1
|
Sorroche A, Reboiro F, Monge M, López-de-Luzuriaga JM. Recent Trends in Group 11 Hydrogen Bonding. Chempluschem 2024; 89:e202400273. [PMID: 38764413 DOI: 10.1002/cplu.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Conventional hydrogen bonding (H-bonding) has been extensively studied in organic and biological systems. However, its role in transition metal chemistry, particularly with Group 11 metals (i. e. Cu, Ag, Au) as hydrogen bond acceptors, remains relatively unexplored. Through a combination of experimental techniques, such as Nuclear Magnetic Resonance (NMR), Infrared spectroscopy (IR), X-Ray Diffraction (XRD), and computational calculations, several aspects of H-bonding interactions with Group 11 metals are examined, shedding light on its impact on structural motifs and reactivity. These include bond strengths, geometries, and effects on electronic structures. Understanding the intricacies of hydrogen bonding within transition metal chemistry holds promise for various applications, including catalytic transformations, the construction of molecular assemblies, synthesis of complexes displaying anticancer activities, or luminescence applications (e. g. Thermally Activated Delayed Fluorescence, TADF). This review encompasses the most significant recent advances, challenges, and future prospects in this emerging field.
Collapse
Affiliation(s)
- Alba Sorroche
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Félix Reboiro
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Miguel Monge
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - José María López-de-Luzuriaga
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| |
Collapse
|
2
|
Alipour B, Kassaee MZ. Comparison of Cu 3, Cu 5, and Cu 7 clusters as potential antioxidants: A theoretical quest. J Mol Model 2024; 30:132. [PMID: 38625549 DOI: 10.1007/s00894-024-05933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
CONTEXT Herein, we compare and contrast the dual roles of Cun clusters (n = 3, 5, and 7 atoms) in scavenging or generating RO• free radicals from ROH at the theoretical levels (where R = H, methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, and phenyl). This investigation is performed in water media to mimic the actual environment in the biological system. In the presence of the Cun clusters, bond dissociation energy (BDE) of RO-H and R-OH is reduced. This is clear evidence for the increased possibility of both the RO-H and R-OH bonds breakage and scavenging of RO• radicals. The nature of anchoring bonds responsible for the interaction of Cun clusters with ROH and RO• are interpreted using the quantum theory of atoms in molecules (QTAIM) and the natural bond orbital (NBO) analysis. The DFT results indicate that the O•⋅⋅⋅•Cu bond is stronger and has more covalent character in RO•⋅⋅⋅•Cun radical complexes than in ROH⋅⋅⋅•Cun. Therefore, the interactions of Cun clusters with RO• radicals (antioxidant) are more pronounced than their interactions with ROH non-radicals (pro-oxidant). METHODS The GAMESS software package was utilized in this paper. The B3LYP and M06 functions with the 6-311 + + G(d,p), and LANL2DZ/SDD basis sets was used to perform the important geometrical parameters of RO•⋅⋅⋅•Cun and ROH⋅⋅⋅•Cun, binding energy (Eb), and bond dissociation energy (BDE).
Collapse
Affiliation(s)
- Batoul Alipour
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Mohamad Zaman Kassaee
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
3
|
Intermolecular interaction study of Ag-amino acid biomolecular complex using vibrational spectroscopic techniques and density functional theory method. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Triptow J, Meijer G, Fielicke A, Dopfer O, Green M. Comparison of Conventional and Nonconventional Hydrogen Bond Donors in Au - Complexes. J Phys Chem A 2022; 126:3880-3892. [PMID: 35687835 PMCID: PMC9234979 DOI: 10.1021/acs.jpca.2c02725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although gold has become a well-known nonconventional hydrogen bond acceptor, interactions with nonconventional hydrogen bond donors have been largely overlooked. In order to provide a better understanding of these interactions, two conventional hydrogen bonding molecules (3-hydroxytetrahydrofuran and alaninol) and two nonconventional hydrogen bonding molecules (fenchone and menthone) were selected to form gas-phase complexes with Au-. The Au-[M] complexes were investigated using anion photoelectron spectroscopy and density functional theory. Au-[fenchone], Au-[menthone], Au-[3-hydroxyTHF], and Au-[alaninol] were found to have vertical detachment energies of 2.71 ± 0.05, 2.76 ± 0.05, 3.01 ± 0.03, and 3.02 ± 0.03 eV, respectively, which agree well with theory. The photoelectron spectra of the complexes resemble the spectrum of Au- but are blueshifted due to the electron transfer from Au- to M. With density functional theory, natural bond orbital analysis, and atoms-in-molecules analysis, we were able to extend our comparison of conventional and nonconventional hydrogen bonding to include geometric and electronic similarities. In Au-[3-hydroxyTHF] and Au-[alaninol], the hydrogen bonding comprised of Au-···HO as a strong, primary hydrogen bond, with secondary stabilization by weaker Au-···HN or Au-···HC hydrogen bonds. Interestingly, the Au-···HC bonds in Au-[fenchone] and Au-[menthone] can be characterized as hydrogen bonds, despite their classification as nonconventional hydrogen bond donors.
