1
|
Tiani R, Pojman JA, Rongy L. Frontal polymerization in thin layers: Hydrodynamic effects and asymptotic dynamics. J Chem Phys 2025; 162:124903. [PMID: 40135613 DOI: 10.1063/5.0252137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Buoyancy-driven convection currents arise from temperature gradients in thermal frontal polymerization (FP) when the spatially localized polymerization reaction travels perpendicularly to the gravity field. We propose a theoretical study of the system dynamics under adiabatic conditions. The polymer and the reactant mixture are considered to be in the same liquid phase, but the viscosity can increase with the degree of polymerization. We find that the reaction zone propagates as a hot spot-like pattern with a broken symmetry in both the vertical and horizontal directions. Furthermore, the system can reach an asymptotic dynamics characterized by a front with a steady shape that propagates at constant speed with a steady vortex surrounding it. As the strength of the vortex is increased, either by decreasing the reactants' viscosity or by increasing the layer's thickness, we observe a transition between (i) a passive regime predicted by pure reaction-diffusion and hydrodynamic models and (ii) an active chemo-hydrodynamic regime where such models separately break down. In the active regime (ii), the front speed decreases as convection intensifies. By means of a scaling analysis, we explain how hydrodynamic currents might lower the velocity of a polymerization wave. As the viscosity of the polymer is enlarged, the flow is shifted ahead of the reaction zone and becomes more symmetrical with respect to the middle of the system, as recently observed in solid-liquid FP experiments [Y. Gao et al., Phys. Rev. Lett. 130, 028101 (2023) and Y. Gao et al., Int. J. Heat Mass Transf. 240, 126622 (2025)].
Collapse
Affiliation(s)
- R Tiani
- Nonlinear Physical Chemistry Unit, Université libre de Bruxelles (ULB), Faculté des Sciences, CP231, 1050 Brussels, Belgium
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - L Rongy
- Nonlinear Physical Chemistry Unit, Université libre de Bruxelles (ULB), Faculté des Sciences, CP231, 1050 Brussels, Belgium
| |
Collapse
|
2
|
Mukherjee S, Paul MR. Propagating fronts in fluids with solutal feedback. Phys Rev E 2020; 101:032214. [PMID: 32290010 DOI: 10.1103/physreve.101.032214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/28/2020] [Indexed: 11/07/2022]
Abstract
We numerically study the propagation of reacting fronts in a shallow and horizontal layer of fluid with solutal feedback and in the presence of a thermally driven flow field of counterrotating convection rolls. We solve the Boussinesq equations along with a reaction-convection-diffusion equation for the concentration field where the products of the nonlinear autocatalytic reaction are less dense than the reactants. For small values of the solutal Rayleigh number the characteristic fluid velocity scales linearly, and the front velocity and mixing length scale quadratically, with increasing solutal Rayleigh number. For small solutal Rayleigh numbers the front geometry is described by a curve that is nearly antisymmetric about the horizontal midplane. For large values of the solutal Rayleigh number the characteristic fluid velocity, the front velocity, and the mixing length exhibit square-root scaling and the front shape collapses onto an asymmetric self-similar curve. In the presence of counterrotating convection rolls, the mixing length decreases while the front velocity increases. The complexity of the front geometry increases when both the solutal and convective contributions are significant and the dynamics can exhibit chemical oscillations in time for certain parameter values. Last, we discuss the spatiotemporal features of the complex fronts that form over a range of solutal and thermal driving.
Collapse
Affiliation(s)
- S Mukherjee
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - M R Paul
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
3
|
Bába P, Rongy L, De Wit A, Hauser MJB, Tóth Á, Horváth D. Interaction of Pure Marangoni Convection with a Propagating Reactive Interface under Microgravity. PHYSICAL REVIEW LETTERS 2018; 121:024501. [PMID: 30085731 DOI: 10.1103/physrevlett.121.024501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/30/2018] [Indexed: 06/08/2023]
Abstract
A reactive interface in the form of an autocatalytic reaction front propagating in a bulk phase can generate a dynamic contact line upon reaching the free surface when a surface tension gradient builds up due to the change in chemical composition. Experiments in microgravity evidence the existence of a self-organized autonomous and localized coupling of a pure Marangoni flow along the surface with the reaction in the bulk. This dynamics results from the advancement of the contact line at the surface that acts as a moving source of the reaction, leading to the reorientation of the front propagation. Microgravity conditions allow one to isolate the transition regime during which the surface propagation is enhanced, whereas diffusion remains the main mode of transport in the bulk with negligible convective mixing, a regime typically concealed on Earth because of buoyancy-driven convection.
Collapse
Affiliation(s)
- P Bába
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vértanúk tere 1, Szeged H-6720, Hungary
| | - L Rongy
- Nonlinear Physical Chemistry Unit, Université libre de Bruxelles (ULB), Campus Plaine, C.P. 231, 1050 Brussels, Belgium
| | - A De Wit
- Nonlinear Physical Chemistry Unit, Université libre de Bruxelles (ULB), Campus Plaine, C.P. 231, 1050 Brussels, Belgium
| | - M J B Hauser
- Institute of Biometry and Medical Informatics, Otto von Guericke Universität Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany and Institute of Physics, Otto von Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Á Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vértanúk tere 1, Szeged H-6720, Hungary
| | - D Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
4
|
Tiani R, De Wit A, Rongy L. Surface tension- and buoyancy-driven flows across horizontally propagating chemical fronts. Adv Colloid Interface Sci 2018; 255:76-83. [PMID: 28826815 DOI: 10.1016/j.cis.2017.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 11/17/2022]
Abstract
Chemical reactions can interplay with hydrodynamic flows to generate various complex phenomena. Because of their relevance in many research areas, chemically-induced hydrodynamic flows have attracted increasing attention in the last decades. In this context, we propose to give a review of the past and recent theoretical and experimental works which have considered the interaction of such flows with chemical fronts, i.e. reactive interfaces, formed between miscible solutions. We focus in particular on the influence of surface tension- (Marangoni) and buoyancy-driven flows on the dynamics of chemical fronts propagating horizontally in the gravity field.
Collapse
Affiliation(s)
- R Tiani
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), CP231, Brussels 1050, Belgium.
| | - A De Wit
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), CP231, Brussels 1050, Belgium
| | - L Rongy
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), CP231, Brussels 1050, Belgium
| |
Collapse
|
5
|
Zhang Y, Tsitkov S, Hess H. Complex dynamics in a two-enzyme reaction network with substrate competition. Nat Catal 2018. [DOI: 10.1038/s41929-018-0053-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Liu Y, Ren X, Pan C, Zheng T, Yuan L, Zheng J, Gao Q. Chlorine dioxide-induced and Congo red-inhibited Marangoni effect on the chlorite-trithionate reaction front. CHAOS (WOODBURY, N.Y.) 2017; 27:104610. [PMID: 29092443 DOI: 10.1063/1.5001822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydrodynamic flows can exert multiple effects on an exothermal autocatalytic reaction, such as buoyancy and the Marangoni convection, which can change the structure and velocity of chemical waves. Here we report that in the chlorite-trithionate reaction, the production and consumption of chlorine dioxide can induce and inhibit Marangoni flow, respectively, leading to different chemo-hydrodynamic patterns. The horizontal propagation of a reaction-diffusion-convection front was investigated with the upper surface open to the air. The Marangoni convection, induced by gaseous chlorine dioxide on the surface, produced from chlorite disproportionation after the proton autocatalysis, has the same effect as the heat convection. When the Marangoni effect is removed by the reaction of chlorine dioxide with the Congo red (CR) indicator, an oscillatory propagation of the front tip is observed under suitable conditions. Replacing CR with bromophenol blue (BPB) distinctly enhanced the floating, resulting in multiple vortexes, owing to the coexistence between BPB and chlorine dioxide. Using the incompressible Navier-Stokes equations coupled with reaction-diffusion and heat conduction equations, we numerically obtain various experimental scenarios of front instability for the exothermic autocatalytic reaction coupled with buoyancy-driven convection and Marangoni convection.
Collapse
Affiliation(s)
- Yang Liu
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China
| | - Xingfeng Ren
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China
| | - Changwei Pan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China
| | - Ting Zheng
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China
| | - Ling Yuan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China
| | - Juhua Zheng
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China
| | - Qingyu Gao
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China
| |
Collapse
|
7
|
Sebestikova L, Simcik M, Ruzicka MC. Effects of the Starch Indicator on the Buoyantly Unstable Iodate-Arsenous Acid Reaction Front. ChemistrySelect 2017. [DOI: 10.1002/slct.201701276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lenka Sebestikova
- Institute of Hydrodynamics; Czech Academy of Sciences; Pod Patankou 30 / 5 16612 Prague 6 Czech Republic
| | - Mirek Simcik
- Department of Multiphase Reactors; Institution Institute of Chemical Process Fundamentals; Czech Academy of Sciences; Rozvojova 135 16502 Prague Czech Republic
| | - Marek C. Ruzicka
- Department of Multiphase Reactors; Institution Institute of Chemical Process Fundamentals; Czech Academy of Sciences; Rozvojova 135 16502 Prague Czech Republic
| |
Collapse
|
8
|
|
9
|
Abstract
Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=D(P)/D(S) and expansion coefficients β=β(P)/β(S) of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δ<1 and δ<β ), an unexpected phenomenon arises: the flow direction reverses with time and distance from the pump. Our experimental results are in qualitative agreement with the model and show that both the speed and direction of fluid pumping (i) depend on the enzyme activity and coverage, (ii) vary with the distance from the pump, and (iii) evolve with time. These findings permit the rational design of enzymatic pumps that accurately control the direction and speed of fluid flow without external power sources, enabling effective, self-powered fluidic devices.
Collapse
|
10
|
Valkai L, Horváth AK. Compatible Mechanism for a Simultaneous Description of the Roebuck, Dushman, and Iodate–Arsenous Acid Reactions in an Acidic Medium. Inorg Chem 2016; 55:1595-603. [DOI: 10.1021/acs.inorgchem.5b02513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- László Valkai
- Department of Inorganic Chemistry, University of Pécs, Ifjúság
útja 6, H-7624 Pécs, Hungary
| | - Attila K. Horváth
- Department of Inorganic Chemistry, University of Pécs, Ifjúság
útja 6, H-7624 Pécs, Hungary
| |
Collapse
|
11
|
Csekő G, Valkai L, Horváth AK. A Simple Kinetic Model for Description of the Iodate–Arsenous Acid Reaction: Experimental Evidence of the Direct Reaction. J Phys Chem A 2015; 119:11053-8. [DOI: 10.1021/acs.jpca.5b08011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- György Csekő
- Department of Inorganic Chemistry, University of Pécs, Ifjúság útja 6., H-7624 Pécs, Hungary
| | - László Valkai
- Department of Inorganic Chemistry, University of Pécs, Ifjúság útja 6., H-7624 Pécs, Hungary
| | - Attila K. Horváth
- Department of Inorganic Chemistry, University of Pécs, Ifjúság útja 6., H-7624 Pécs, Hungary
| |
Collapse
|
12
|
Schuszter G, Pótári G, Horváth D, Tóth Á. Three-dimensional convection-driven fronts of the exothermic chlorite-tetrathionate reaction. CHAOS (WOODBURY, N.Y.) 2015; 25:064501. [PMID: 26117124 DOI: 10.1063/1.4921172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Horizontally propagating autocatalytic reaction fronts in fluids are often accompanied by convective motion in the presence of gravity. We experimentally and numerically investigate the stable complex three-dimensional pattern arising in the exothermic chlorite-tetrathionate reaction as a result of the antagonistic thermal and solutal contribution to the density change. By particle image velocimetry measurements, we construct the flow field that stabilizes the front structure. The calculations applied for incompressible fluids using the empirical rate-law model reproduce the experimental observations with good agreement.
Collapse
Affiliation(s)
- Gábor Schuszter
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vértanúk tere 1., Szeged H-6720, Hungary
| | - Gábor Pótári
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vértanúk tere 1., Szeged H-6720, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vértanúk tere 1., Szeged H-6720, Hungary
| |
Collapse
|
13
|
Horváth D, Budroni MA, Bába P, Rongy L, De Wit A, Eckert K, Hauser MJB, Tóth Á. Convective dynamics of traveling autocatalytic fronts in a modulated gravity field. Phys Chem Chem Phys 2014; 16:26279-87. [DOI: 10.1039/c4cp02480j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modulation of the gravity field, spanning from the hyper-gravity to micro-gravity of a parabolic flight, reveals the contribution of Marangoni flow in a propagating reaction front with an open air–liquid interface.
Collapse
Affiliation(s)
- Dezső Horváth
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged, Hungary
- Department of Applied and Environmental Chemistry
- University of Szeged
| | - Marcello A. Budroni
- Nonlinear Physical Chemistry Unit
- CP 231
- Faculté des Sciences
- Université libre de Bruxelles (ULB)
- 1050 Brussels, Belgium
| | - Péter Bába
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged, Hungary
| | - Laurence Rongy
- Nonlinear Physical Chemistry Unit
- CP 231
- Faculté des Sciences
- Université libre de Bruxelles (ULB)
- 1050 Brussels, Belgium
| | - Anne De Wit
- Nonlinear Physical Chemistry Unit
- CP 231
- Faculté des Sciences
- Université libre de Bruxelles (ULB)
- 1050 Brussels, Belgium
| | - Kerstin Eckert
- Institute of Fluid Mechanics
- Technische Universität Dresden
- D-01062 Dresden, Germany
| | - Marcus J. B. Hauser
- Biophysics Group
- Otto-von-Guericke-Universität Magdeburg
- D-39106 Magdeburg, Germany
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science
- University of Szeged
- Szeged, Hungary
| |
Collapse
|
14
|
Sebestíková L. Relation between shape of liquid-gas interface and evolution of buoyantly unstable three-dimensional chemical fronts. Phys Rev E 2013; 88:033023. [PMID: 24125360 DOI: 10.1103/physreve.88.033023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 08/08/2013] [Indexed: 11/07/2022]
Abstract
Buoyantly unstable 3D chemical fronts were seen traveling through an iodate-arsenous acid reaction solution. The experiments were performed in channel reactors with rectangular cross sections, where the top of the reaction solution was in contact with air. A concave or convex meniscus was pinned to reactor lateral walls. Influence of the meniscus shape on front development was investigated. For the concave meniscus, an asymptotic shape of fronts holding negative curvature was observed. On the other hand, fronts propagating in the solution with the convex meniscus kept only positive curvature. Those fronts were also a bit faster than fronts propagating in the solution with the concave meniscus. A relation between the meniscus shape, flow distribution, velocity, and shape is discussed.
