• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5081219)   Today's Articles (1159)
For: Rongy L, Goyal N, Meiburg E, De Wit A. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers. J Chem Phys 2007;127:114710. [PMID: 17887873 DOI: 10.1063/1.2766956] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Tiani R, Pojman JA, Rongy L. Frontal polymerization in thin layers: Hydrodynamic effects and asymptotic dynamics. J Chem Phys 2025;162:124903. [PMID: 40135613 DOI: 10.1063/5.0252137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/06/2025] [Indexed: 03/27/2025]  Open
2
Mukherjee S, Paul MR. Propagating fronts in fluids with solutal feedback. Phys Rev E 2020;101:032214. [PMID: 32290010 DOI: 10.1103/physreve.101.032214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/28/2020] [Indexed: 11/07/2022]
3
Bába P, Rongy L, De Wit A, Hauser MJB, Tóth Á, Horváth D. Interaction of Pure Marangoni Convection with a Propagating Reactive Interface under Microgravity. PHYSICAL REVIEW LETTERS 2018;121:024501. [PMID: 30085731 DOI: 10.1103/physrevlett.121.024501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/30/2018] [Indexed: 06/08/2023]
4
Tiani R, De Wit A, Rongy L. Surface tension- and buoyancy-driven flows across horizontally propagating chemical fronts. Adv Colloid Interface Sci 2018;255:76-83. [PMID: 28826815 DOI: 10.1016/j.cis.2017.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 11/17/2022]
5
Zhang Y, Tsitkov S, Hess H. Complex dynamics in a two-enzyme reaction network with substrate competition. Nat Catal 2018. [DOI: 10.1038/s41929-018-0053-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
6
Liu Y, Ren X, Pan C, Zheng T, Yuan L, Zheng J, Gao Q. Chlorine dioxide-induced and Congo red-inhibited Marangoni effect on the chlorite-trithionate reaction front. CHAOS (WOODBURY, N.Y.) 2017;27:104610. [PMID: 29092443 DOI: 10.1063/1.5001822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
7
Sebestikova L, Simcik M, Ruzicka MC. Effects of the Starch Indicator on the Buoyantly Unstable Iodate-Arsenous Acid Reaction Front. ChemistrySelect 2017. [DOI: 10.1002/slct.201701276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
8
Acceleration or deceleration of self-motion by the Marangoni effect. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
9
Convective flow reversal in self-powered enzyme micropumps. Proc Natl Acad Sci U S A 2016;113:2585-90. [PMID: 26903618 DOI: 10.1073/pnas.1517908113] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
10
Valkai L, Horváth AK. Compatible Mechanism for a Simultaneous Description of the Roebuck, Dushman, and Iodate–Arsenous Acid Reactions in an Acidic Medium. Inorg Chem 2016;55:1595-603. [DOI: 10.1021/acs.inorgchem.5b02513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
11
Csekő G, Valkai L, Horváth AK. A Simple Kinetic Model for Description of the Iodate–Arsenous Acid Reaction: Experimental Evidence of the Direct Reaction. J Phys Chem A 2015;119:11053-8. [DOI: 10.1021/acs.jpca.5b08011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
12
Schuszter G, Pótári G, Horváth D, Tóth Á. Three-dimensional convection-driven fronts of the exothermic chlorite-tetrathionate reaction. CHAOS (WOODBURY, N.Y.) 2015;25:064501. [PMID: 26117124 DOI: 10.1063/1.4921172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
13
Horváth D, Budroni MA, Bába P, Rongy L, De Wit A, Eckert K, Hauser MJB, Tóth Á. Convective dynamics of traveling autocatalytic fronts in a modulated gravity field. Phys Chem Chem Phys 2014;16:26279-87. [DOI: 10.1039/c4cp02480j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
14
Sebestíková L. Relation between shape of liquid-gas interface and evolution of buoyantly unstable three-dimensional chemical fronts. Phys Rev E 2013;88:033023. [PMID: 24125360 DOI: 10.1103/physreve.88.033023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 08/08/2013] [Indexed: 11/07/2022]
15
Atis S, Saha S, Auradou H, Martin J, Rakotomalala N, Talon L, Salin D. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves. CHAOS (WOODBURY, N.Y.) 2012;22:037108. [PMID: 23020499 DOI: 10.1063/1.4734489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
16
Schuszter G, Horváth D, Tóth Á. Convective instabilities of chemical fronts in close-packed porous media. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.07.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
