1
|
Liu Q, Tan S, Zou X, Liu P, Yu S. Wavelength-Dependent Dynamics of the O( 1D 2) Channel in the 1Δ u State Photodissociation of CO 2. J Phys Chem A 2024; 128:2989-2996. [PMID: 38572621 DOI: 10.1021/acs.jpca.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The wavelength-dependent dynamics of the O(1D2) channel, formed by photoexcitation of CO2 to the 1Δu state at 143.53-153.03 nm, is investigated by using the time-sliced velocity-mapped ion imaging method. The measured ionic peaks of the O(1D2) images are analyzed to determine the total kinetic energy release (TKER) spectra and image anisotropy parameters. The structures observed in the TKER spectra can be directly assigned to the ro-vibrational state distributions of the counter CO photofragments. Compared to those observed at 157 and 155 nm, the highly rotationally excited CO photofragments still obviously appear in v = 0 and 1, but the fraction of rotational excitations is significantly reduced. Conversely, the CO photofragments exhibit substantially higher vibrational excitations, implying that the nearly linear 21A' state also contributes to dissociation in addition to the bend configuration. The image anisotropy parameters display an extremely slow decreasing trend with an increase of the CO ro-vibrational state besides those for the highest ro-vibrationally excited CO photofragments. Nevertheless, the nonaxial recoil effect, suggested in previous photodissociation studies of CO2 and other triatomic molecular systems, is still appropriate to explain the observations of internal energy dependences of image anisotropy parameters.
Collapse
Affiliation(s)
- Qian Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Sha Tan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Xiaolan Zou
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Peng Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China
| |
Collapse
|
2
|
Liu Q, Li Z, Liu P, Yang X, Yu S. Resonance-state selective photodissociation dynamics of OCS + hv → CS(X1Σ+) + O(3Pj=2,1,0) via the 21Σ+ state. J Chem Phys 2023; 158:2888161. [PMID: 37139996 DOI: 10.1063/5.0150850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
Understanding vacuum ultraviolet photodissociation dynamics of Carbonyl sulfide (OCS) is of considerable importance in the study of atmospheric chemistry. Yet, photodissociation dynamics of the CS(X1Σ+) + O(3Pj=2,1,0) channels following excitation to the 21Σ+(ν1',1,0) state has not been clearly understood so far. Here, we investigate the O(3Pj=2,1,0) elimination dissociation processes in the resonance-state selective photodissociation of OCS between 147.24 and 156.48 nm by using the time-sliced velocity-mapped ion imaging technique. The total kinetic energy release spectra are found to exhibit highly structured profiles, indicative of the formation of a broad range of vibrational states of CS(1Σ+). The fitted CS(1Σ+) vibrational state distributions differ for the three 3Pj spin-orbit states, but a general trend of the inverted characteristics is observed. Additionally, the wavelength-dependent behaviors are also observed in the vibrational populations for CS(1Σ+, v). The CS(X1Σ+, v = 0) has a significantly strong population at several shorter wavelengths, and the most populated CS(X1Σ+, v) is gradually transferred to a higher vibrational state with the decrease in the photolysis wavelength. The measured overall β-values for the three 3Pj spin-orbit channels slightly increase and then abruptly decrease as the photolysis wavelength increases, while the vibrational dependences of β-values show an irregularly decreasing trend with increasing CS(1Σ+) vibrational excitation at all studied photolysis wavelengths. The comparison of the experimental observations for this titled channel and the S(3Pj) channel reveals that two different intersystem crossing mechanisms may be involved in the formation of the CS(X1Σ+) + O(3Pj=2,1,0) photoproducts via the 21Σ+ state.
Collapse
Affiliation(s)
- Qian Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| | - Zheng Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| | - Peng Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| | - Xueming Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, People's Republic of China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, People's Republic of China
| |
Collapse
|
3
|
Li Z, Liao H, Yang W, Yang X, Yu S. Vacuum ultraviolet photodissociation of OCS via the 2 1Σ + state: the S( 1D 2) elimination channel. Phys Chem Chem Phys 2022; 24:17870-17878. [PMID: 35851633 DOI: 10.1039/d2cp02044k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photodissociation of OCS is necessary to model the primary photochemical processes of OCS in the global cycling of sulfur and interstellar photochemistry. Here, by combining the time-sliced velocity-map ion imaging technique with the single vacuum ultraviolet photon ionization method, we have studied the CO(1Σ+, v) + S(1D2) photoproduct channel from the OCS photodissociation via the eight different vibrational resonances ( = 1-8) in the 21Σ+(, 1, 0) ← X1Σ+(0, 0, 0) band. From the measured S(1D2) images, the wavelength-dependent CO(1Σ+, v) vibrational state populations have been obtained in the wavelength range of 142.98-154.37 nm. The majority of the CO(1Σ+, v) photoproducts are shown to abruptly populate from low vibrational states to high vibrational states as the photolysis wavelength decreases from 152.38 to 148.92 nm. The anisotropy parameters (β) for the CO(1Σ+, v) + S(1D2) channel have also been determined from the images of the S(1D2) photoproducts. It is found that the vibrational state-specific β-values present a similar decreasing trend with increasing CO vibrational excitation for all the eight vibrational resonances of OCS*(21Σ+). These observations indicate that there is a possibility that more than one non-adiabatic dissociation pathways with different dissociation lifetimes are involved in the formation of CO(1Σ+) + S(1D2) photoproducts from the initial vibronic levels of the 21Σ+ state to the final dissociative state.