Collapse
Affiliation(s)
- L Sebestíková
- Institute of Hydrodynamics, Academy of Sciences of the Czech Republic, Pod Patankou 30/5, 16612 Praha 6, Czech Republic
| |
Collapse
|
15
|
Atis S, Saha S, Auradou H, Martin J, Rakotomalala N, Talon L, Salin D. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves. CHAOS (WOODBURY, N.Y.) 2012; 22:037108. [PMID: 23020499 DOI: 10.1063/1.4734489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Autocatalytic reaction fronts between two reacting species in the absence of fluid flow, propagate as solitary waves. The coupling between autocatalytic reaction front and forced simple hydrodynamic flows leads to stationary fronts whose velocity and shape depend on the underlying flow field. We address the issue of the chemico-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves. Towards that purpose, we perform experiments over a wide range of flow velocities with the well characterized iodate arsenious acid and chlorite-tetrathionate autocatalytic reactions in transparent packed beads porous media. The characteristics of these porous media such as their porosity, tortuosity, and hydrodynamics dispersion are determined. In a pack of beads, the characteristic pore size and the velocity field correlation length are of the order of the bead size. In order to address these two length scales separately, we perform lattice Boltzmann numerical simulations in a stochastic porous medium, which takes into account the log-normal permeability distribution and the spatial correlation of the permeability field. In both experiments and numerical simulations, we observe stationary fronts propagating at a constant velocity with an almost constant front width. Experiments without flow in packed bead porous media with different bead sizes show that the front propagation depends on the tortuous nature of diffusion in the pore space. We observe microscopic effects when the pores are of the size of the chemical front width. We address both supportive co-current and adverse flows with respect to the direction of propagation of the chemical reaction. For supportive flows, experiments and simulations allow observation of two flow regimes. For adverse flow, we observe upstream and downstream front motion as well as static front behaviors over a wide range of flow rates. In order to understand better these observed static state fronts, flow experiments around a single obstacle were used to delineate the range of steady state behavior. A model using the "eikonal thin front limit" explains the observed steady states.
Collapse
Affiliation(s)
- S Atis
- Laboratoire Fluides Automatique et Systèmes Thermiques, Universités P. et M. Curie and Paris Sud, C.N.R.S. (UMR7608), Bâtiment 502, Campus Universitaire, 91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Schuszter G, Horváth D, Tóth Á. Convective instabilities of chemical fronts in close-packed porous media. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Pópity-Tóth É, Horváth D, Tóth Á. Horizontally propagating three-dimensional chemo-hydrodynamic patterns in the chlorite-tetrathionate reaction. CHAOS (WOODBURY, N.Y.) 2012; 22:037105. [PMID: 23020496 DOI: 10.1063/1.4740464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Planar reaction fronts resulting from the coupling of exothermic autocatalytic reactions and transport processes can be deformed by convection in the presence of gravity field. We have experimentally investigated how buoyancy affects the spatiotemporal pattern formation at various solution thicknesses in three-dimensional medium. In the chlorite-tetrathionate reaction, a stable structure propagating horizontally with constant velocity and geometry develops when appropriately thick solutions are studied. Both the horizontal and the vertical projections of the resulting three-dimensional structures are quantitatively characterized: the smooth leading edge of the front is independent of the solution thickness and the structured trailing edge ends in a center cusp with a constant angle.
Collapse
Affiliation(s)
- Éva Pópity-Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vértanúk tere 1., Szeged H-6720, Hungary
| | | | | |
Collapse
|
18
|
Rogers MC, Morris SW. The heads and tails of buoyant autocatalytic balls. CHAOS (WOODBURY, N.Y.) 2012; 22:037110. [PMID: 23020501 DOI: 10.1063/1.4745209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Buoyancy produced by autocatalytic reaction fronts can produce fluid flows that advect the front position, giving rise to interesting feedback between chemical and hydrodynamic effects. In this paper, we numerically investigate the evolution of autocatalytic iodate-arsenous acid reaction fronts initialized in spherical configurations. Deformation of these "autocatalytic balls" is driven by buoyancy produced by the reaction. In our simulations, we have found that depending on the initial ball radius, the reaction front will develop in one of three different ways. In an intermediate range of ball size, the flow can evolve much like an autocatalytic plume: the ball develops a reacting head and tail that is akin to the head and conduit of an autocatalytic plume. In the limit of large autocatalytic balls, however, growth of a reacting tail is suppressed and the resemblance to plumes disappears. Conversely, very small balls of product solution fail to initiate sustained fronts and eventually disappear.
Collapse
Affiliation(s)
- Michael C Rogers
- Department of Physics, McGill University, 3600 rue University, Montréal, Québec H3A 2T8, Canada
| | | |
Collapse
|
19
|
Rongy L, Assemat P, De Wit A. Marangoni-driven convection around exothermic autocatalytic chemical fronts in free-surface solution layers. CHAOS (WOODBURY, N.Y.) 2012; 22:037106. [PMID: 23020497 DOI: 10.1063/1.4747711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Gradients of concentration and temperature across exothermic chemical fronts propagating in free-surface solution layers can initiate Marangoni-driven convection. We investigate here the dynamics arising from such a coupling between exothermic autocatalytic reactions, diffusion, and Marangoni-driven flows. To this end, we numerically integrate the incompressible Navier-Stokes equations coupled through the tangential stress balance to evolution equations for the concentration of the autocatalytic product and for the temperature. A solutal and a thermal Marangoni numbers measure the coupling between reaction-diffusion processes and surface-driven convection. In the case of an isothermal system, the asymptotic dynamics is characterized by a steady fluid vortex traveling at a constant speed with the front, deforming and accelerating it [L. Rongy and A. De Wit, J. Chem. Phys. 124, 164705 (2006)]. We analyze here the influence of the reaction exothermicity on the dynamics of the system in both cases of cooperative and competitive solutal and thermal effects. We show that exothermic fronts can exhibit new unsteady spatio-temporal dynamics when the solutal and thermal effects are antagonistic. The influence of the solutal and thermal Marangoni numbers, of the Lewis number (ratio of thermal diffusivity over molecular diffusivity), and of the height of the liquid layer on the spatio-temporal front evolution are investigated.
Collapse
Affiliation(s)
- L Rongy
- Nonlinear Physical Chemistry Unit, Service de Chimie Physique et Biologie Théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 231, 1050 Brussels, Belgium
| | | | | |
Collapse
|
20
|
Šebestíková L, Hauser MJB. Buoyancy-driven convection may switch between reactive states in three-dimensional chemical waves. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:036303. [PMID: 22587176 DOI: 10.1103/physreve.85.036303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Indexed: 05/31/2023]
Abstract
Traveling waves in an extended reactor, whose width cannot be neglected, represent a three-dimensional (3D) reaction-diffusion-convection system. We investigate the effects of buoyancy-driven convection in such a setting. The 3D waves traveled through horizontal layers of the iodate-arsenous acid (IAA) reaction solution containing excess of arsenous acid. The depth of the reaction solution was the examined parameter. An increase in the intensity of buoyancy-driven flow caused an increase of the traveling wave velocities. Convection distorted the front of the chemical waves. For layers deeper than h>13 mm, heat release became smaller than heat production causing the emergence of Rayleigh-Bénard convection cells. At the interface, a dependency of wave shape on solution depth was observed. For h<7 mm, the waves adopted a stable V-like shape, while for h>13 mm a parabolic shape dominated. For 7<h<13 mm, both shapes were realized with the same probability. Finally, an intermittent switch between stoichiometric regimes is observed as an unexpected effect of the buoyancy-driven convection. The switch is expressed by iodine enrichment in the product. Hence, the experiments demonstrate that the buoyancy-driven convective flow can cause long-lived, but nevertheless transient, changes in the chemical composition by inducing a local transition between different regimes of the IAA reaction.
Collapse
Affiliation(s)
- L Šebestíková
- Institute of Hydrodynamics, Academy of Science of the Czech Republic, Pod Patankou 30/5, 16612 Praha 6, Czech Republic.
| | | |
Collapse
|
21
|
Budroni MA, Rongy L, De Wit A. Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts. Phys Chem Chem Phys 2012; 14:14619-29. [DOI: 10.1039/c2cp41962a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Pópity-Tóth É, Horváth D, Tóth Á. The dependence of scaling law on stoichiometry for horizontally propagating vertical chemical fronts. J Chem Phys 2011; 135:074506. [DOI: 10.1063/1.3626217] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Malham IB, Jarrige N, Martin J, Rakotomalala N, Talon L, Salin D. Lock-exchange experiments with an autocatalytic reaction front. J Chem Phys 2010; 133:244505. [DOI: 10.1063/1.3507899] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Jarrige N, Bou Malham I, Martin J, Rakotomalala N, Salin D, Talon L. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:066311. [PMID: 20866526 DOI: 10.1103/physreve.81.066311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Indexed: 05/29/2023]
Abstract
We present a numerical analysis of solutal buoyancy effects on the shape and the velocity of autocatalytic reaction fronts, propagating in thin tilted rectangular channels. We use two-dimensional (2D) lattice Bathnagar-Gross-Krook (BGK) numerical simulations of gap-averaged equations for the flow and the concentration, namely a Stokes-Darcy equation coupled with an advection-diffusion-reaction equation. We do observe stationary-shaped fronts, spanning the width of the cell and propagating along the cell axis. We show that the model accounts rather well for experiments we performed using an Iodate Arsenous Acid reaction propagating in tilted Hele-Shaw cells, hence validating our 2D modelization of a three-dimensional problem. This modelization is also able to account for results found for another chemical reaction (chlorite tetrathionate) in a horizontal cell. In particular, we show that the shape and the traveling velocity of such fronts are linked with an eikonal equation. Moreover, we show that the front velocity varies nonmonotonically with the tilt of the cell, and nonlinearly with the width of the cell.
Collapse
Affiliation(s)
- N Jarrige
- Lab FAST, Universite Pierre et Marie Curie-Paris 6-Universite Paris-Sud-CNRS, Campus Universitaire, Orsay F-91405, France
| | | | | | | | | | | |
Collapse
|
25
|
Rongy L, Trevelyan P, De Wit A. Influence of buoyancy-driven convection on the dynamics of A+B→C reaction fronts in horizontal solution layers. Chem Eng Sci 2010. [DOI: 10.1016/j.ces.2009.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Rongy L, De Wit A. Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers. J Chem Phys 2009; 131:184701. [DOI: 10.1063/1.3258277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Rongy L, Schuszter G, Sinkó Z, Tóth T, Horváth D, Tóth A, De Wit A. Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally. CHAOS (WOODBURY, N.Y.) 2009; 19:023110. [PMID: 19566245 DOI: 10.1063/1.3122863] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The spatiotemporal dynamics of vertical autocatalytic fronts traveling horizontally in thin solution layers closed to the air can be influenced by buoyancy-driven convection induced by density gradients across the front. We perform here a combined experimental and theoretical study of the competition between solutal and thermal effects on such convection. Experimentally, we focus on the antagonistic chlorite-tetrathionate reaction for which solutal and thermal contributions to the density jump across the front have opposite signs. We show that in isothermal conditions the heavier products sink below the lighter reactants, providing an asymptotic constant finger shape deformation of the front by convection. When thermal effects are present, the hotter products, on the contrary, climb above the reactants for strongly exothermic conditions. These various observations as well as the influence of the relative weight of the solutal and thermal effects and of the thickness of the solution layer on the dynamics are discussed in terms of a two-dimensional reaction-diffusion-convection model parametrized by a solutal R(C) and a thermal R(T) Rayleigh number.
Collapse
Affiliation(s)
- L Rongy
- Nonlinear Physical Chemistry Unit, Faculte des Sciences, Universite Libre de Bruxelles, CP 231, 1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
28
|
Schuszter G, Tóth T, Horváth D, Tóth A. Convective instabilities in horizontally propagating vertical chemical fronts. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:016216. [PMID: 19257131 DOI: 10.1103/physreve.79.016216] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Indexed: 05/27/2023]
Abstract
The effect of convection on horizontally propagating fronts arising in the acid-catalyzed reaction of chlorite and tetrathionate ions is investigated experimentally in vertically oriented narrow reaction vessels of various heights. A stable finger develops which can be characterized by its mixing length defined as the standard deviation of the average front profile. The mixing length scales with the height of the reaction vessel, and the scaling law has been determined for three different chemical compositions.