17
Pópity-Tóth É, Horváth D, Tóth Á. Horizontally propagating three-dimensional chemo-hydrodynamic patterns in the chlorite-tetrathionate reaction. CHAOS (WOODBURY, N.Y.) 2012;22:037105. [PMID: 23020496 DOI: 10.1063/1.4740464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
18
Rogers MC, Morris SW. The heads and tails of buoyant autocatalytic balls. CHAOS (WOODBURY, N.Y.) 2012;22:037110. [PMID: 23020501 DOI: 10.1063/1.4745209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
19
Rongy L, Assemat P, De Wit A. Marangoni-driven convection around exothermic autocatalytic chemical fronts in free-surface solution layers. CHAOS (WOODBURY, N.Y.) 2012;22:037106. [PMID: 23020497 DOI: 10.1063/1.4747711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
20
Šebestíková L, Hauser MJB. Buoyancy-driven convection may switch between reactive states in three-dimensional chemical waves. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012;85:036303. [PMID: 22587176 DOI: 10.1103/physreve.85.036303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Indexed: 05/31/2023]
21
Budroni MA, Rongy L, De Wit A. Dynamics due to combined buoyancy- and Marangoni-driven convective flows around autocatalytic fronts. Phys Chem Chem Phys 2012;14:14619-29. [DOI: 10.1039/c2cp41962a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
22
Pópity-Tóth É, Horváth D, Tóth Á. The dependence of scaling law on stoichiometry for horizontally propagating vertical chemical fronts. J Chem Phys 2011;135:074506. [DOI: 10.1063/1.3626217] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
23
Malham IB, Jarrige N, Martin J, Rakotomalala N, Talon L, Salin D. Lock-exchange experiments with an autocatalytic reaction front. J Chem Phys 2010;133:244505. [DOI: 10.1063/1.3507899] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
24
Jarrige N, Bou Malham I, Martin J, Rakotomalala N, Salin D, Talon L. Numerical simulations of a buoyant autocatalytic reaction front in tilted Hele-Shaw cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010;81:066311. [PMID: 20866526 DOI: 10.1103/physreve.81.066311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Indexed: 05/29/2023]
25
Rongy L, Trevelyan P, De Wit A. Influence of buoyancy-driven convection on the dynamics of A+B→C reaction fronts in horizontal solution layers. Chem Eng Sci 2010. [DOI: 10.1016/j.ces.2009.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
26
Rongy L, De Wit A. Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers. J Chem Phys 2009;131:184701. [DOI: 10.1063/1.3258277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
27
Rongy L, Schuszter G, Sinkó Z, Tóth T, Horváth D, Tóth A, De Wit A. Influence of thermal effects on buoyancy-driven convection around autocatalytic chemical fronts propagating horizontally. CHAOS (WOODBURY, N.Y.) 2009;19:023110. [PMID: 19566245 DOI: 10.1063/1.3122863] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
28
Schuszter G, Tóth T, Horváth D, Tóth A. Convective instabilities in horizontally propagating vertical chemical fronts. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009;79:016216. [PMID: 19257131 DOI: 10.1103/physreve.79.016216] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Indexed: 05/27/2023]
29
Rongy L, Trevelyan PMJ, De Wit A. Dynamics of A + B --> C reaction fronts in the presence of buoyancy-driven convection. PHYSICAL REVIEW LETTERS 2008;101:084503. [PMID: 18764622 DOI: 10.1103/physrevlett.101.084503] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Indexed: 05/23/2023]
30
Pons AJ, Batiste O, Bees MA. Nonlinear chemoconvection in the methylene-blue-glucose system: two-dimensional shallow layers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008;78:016316. [PMID: 18764059 DOI: 10.1103/physreve.78.016316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Indexed: 05/26/2023]
31
Rongy L, De Wit A. Solitary Marangoni-driven convective structures in bistable chemical systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008;77:046310. [PMID: 18517735 DOI: 10.1103/physreve.77.046310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Indexed: 05/26/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA