámez
- Departamento de Química y Física Teóricas, IEM-CSIC, Unidad Asociada GIFMAN, CSIC-UHU, Madrid, 28006, Spain
| | - Samira Dalbouha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, BP1014, Morocco
- Equipe de recherche : Matériaux et Applications Environnementales, Laboratoire de Chimie Appliquée et Environnement, Département de chimie, Faculté des Sciences d’Agadir, Université Ibn Zohr, Agadir, B.P 8106, Morocco
| | - Khadija Marakchi
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, BP1014, Morocco
| | - Oum Keltoum Kabbaj
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, BP1014, Morocco
| | - Najia Komiha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, LS3MN2E/CERNE2D, Faculté des Sciences Rabat, Université Mohammed V, Rabat, BP1014, Morocco
| | - Miguel Carvajal
- Departamento de Ciencias Integradas, Centro de Estudios Avanzados en Física, Matemática y Computación; Unidad Asociada GIFMAN, CSIC-UHU, Universidad de Huelva, Huelva, 21071, Spain
- Instituto Universitario Carlos I de Física Teórica y Computacional, University of Granada, Granada, Spain
| | - Maria Luisa Senent Diez
- Departamento de Química y Física Teóricas, IEM-CSIC, Unidad Asociada GIFMAN, CSIC-UHU, Madrid, 28006, Spain
| |
Collapse
|
2
|
Sun G, Zheng X, Xu K, Song Y, Zhang J. Photodissociation Dynamics of Vinoxy Radical via the B̃ 2A″ State: The H + CH 2CO Product Channel. J Phys Chem A 2021; 125:8882-8890. [PMID: 34607427 DOI: 10.1021/acs.jpca.1c07099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photodissociation dynamics of the jet-cooled vinoxy radical (CH2CHO) via the B̃2A″ state was studied in the near-ultraviolet (near-UV) region of 308-328 nm using high-n Rydberg H atom time-of-flight (HRTOF) and resonance-enhanced multiphoton ionization (REMPI) techniques. The vinoxy radical beam was produced by 193 nm photolysis of ethyl vinyl ether followed by supersonic expansion. The H + CH2CO product channel was observed directly in the H atom TOF spectra. The H atom photofragment yield (PFY) spectra were obtained by integrating the H atom TOF spectra and measuring the H atom REMPI signals, and showed several vibronic bands of the B̃2A″ state. The translational energy distributions of the H + CH2CO products, P(ET)'s, were obtained at several vibronic transitions. The P(ET) distributions were broad, peaking at a low energy of ∼3500 cm-1. The product translational energy release was moderate; the average translational energy release in the maximum available energy, ⟨fT⟩, was in the range of 0.24-0.27. The product angular distributions in this wavelength region were slightly anisotropic, with the β parameter in the range of 0.10-0.24. The near-UV photodissociation mechanism of the H + CH2CO product channel of the vinoxy radical is consistent with unimolecular dissociation on the electronic ground state (X̃2A″) following internal conversion from the B̃2A″ state to the Ã2A' state and then to the X̃2A″ state (although unimolecular dissociation from the first excited Ã2A' may also contribute).
Collapse
Affiliation(s)
- Ge Sun
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Xianfeng Zheng
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Kesheng Xu
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Yu Song
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States
| | - Jingsong Zhang
- Department of Chemistry, University of California at Riverside, Riverside, California 92521, United States.,Air Pollution Research Center, University of California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
4
|
Lam CS, Adams JD, Butler LJ. The Onset of H + Ketene Products from Vinoxy Radicals Prepared by Photodissociation of Chloroacetaldehyde at 157 nm. J Phys Chem A 2016; 120:2521-36. [PMID: 27091706 DOI: 10.1021/acs.jpca.6b01256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the unimolecular dissociation of the vinoxy radical (CH2CHO) prepared with high internal energy imparted from the photodissociation of chloroacetaldehyde (CH2ClCHO) at 157 nm. Using a velocity map imaging apparatus, we measured the speed distribution of the recoiling chlorine atoms, Cl((2)P3/2) and Cl((2)P1/2), and derived from this the resulting distribution of kinetic energy, P(ET), imparted to the Cl + vinoxy fragments upon dissociation. Using conservation of energy, the distribution of kinetic energy was used to determine the total internal energy distribution in the radical. The P(ET) derived for the C-Cl bond fission presented in this work suggests the vinoxy radicals are mostly formed in the à state. We also took ion images at m/z = 42 and m/z = 15 to characterize the branching between the unimolecular dissociation channels of the vinoxy radical to H + ketene and methyl + CO products. Our results show a marked change in the branching ratio between the two channels from the previous study on the photodissociation of chloroacetaldehyde at 193 nm by Miller et al. (J. Chem. Phys., 2004, 121, 1830) in that the production of ketene is now favored over the production of methyl. To help analyze the data, we developed a model for the branching between the two channels that takes into account how the change in rotational energy en route to the products affects the vibrational energy available to surmount the barriers to the channels. The model predicts the portion of the C-Cl bond fission P(ET) that produces dissociative vinoxy radicals, then predicts the branching ratio between the H + ketene and CH3 + CO product channels at each ET. The model uses Rice-Ramsperger-Kassel-Marcus rate constants at the correct sums and densities of vibrational states while accounting for angular momentum conservation. We find that the predicted portion of the P(ET) that produces H + ketene products best fits the experimental portion (that we derive by taking advantage of conservation of momentum) if we use a barrier height for the H + ketene channel that is 4.0 ± 0.5 kcal/mol higher than the isomerization barrier en route to CH3 + CO products. Using the G4 computed isomerization barrier of 40.6 kcal/mol, this gives an experimentally determined barrier to the H + ketene channel of 44.6 kcal/mol. From these calculations, we also predict the branching ratio between the H + ketene and methyl + CO channels to be ∼2.1:1.
Collapse
Affiliation(s)
- Chow-Shing Lam
- The James Franck Institute and Department of Chemistry, The University of Chicago , Chicago, Illinois 60637 United States
| | - Jonathan D Adams
- The James Franck Institute and Department of Chemistry, The University of Chicago , Chicago, Illinois 60637 United States
| | - Laurie J Butler
- The James Franck Institute and Department of Chemistry, The University of Chicago , Chicago, Illinois 60637 United States
| |
Collapse
|