Collapse
Affiliation(s)
- Gábor Schuszter
- Department of Physical Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | | | | | | |
Collapse
|
29
|
Rongy L, Trevelyan PMJ, De Wit A. Dynamics of A + B --> C reaction fronts in the presence of buoyancy-driven convection. PHYSICAL REVIEW LETTERS 2008; 101:084503. [PMID: 18764622 DOI: 10.1103/physrevlett.101.084503] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Indexed: 05/23/2023]
Abstract
The dynamics of A+B-->C fronts in horizontal solution layers can be influenced by buoyancy-driven convection as soon as the densities of A, B, and C are not all identical. Such convective motions can lead to front propagation even in the case of equal diffusion coefficients and initial concentration of reactants for which reaction-diffusion (RD) scalings predict a nonmoving front. We show theoretically that the dynamics in the presence of convection can in that case be predicted solely on the basis of the knowledge of the one-dimensional RD density profile across the front.
Collapse
Affiliation(s)
- L Rongy
- Nonlinear Physical Chemistry Unit, CP 231, Faculté des Sciences, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | | | | |
Collapse
|
30
|
Pons AJ, Batiste O, Bees MA. Nonlinear chemoconvection in the methylene-blue-glucose system: two-dimensional shallow layers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:016316. [PMID: 18764059 DOI: 10.1103/physreve.78.016316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Indexed: 05/26/2023]
Abstract
Interfacial hydrodynamic instabilities arise in a range of chemical systems. One mechanism for instability is the occurrence of unstable density gradients due to the accumulation of reaction products. In this paper we conduct two-dimensional nonlinear numerical simulations for a member of this class of system: the methylene-blue-glucose reaction. The result of these reactions is the oxidation of glucose to a relatively, but marginally, dense product, gluconic acid, that accumulates at oxygen permeable interfaces, such as the surface open to the atmosphere. The reaction is catalyzed by methylene-blue. We show that simulations help to disassemble the mechanisms responsible for the onset of instability and evolution of patterns, and we demonstrate that some of the results are remarkably consistent with experiments. We probe the impact of the upper oxygen boundary condition, for fixed flux, fixed concentration, or mixed boundary conditions, and find significant qualitative differences in solution behavior; structures either attract or repel one another depending on the boundary condition imposed. We suggest that measurement of the form of the boundary condition is possible via observation of oxygen penetration, and improved product yields may be obtained via proper control of boundary conditions in an engineering setting. We also investigate the dependence on parameters such as the Rayleigh number and depth. Finally, we find that pseudo-steady linear and weakly nonlinear techniques described elsewhere are useful tools for predicting the behavior of instabilities beyond their formal range of validity, as good agreement is obtained with the simulations.
Collapse
Affiliation(s)
- A J Pons
- Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, E-08222 Terrassa, Spain.
| | | | | |
Collapse
|
31
|
Rongy L, De Wit A. Solitary Marangoni-driven convective structures in bistable chemical systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:046310. [PMID: 18517735 DOI: 10.1103/physreve.77.046310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Indexed: 05/26/2023]
Abstract
Bistable chemical fronts can be deformed by Marangoni-driven convective flows induced by gradients of surface tension across the front. We investigate here the nonlinear dynamics of such a system by simulations of two-dimensional Navier-Stokes equations coupled to a reaction-diffusion-convection equation for a surface-active chemical species present in the bulk of the solution and involved in a bistable kinetics. We show that Marangoni flows cannot only alter the shape and speed of the front but also change the relative stability of the two stable steady states, reversing in some cases the direction of propagation of the front with regard to the pure reaction-diffusion situation. A detailed parametric study discusses the properties of the asymptotic dynamics as a function of the Marangoni number M and of a kinetic parameter d.
Collapse
Affiliation(s)
- L Rongy
- Nonlinear Physical Chemistry Unit and Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles (ULB), CP 231, 1050 Brussels, Belgium.
| | | |
Collapse
|