Collapse
Affiliation(s)
- Zheng Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China.
| | - Hong Liao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China.
| | - Wenshao Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China.
| | - Xueming Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China. .,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning Province, P. R. China.,Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, P. R. China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou, 311231, Zhejiang Province, P. R. China.
| |
Collapse
|
4
|
Sakkoula E, Sharma G, Wang X, North SW, Parker DH, Wei W. Dynamics and vector correlations of vacuum ultraviolet (VUV) photodissociation of CO 2 at 155 nm. Phys Chem Chem Phys 2022; 24:2592-2600. [PMID: 35029267 DOI: 10.1039/d1cp04628d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, the CO2 Vacuum Ultraviolet (VUV) photodissociation dynamics of the dominant O(1D) channel near 155 nm have been studied using Velocity Map Imaging (VMI) technique. Correlations among the transition dipole moment of the parent molecule, recoil velocity vector and rotational angular momentum vector of the photofragments were extracted from the anisotropic angular distributions of the images. The vector correlations extracted indicated a picture of photodissociation mainly via the excited 21A' (A) state. The transition dipole moment lies in the bending molecular plane, and the j⃑ is pointing perpendicular to the plane, while the μ-v vectors angle is between 41°-45°. In addition, a clear trend was observed. As the product CO rotational state j increases, the spatial anisotropy parameter (β ≡ 2β20(20)) decreases. This j-dependent attenuation of spatial anisotropy parameter can be explained mainly with the consideration of non-axial recoil effect. These results are in good agreement with both theoretical work and previous experimental work.
Collapse
Affiliation(s)
- Evangelia Sakkoula
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Gautam Sharma
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology, Hefei 230026, China
| | - Simon W North
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - David H Parker
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Wei Wei
- Department of Chemistry and Physics, Franklin College, Franklin, Indiana, USA.
| |
Collapse
|
5
|
Karamatskos ET, Yarlagadda S, Patchkovskii S, Vrakking MJJ, Welsch R, Küpper J, Rouzée A. Time-resolving the UV-initiated photodissociation dynamics of OCS. Faraday Discuss 2021; 228:413-431. [PMID: 33570531 DOI: 10.1039/d0fd00119h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present a time-resolved study of the photodissociation dynamics of OCS after UV-photoexcitation at λ = 237 nm. OCS molecules (X1Σ+) were primarily excited to the 11A'' and the 21A' Renner-Teller components of the 1Σ- and 1Δ states. Dissociation into CO and S fragments was observed through time-delayed strong-field ionisation and imaging of the kinetic energy of the resulting CO+ and S+ fragments by intense 790 nm laser pulses. Surprisingly, fast oscillations with a period of ∼100 fs were observed in the S+ channel of the UV dissociation. Based on wavepacket-dynamics simulations coupled with a simple electrostatic-interaction model, these oscillations do not correspond to the known highly-excited rotational motion of the leaving CO(X1Σ+, J ≫ 0) fragments, which has a timescale of ∼140 fs. Instead, we suggest to assign the observed oscillations to the excitation of vibrational wavepackets in the 23A'' or 21A'' states of the molecule that predissociate to form S(3PJ) photoproducts.
Collapse
Affiliation(s)
- Evangelos T Karamatskos
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | | | | | - Ralph Welsch
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany. and Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Arnaud Rouzée
- Max Born Institute, Max-Born-Straße 2a, 12489 Berlin, Germany.
| |
Collapse
|
6
|
Ling C, Liao H, Yuan D, Chen W, Tan Y, Li W, Yu S, Yang X, Wang X. Vacuum ultraviolet photodissociation dynamics of OCS + hv → CO( 1Σ +) + S( 1S 0) via the E and F Rydberg states. Phys Chem Chem Phys 2021; 23:5809-5816. [PMID: 33684186 DOI: 10.1039/d1cp00078k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The state-resolved photodissociation of the CO(1Σ+) + S(1S0) photoproduct channel, formed by vacuum ultraviolet photoexcitation of OCS to a progression of the symmetric stretching vibration (ν1') in the E and F states, has been investigated by using the time-sliced velocity map ion imaging technique. The total kinetic energy release spectra and the vibrational state specific anisotropy parameters (β) were obtained based on the raw images of S(1S0) photoproducts detected in the wavelength ranges of 134.40-140.98 nm, respectively. Except for vibrational band origins, the CO(1Σ+) photoproducts are found to have more significant populations at highly vibrationally excited states as the symmetric stretching vibrational excitation of the E and F states increases. Furthermore, the vibrational-state specific β values for the CO(1Σ+) + S(1S0) channel via the E and F states both show a sudden change from negative to positive in the vicinity of moderately vibronic levels of the E and F states. This anomalous phenomenon suggests that multiple excited states with different symmetries are involved in the photoexcitation process at relatively short photolysis wavelengths due to the strong vibronic couplings existing in the higher vibronic levels of the E and F states, and the formation of CO(1Σ+) + S(1S0) photoproducts may proceed by different nonadiabatic interactions from the prepared excited states to the lower dissociative state 1Σ+, with strong dependence of the initially symmetric stretching excitation in the Rydberg-type transitions.
Collapse
Affiliation(s)
- Caining Ling
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Hong Liao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Daofu Yuan
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China.
| | - Wentao Chen
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China.
| | - Yuxin Tan
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China.
| | - Wantao Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China.
| | - Xueming Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P. R. China. and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, P. R. China
| | - Xingan Wang
- Center for Advanced Chemical Physics and Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China.
| |
Collapse
|
7
|
Allum F, Mason R, Burt M, Slater CS, Squires E, Winter B, Brouard M. Post extraction inversion slice imaging for 3D velocity map imaging experiments. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1842531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Felix Allum
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Robert Mason
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Michael Burt
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Craig S. Slater
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Eleanor Squires
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Benjamin Winter
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Mark Brouard
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Xie T, Chen W, Yuan D, Yu S, Fu B, Yuan K, Yang X, Wang X. Photodissociation Dynamics of OCS near 150 nm: The S( 1S J=0) and S( 3P J=2,1,0) Product Channels. J Phys Chem A 2020; 124:6420-6426. [PMID: 32663027 DOI: 10.1021/acs.jpca.0c03823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vacuum ultraviolet photodissociation dynamics of carbonyl sulfide (OCS) was investigated by using the time-sliced velocity map ion imaging technique. Images of the S(1SJ=0) and S(3PJ=2,1,0) photofragments formed in the OCS photodissociation were acquired at six photolysis wavelengths from 147.24 to 156.48 nm. Vibrational states of the CO coproducts were partially resolved and identified in the images. Two main dissociation product channels, namely, the spin-allowed S(1SJ=0) + CO(X1Σg+) and spin-forbidden S(3PJ=2,1,0) + CO(X1Σg+), were observed. At each photolysis wavelength, the total kinetic energy releases, the relative population of different CO vibrational states, and the anisotropic parameters were derived. Variations of the relative population were noticed between different spin-orbit states of the S(3PJ) channel. It was found that the S(1SJ=0) + CO(X1Σg+) channel is dominated by the 1Σ+ ← 1Σ+ parallel transition of OCS. Interestingly, two types of anisotropic parameters are found at different photolysis wavelengths for the spin-forbidden S(3PJ=2,1,0) + CO(X1Σg+) product channel. The anisotropic parameters at 147.24 and 150.70 nm are significantly smaller than at the other four photolysis wavelengths. This phenomenon indicates two different nonadiabatic pathways are responsible for the spin-forbidden channels, which is consistent with the barrier structure in the exit channel of one of the triplet states.
Collapse
Affiliation(s)
- Ting Xie
- Hefei National Laboratory for Materials Science at the Microscale and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Wentao Chen
- Hefei National Laboratory for Materials Science at the Microscale and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Daofu Yuan
- Hefei National Laboratory for Materials Science at the Microscale and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang Province, P. R. China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, P. R. China
| | - Xingan Wang
- Hefei National Laboratory for Materials Science at the Microscale and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| |
Collapse
|
9
|
Chen W, Zhang L, Yuan D, Chang Y, Yu S, Wang S, Wang T, Jiang B, Yuan K, Yang X, Wang X. Observation of the Carbon Elimination Channel in Vacuum Ultraviolet Photodissociation of OCS. J Phys Chem Lett 2019; 10:4783-4787. [PMID: 31378065 DOI: 10.1021/acs.jpclett.9b01811] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The textbook mechanism for OCS photodissociation mainly involves the CO + S or CS + O product channel via a single bond fission. However, a third dissociation channel concerning the cleavage of both C-S and C-O bonds yielding SO + C products, though thermodynamically allowed, has never been verified experimentally to date. By using a tunable vacuum ultraviolet laser light and time-sliced velocity map ion imaging technique, we have clearly observed the SO(X3Σ-) + C(3PJ=0) products as the vacuum ultraviolet laser photon energy gradually exceeds its thermodynamic threshold. The corresponding SO(X3Σ-) coproducts are highly vibrationally excited and show varying angular distributions from isotropic to anisotropic as the excitation photon energy increases. Theoretical analysis suggests that a fast nonadiabatic pathway plays a dominant role in the formation of the anisotropic SO products. That isotropic products arise as the excitation photon energies approach the thermodynamic threshold can be reasonably explained by the "roaming mechanism".
Collapse
Affiliation(s)
- Wentao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Liang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Daofu Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yao Chang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengrui Yu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Siwen Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Tao Wang
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
10
|
Karamatskos ET, Goldsztejn G, Raabe S, Stammer P, Mullins T, Trabattoni A, Johansen RR, Stapelfeldt H, Trippel S, Vrakking MJJ, Küpper J, Rouzée A. Atomic-resolution imaging of carbonyl sulfide by laser-induced electron diffraction. J Chem Phys 2019; 150:244301. [PMID: 31255082 DOI: 10.1063/1.5093959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Measurements on the strong-field ionization of carbonyl sulfide molecules by short, intense, 2 µm wavelength laser pulses are presented from experiments where angle-resolved photoelectron distributions were recorded with a high-energy velocity map imaging spectrometer, designed to reach a maximum kinetic energy of 500 eV. The laser-field-free elastic-scattering cross section of carbonyl sulfide was extracted from the measurements and is found in good agreement with previous experiments, performed using conventional electron diffraction. By comparing our measurements to the results of calculations, based on the quantitative rescattering theory, the bond lengths and molecular geometry were extracted from the experimental differential cross sections to a precision better than ±5 pm and in agreement with the known values.
Collapse
Affiliation(s)
- Evangelos T Karamatskos
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Gildas Goldsztejn
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2a, 12489 Berlin, Germany
| | - Sebastian Raabe
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2a, 12489 Berlin, Germany
| | - Philipp Stammer
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2a, 12489 Berlin, Germany
| | - Terry Mullins
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Andrea Trabattoni
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Rasmus R Johansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Sebastian Trippel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marc J J Vrakking
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2a, 12489 Berlin, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Arnaud Rouzée
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Strasse 2a, 12489 Berlin, Germany
| |
Collapse
|
11
|
Wallace CJ, Gunthardt CE, McBane GC, North SW. Empirical assignment of absorbing electronic state contributions to OCS photodissociation product state populations from 214 to 248 nm. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Bai X, Liang H, Zhou Z, Hua Z, Jiang B, Zhao D, Chen Y. Photodissociation dynamics of OCS at ∼210 nm: The role of c(23A″) state. J Chem Phys 2017; 147:013930. [DOI: 10.1063/1.4982684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Xilin Bai
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Hao Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Zhengfang Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Zefeng Hua
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Bin Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Dongfeng Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Yang Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
13
|
Toulson BW, Murray C. Decomposing the First Absorption Band of OCS Using Photofragment Excitation Spectroscopy. J Phys Chem A 2016; 120:6745-52. [PMID: 27552402 DOI: 10.1021/acs.jpca.6b06060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photofragment excitation spectra of carbonyl sulfide (OCS) have been recorded from 212-260 nm by state-selectively probing either electronically excited S((1)D) or ground state S((3)P) photolysis products via 2 + 1 resonance-enhanced multiphoton ionization. Probing the major S((1)D) product results in a broad, unstructured action spectrum that reproduces the overall shape of the first absorption band. In contrast, spectra obtained probing S((3)P) products display prominent resonances superimposed on a broad continuum; the resonances correspond to the diffuse vibrational structure observed in the conventional absorption spectrum. The vibrational structure is assigned to four progressions, each dominated by the C-S stretch, ν1, following direct excitation to quasi-bound singlet and triplet states. The S((3)PJ) products are formed with a near-statistical population distribution over the J = 2, 1, and 0 spin-orbit levels across the wavelength range investigated. Although a minor contributor to the S atom yield near the peak of the absorption cross section, the relative yield of S((3)P) increases significantly at longer wavelengths. The experimental measurements validate recent theoretical work characterizing the electronic states responsible for the first absorption band by Schmidt and co-workers.
Collapse
Affiliation(s)
- Benjamin W Toulson
- Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| | - Craig Murray
- Department of Chemistry, University of California, Irvine , Irvine, California 92697, United States
| |
Collapse
|
14
|
Wei W, Wallace CJ, McBane GC, North SW. Photodissociation dynamics of OCS near 214 nm using ion imaging. J Chem Phys 2016; 145:024310. [PMID: 27421408 DOI: 10.1063/1.4955189] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The OCS photodissociation dynamics of the dominant S((1)D2) channel near 214 nm have been studied using velocity map ion imaging. We report a CO vibrational branching ratio of 0.79:0.21 for v = 0:v = 1, indicating substantially higher vibrational excitation than that observed at slightly longer wavelengths. The CO rotational distribution is bimodal for both v = 0 and v = 1, although the bimodality is less pronounced than at longer wavelengths. Vector correlations, including rotational alignment, indicate that absorption to both the 2(1)A' (A) and 1(1)A″ (B) states is important in the lower-j part of the rotational distribution, while only 2(1)A' state absorption contributes to the upper part; this conclusion is consistent with work at longer wavelengths. Classical trajectory calculations including surface hopping reproduce the measured CO rotational distributions and their dependence on wavelength well, though they underestimate the v = 1 population. The calculations indicate that the higher-j peak in the rotational distribution arises from molecules that begin on the 2(1)A' state but make nonadiabatic transitions to the 1(1)A' (X) state during the dissociation, while the lower-j peak arises from direct photodissociation on either the 2(1)A' or the 1(1)A″ states, as found in previous work.
Collapse
Affiliation(s)
- Wei Wei
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA
| | - Colin J Wallace
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA
| | - George C McBane
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, USA
| | - Simon W North
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA
| |
Collapse
|
15
|
Weeraratna C, Amarasinghe C, Fernando R, Tiwari V, Suits AG. Convenient (1 + 1) probe of S(1D2) and application to photodissociation of carbonyl sulfide at 216.9 nm. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.05.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Toulson BW, Alaniz JP, Grant Hill J, Murray C. Near-UV photodissociation dynamics of CH2I2. Phys Chem Chem Phys 2016; 18:11091-103. [DOI: 10.1039/c6cp01063f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The near-UV photodissociation dynamics of CH2I2has been investigated using a combination of velocity-map (slice) ion imaging andab initiocalculations characterizing the excited states.
Collapse
Affiliation(s)
| | | | - J. Grant Hill
- Department of Chemistry
- University of Sheffield
- Sheffield S3 7HF
- UK
| | - Craig Murray
- Department of Chemistry
- University of California, Irvine
- Irvine
- USA
| |
Collapse
|
17
|
Amini K, Blake S, Brouard M, Burt MB, Halford E, Lauer A, Slater CS, Lee JWL, Vallance C. Three-dimensional imaging of carbonyl sulfide and ethyl iodide photodissociation using the pixel imaging mass spectrometry camera. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:103113. [PMID: 26520946 DOI: 10.1063/1.4934544] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The Pixel Imaging Mass Spectrometry (PImMS) camera is used in proof-of-principle three-dimensional imaging experiments on the photodissociation of carbonyl sulfide and ethyl iodide at wavelengths around 230 nm and 245 nm, respectively. Coupling the PImMS camera with DC-sliced velocity-map imaging allows the complete three-dimensional Newton sphere of photofragment ions to be recorded on each laser pump-probe cycle with a timing precision of 12.5 ns, yielding velocity resolutions along the time-of-flight axis of around 6%-9% in the applications presented.
Collapse
Affiliation(s)
- K Amini
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - S Blake
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - M Brouard
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - M B Burt
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - E Halford
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - A Lauer
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - C S Slater
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - J W L Lee
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - C Vallance
- The Chemistry Research Laboratory, The Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
18
|
Schmidt JA, Olsen JMH. Photodissociation of OCS: Deviations between theory and experiment, and the importance of higher order correlation effects. J Chem Phys 2014; 141:184310. [DOI: 10.1063/1.4901426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Winter B, King SJ, Brouard M, Vallance C. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:023306. [PMID: 24593353 DOI: 10.1063/1.4866647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.
Collapse
Affiliation(s)
- B Winter
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, United Kingdom
| | - S J King
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, United Kingdom
| | - M Brouard
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Rd, Oxford OX1 3QZ, United Kingdom
| | - C Vallance
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
20
|
McBane GC, Schmidt JA, Johnson MS, Schinke R. Ultraviolet photodissociation of OCS: Product energy and angular distributions. J Chem Phys 2013; 138:094314. [DOI: 10.1063/1.4793275] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Campbell EK, Alekseyev AB, Balint-Kurti GG, Brouard M, Brown A, Buenker RJ, Johnsen AJ, Kokh DB, Lucas S, Winter B. The vibrationally mediated photodissociation of Cl2. J Chem Phys 2012; 137:124310. [PMID: 23020334 DOI: 10.1063/1.4754160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photodissociation of vibrationally excited Cl(2)(v = 1) has been investigated experimentally using the velocity mapped ion imaging technique. The experimental measurements presented here are compared with the results of time-dependent wavepacket calculations performed on a set of ab initio potential energy curves. The high level calculations allow prediction of all the dynamical information regarding the dissociation, including electronic polarization effects. Using a combination of theory and experiment it was found that there was negligible cooling of the vibrational degree of freedom of the parent molecule in the molecular beam. The results presented are compared with those following the photodissociation of Cl(2)(v = 0). Although the same electronic states are found to be important for Cl(2)(v = 1) as for Cl(2)(v = 0), significant differences were found regarding many of the observables. The overall level of agreement between theory and experiment was found to be reasonable and confirms previous assignments of the photodissociation mechanism.
Collapse
Affiliation(s)
- E K Campbell
- The Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schmidt JA, Johnson MS, McBane GC, Schinke R. The ultraviolet spectrum of OCS from first principles: Electronic transitions, vibrational structure and temperature dependence. J Chem Phys 2012; 137:054313. [DOI: 10.1063/1.4739756] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
23
|
Campbell EK, Alekseyev AB, Balint-Kurti GG, Brouard M, Brown A, Buenker RJ, Cireasa R, Gilchrist AJ, Johnsen AJ, Kokh DB, Lucas S, Ritchie GAD, Sharples TR, Winter B. Electronic polarization effects in the photodissociation of Cl2. J Chem Phys 2012; 136:164311. [PMID: 22559486 DOI: 10.1063/1.4704830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Velocity mapped ion imaging and resonantly enhanced multiphoton ionization time-of-flight methods have been used to investigate the photodissociation dynamics of the diatomic molecule Cl(2) following excitation to the first UV absorption band. The experimental results presented here are compared with high level time dependent wavepacket calculations performed on a set of ab initio potential energy curves [D. B. Kokh, A. B. Alekseyev, and R. J. Buenker, J. Chem. Phys. 120, 11549 (2004)]. The theoretical calculations provide the first determination of all dynamical information regarding the dissociation of a system of this complexity, including angular momentum polarization. Both low rank K = 1, 2 and high rank K = 3 electronic polarization are predicted to be important for dissociation into both asymptotic product channels and, in general, good agreement is found between the recent theory and the measurements made here, which include the first experimental determination of high rank K = 3 orientation.
Collapse
Affiliation(s)
- E K Campbell
- The Department of Chemistry, University of Oxford, The Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schmidt JA, Johnson MS, McBane GC, Schinke R. Communication: Multi-state analysis of the OCS ultraviolet absorption including vibrational structure. J Chem Phys 2012; 136:131101. [PMID: 22482532 DOI: 10.1063/1.3701699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- J A Schmidt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | |
Collapse
|
25
|
Brouard M, Campbell EK, Cireasa R, Johnsen AJ, Yuen WH. The ultraviolet photodissociation of CS2: The S(1D2) channel. J Chem Phys 2012; 136:044310. [DOI: 10.1063/1.3678007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
McBane GC, Schinke R. Product angular distributions in the ultraviolet photodissociation of N2O. J Chem Phys 2012; 136:044314. [DOI: 10.1063/1.3679171] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Bougas L, Rakitzis TP. Parent-molecule rotational depolarization of photofragment angular momentum distributions: diatomic and polyatomic molecules. Phys Chem Chem Phys 2011; 13:8526-30. [PMID: 21424021 DOI: 10.1039/c0cp02451a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We extend the A(q)(k) polarization-parameter model, which describes product angular momentum polarization from one photon photodissociation of polyatomic molecules in the molecular frame [J. Chem. Phys., 2010, 132, 224310], to the case of rotating parent molecules. The depolarization of the A(q)(k) is described by a set of rotational depolarization factors that depend on the angle of rotation of the molecular axis γ. We evaluate these rotational depolarization factors for the case of dissociating diatomic molecules and demonstrate that they are in complete agreement with the results of Kuznetsov and Vasyutinskii [J. Chem. Phys., 2005, 123, 034307] obtained from a fully quantum mechanical approach of the same problem, showing the effective equivalence of the two approaches. We further evaluate the set of rotational depolarization factors for the case of dissociating polyatomic molecules that have three (near) equal moments of inertia, thus extending these calculations to polyatomic systems. This ideal case yields insights for the dissociation of polyatomic molecules of various symmetries when we compare the long lifetime limit with the results obtained for the diatomic case. In particular, in the long lifetime limit the depolarization factors of the A(0)(k) (odd k), Re(A(1)(k)) (even k) and Im(A(1)(k)) (odd k) for diatomic molecules vanish; in contrast, for polyatomic molecules the depolarization factors for the A(0)(k) (odd k) reduce to a value of 1/3, whereas for the Re(A(1)(k)) (even k) and Im(A(1)(k)) (odd k) they reduce to 1/5.
Collapse
Affiliation(s)
- Lykourgos Bougas
- Department of Physics, University of Crete, 71003, Heraklion, Crete, Greece
| | | |
Collapse
|
28
|
Chang YP, Brouard M, Cireasa R, Perkins T, Seamons SA. Molecular photofragment orientation in the photodissociation of H2O2 at 193 nm and 248 nm. Phys Chem Chem Phys 2011; 13:8213-29. [DOI: 10.1039/c0cp02560g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Lipciuc ML, Rakitzis TP, Meerts WL, Groenenboom GC, Janssen MHM. Towards the complete experiment: measurement of S(1D2) polarization in correlation with single rotational states of CO(J) from the photodissociation of oriented OCS(v2 = 1|JlM = 111). Phys Chem Chem Phys 2011; 13:8549-59. [DOI: 10.1039/c0cp02671a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Rakitzis TP. Photofragment angular momentum distributions in the molecular frame. III. Coherent effects in the photodissociation of polyatomic molecules with circularly polarized light. J Chem Phys 2010; 133:204301. [PMID: 21133438 DOI: 10.1063/1.3506578] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We extend the a(q) (k)(s) polarization parameter model [T. P. Rakitzis and A. J. Alexander, J. Chem. Phys. 132, 224310 (2010)] to describe the components of the product angular momentum polarization that arise from the one-photon photodissociation of asymmetric top molecules with circularly polarized photolysis light, and provide a general equation for fitting experimental signals. We show that the only polarization parameters that depend on the helicity of the circularly polarized photolysis light are the A(0) (k) and Re[A(1) (k)] (with odd k) and the Im[A(1) (k)] (with even k); in addition, for the unique recoil destination (URD) approximation [for which the photofragment recoil v arises from a unique parent molecule geometry], we show that these parameters arise only as a result the interference between at least two dissociative electronic states. Furthermore, we show that in the breakdown of the URD approximation (for which the photofragment recoil v arises from a distribution of parent molecule geometries), these parameters can also arise for dissociation via a single dissociative electronic state. In both cases, the A(0) (k) and Re[A(1) (k)] parameters (with odd k) are proportional to cosΔφ, and the Im[A(1) (k)] parameters (with even k) are proportional to sinΔφ, where Δφ is the phase shift (or average phase shift) between the interfering paths so that Δφ can be determined directly from the A(q) (k), or from ratios of these A(q) (k) parameters. Therefore, the determination of these A(q) (k) parameters with circularly polarized photolysis light allows the unambiguous measurement of coherent effects in polyatomic-molecule photodissociation.
Collapse
Affiliation(s)
- T Peter Rakitzis
- Department of Physics, University of Crete, and Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion-Crete, Greece.
| |
Collapse
|
31
|
Bougas L, Sofikitis D, Everest MA, Alexander AJ, Rakitzis TP. (2+1) laser-induced fluorescence of spin-polarized hydrogen atoms. J Chem Phys 2010; 133:174308. [DOI: 10.1063/1.3503974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Rakitzis TP, Alexander AJ. Photofragment angular momentum distributions in the molecular frame. II. Single state dissociation, multiple state interference, and nonaxial recoil in photodissociation of polyatomic molecules. J Chem Phys 2010; 132:224310. [PMID: 20550400 DOI: 10.1063/1.3429744] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an a(q) (k)(s) polarization-parameter model to describe product angular momentum polarization from the one-photon photodissociation of polyatomic molecules in the molecular frame. We make the approximation that the final photofragment recoil direction is unique and described by the molecular frame polar coordinates (alpha,phi(i)), for which the axial recoil approximation is a special case (e.g., alpha=0). This approximation allows the separation of geometrical and dynamical factors, in particular, the expression of the experimental sensitivities to each of the a(q) (k)(s) in terms of the molecular frame polar angles (chi(i),phi(i)) of the transition dipole moment mu(i). This separation is applied to the linearly polarized photodissociation of polyatomic molecules (asymmetric, symmetric, and spherical top molecules are discussed) and to all dissociation mechanisms that satisfy our recoil approximation, including those with nonaxial recoil and multiple state interference, giving important insight into the geometrical properties of the photodissociation mechanism. For example, we demonstrate that the ratio of polarization parameters A(0) (k)(aniso)/A(0) (k)(iso)=beta (where beta is the spatial anisotropy parameter) is an indication that the dynamics can be explained by a single dissociative state. We also show that for asymmetric top photodissociation, the sensitivity to the a(1) (k)(s) parameters, which can arise either from single-surface or multiple-surface interference mechanisms, is nonzero only for components of the transition dipole moments within the v-d plane of the recoil frame.
Collapse
Affiliation(s)
- T Peter Rakitzis
- Department of Physics, University of Crete, Heraklion 71110, Crete, Greece.
| | | |
Collapse
|
33
|
Rakitzis TP, Janssen MH. Photofragment angular momentum distributions from oriented and aligned polyatomic molecules: beyond the axial recoil limit. Mol Phys 2010. [DOI: 10.1080/00268970903580158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Chichinin AI, Gericke KH, Kauczok S, Maul C. Imaging chemical reactions – 3D velocity mapping. INT REV PHYS CHEM 2009. [DOI: 10.1080/01442350903235045] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Sofikitis D, Rubio-Lago L, Bougas L, Alexander AJ, Rakitzis TP. Laser detection of spin-polarized hydrogen from HCl and HBr photodissociation: comparison of H- and halogen-atom polarizations. J Chem Phys 2009; 129:144302. [PMID: 19045142 DOI: 10.1063/1.2989803] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Thermal HCl and HBr molecules were photodissociated using circularly polarized 193 nm light, and the speed-dependent spin polarization of the H-atom photofragments was measured using polarized fluorescence at 121.6 nm. Both polarization components, described by the a(0)(1)(perpendicular) and Re[a(1)(1)(parallel, perpendicular)] parameters which arise from incoherent and coherent dissociation mechanisms, are measured. The values of the a(0)(1)(perpendicular) parameter, for both HCl and HBr photodissociation, are within experimental error of the predictions of both ab initio calculations and of previous measurements of the polarization of the halide cofragments. The experimental and ab initio theoretical values of the Re[a(1)(1)(parallel, perpendicular)] parameter show some disagreement, suggesting that further theoretical investigations are required. Overall, good agreement occurs despite the fact that the current experiments photodissociate molecules at 295 K, whereas previous measurements were conducted at rotational temperatures of about 15 K.
Collapse
Affiliation(s)
- Dimitris Sofikitis
- Department of Physics, University of Crete, 71003 Heraklion-Crete, Greece
| | | | | | | | | |
Collapse
|
36
|
Brouard M, Campbell EK, Johnsen AJ, Vallance C, Yuen WH, Nomerotski A. Velocity map imaging in time of flight mass spectrometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2008; 79:123115. [PMID: 19123553 DOI: 10.1063/1.3036978] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A new variation on time of flight mass spectrometry is presented, which uses a fast framing charge coupled device camera to velocity map image multiple product masses in a single acquisition. The technique is demonstrated on two photofragmentation processes, those of CS(2) and CH(3)S(2)CH(3) (dimethyldisulfide) at a photolysis wavelength of 193 nm. In both cases, several mass fragments are imaged simultaneously, and speed distributions and anisotropy parameters are extracted that are comparable to those obtained by imaging each fragment separately in conventional velocity map imaging studies.
Collapse
Affiliation(s)
- M Brouard
- The Department of Chemistry, The Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
37
|
Brouard M, Goman A, Horrocks SJ, Johnsen AJ, Quadrini F, Yuen WH. The photodissociation dynamics of ozone at 226 and 248nm: O(PJ3) atomic angular momentum polarization. J Chem Phys 2007; 127:144304. [DOI: 10.1063/1.2790890] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Brouard M, Quadrini F, Vallance C. The photodissociation dynamics of OCS at 248nm: The S(PJ3) atomic angular momentum polarization. J Chem Phys 2007; 127:084305. [PMID: 17764246 DOI: 10.1063/1.2757619] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dissociation of OCS has been investigated subsequent to excitation at 248 nm using velocity map ion imaging. Speed distributions, speed dependent translational anisotropy parameters, and the atomic angular momentum orientation and alignment are reported for the channel leading to S((3)P(J)). The speed distributions and beta parameters are in broad agreement with previous work and show behavior that is highly sensitive to the S-atom spin-orbit state. The data are shown to be consistent with the operation of at least two triplet production mechanisms. Interpretation of the angular momentum polarization data in terms of an adiabatic picture has been used to help identify a likely dissociation pathway for the majority of the S((3)P(J)) products, which strongly favors production of J=2 fragment atoms, correlated, it is proposed, with rotationally hot and vibrationally cold CO cofragments. For these fragments, optical excitation to the 2 (1)A(') surface is thought to constitute the first step, as for the singlet dissociation channel. This is followed by crossing, via a conical intersection, to the ground 1 (1)A(') state, from where intersystem crossing occurs, populating the 1 (3)A(')1 (3)A(")((3)Pi) states. The proposed mechanism provides a qualitative rationale for the observed spin-orbit populations, as well as the S((3)P(J)) quantum yield and angular momentum polarization. At least one other production mechanism, leading to a more statistical S-atom spin-orbit state distribution and rotationally cold, vibrationally hot CO cofragments, is thought to involve direct excitation to either the (3)Sigma(-) or (3)Pi states.
Collapse
Affiliation(s)
- M Brouard
- The Physical and Theoretical Chemistry Laboratory, The Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| | | | | |
Collapse
|