Collapse
Affiliation(s)
- Jenny Triptow
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - André Fielicke
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Mallory Green
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
5
|
Tho NH, Bui TQ, Si NT, Nhat PV, Nhung NTA. Structural characteristics and chemical reactivity of gold-based clusters Aun (n = 16, 17) toward lone pairs. J Mol Model 2022; 28:54. [DOI: 10.1007/s00894-022-05044-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
|
6
|
Adams E, Maeda K, Kato T, Tokoro C. Mechanism of gold and palladium adsorption on thermoacidophilic red alga Galdieria sulphuraria. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Rigoulet M, Massou S, Sosa Carrizo ED, Mallet-Ladeira S, Amgoune A, Miqueu K, Bourissou D. Evidence for genuine hydrogen bonding in gold(I) complexes. Proc Natl Acad Sci U S A 2019; 116:46-51. [PMID: 30567973 PMCID: PMC6320517 DOI: 10.1073/pnas.1817194116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of gold to act as proton acceptor and participate in hydrogen bonding remains an open question. Here, we report the synthesis and characterization of cationic gold(I) complexes featuring ditopic phosphine-ammonium (P,NH+) ligands. In addition to the presence of short Au∙∙∙H contacts in the solid state, the presence of Au∙∙∙H-N hydrogen bonds was inferred by NMR and IR spectroscopies. The bonding situation was extensively analyzed computationally. All features were consistent with the presence of three-center four-electron attractive interactions combining electrostatic and orbital components. The role of relativistic effects was examined, and the analysis is extended to other recently described gold(I) complexes.
Collapse
Affiliation(s)
- Mathilde Rigoulet
- Laboratoire Hétérochimie Fondamentale et Appliquée, Unité Mixte de Recherche Université - CNRS No 5069, Université Paul Sabatier, 31062 Toulouse Cedex 09, France
| | - Stéphane Massou
- Institut de Chimie de Toulouse, Fédération de Recherche Université - CNRS No 2599, Université Paul Sabatier, 31062 Toulouse Cedex 09, France
| | - E Daiann Sosa Carrizo
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement, Unité Mixte de Recherche Université - CNRS No 5254, Université de Pau et des Pays de l'Adour, 64053 Pau Cedex 09, France
| | - Sonia Mallet-Ladeira
- Institut de Chimie de Toulouse, Fédération de Recherche Université - CNRS No 2599, Université Paul Sabatier, 31062 Toulouse Cedex 09, France
| | - Abderrahmane Amgoune
- Laboratoire Hétérochimie Fondamentale et Appliquée, Unité Mixte de Recherche Université - CNRS No 5069, Université Paul Sabatier, 31062 Toulouse Cedex 09, France
| | - Karinne Miqueu
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement, Unité Mixte de Recherche Université - CNRS No 5254, Université de Pau et des Pays de l'Adour, 64053 Pau Cedex 09, France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée, Unité Mixte de Recherche Université - CNRS No 5069, Université Paul Sabatier, 31062 Toulouse Cedex 09, France;
| |
Collapse
|
8
|
|
9
|
The key role of Au-substrate interactions in catalytic gold subnanoclusters. Nat Commun 2017; 8:1657. [PMID: 29162805 PMCID: PMC5698477 DOI: 10.1038/s41467-017-01675-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/06/2017] [Indexed: 11/08/2022] Open
Abstract
The development of gold catalysis has allowed significant levels of activity and complexity in organic synthesis. Recently, the use of very active small gold subnanoclusters (Aun, n < 10) has been reported. The stabilization of such nanocatalysts to prevent self-aggregation represents a true challenge that has been partially remediated, for instance, by their immobilization in polymer matrices. Here, we describe the transient stabilization of very small gold subnanoclusters (Aun, n < 5) by alkyl chains or aromatic groups appended to the reactive π bond of simple alkynes. The superior performance toward Brønsted acid-free hydration of medium to long aliphatic alkynes (1-hexyne and 1-docecyne) and benzylacetylene with respect to phenylacetylene is demonstrated experimentally and investigated computationally. A cooperative network of dispersive Au···C–H and/or Au···π interactions, supported by quantum mechanical calculations and time-resolved luminescence experiments, is proposed to be at the origin of this stabilization. Stabilization of gold nanoclusters in order to prevent their self-aggregation remains a great challenge. Here, the authors describe transient stabilization of very small catalytic gold subnanoclusters by alkyl chains or aromatic groups appended to the reactive π bond of simple alkynes.
Collapse
|
10
|
|
11
|
Hau NY, Yang P, Liu C, Wang J, Lee PH, Feng SP. Aminosilane-Assisted Electrodeposition of Gold Nanodendrites and Their Catalytic Properties. Sci Rep 2017; 7:39839. [PMID: 28045064 PMCID: PMC5206629 DOI: 10.1038/srep39839] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/29/2016] [Indexed: 12/04/2022] Open
Abstract
A promising alternative route for the synthesis of three-dimensional Au dendrites was developed by direct electrodeposition from a solution of HAuCl4 containing 3-aminopropyltriethoxysilane (APTS). Ultraviolet-visible spectroscopy, fourier transform infrared spectroscopy and isothermal titration calorimetry were used to study the interaction of APTS in electrolyte. The effect of APTS on the formation of the hierarchical structure of Au dendrites was investigated by cyclic voltammetry, rotating disk electrode, electrochemical impedance spectroscopy and quartz crystal microbalance. The growth directions of the trunks and branches of the Au dendrites can be controlled by sweep-potential electrodeposition to obtain more regular structures. The efficacy of as-synthesised Au dendrites was demonstrated in the enhanced electro-catalytic activity to methanol electro-oxidation and the high sensitivity of glucose detection, which have potential applications in direct-methanol fuel cells and non-enzymatic electrochemical glucose biosensors, respectively.
Collapse
Affiliation(s)
- Nga Yu Hau
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Peixian Yang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Chang Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jian Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong
| | - Shien-Ping Feng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
12
|
Affiliation(s)
- Zhixun Luo
- State
Key Laboratory for Structural Chemistry of Unstable and Stable Species,
Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - A. W. Castleman
- Departments
of Chemistry and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shiv N. Khanna
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
13
|
Prakash M, Mathivon K, Benoit DM, Chambaud G, Hochlaf M. Carbon dioxide interaction with isolated imidazole or attached on gold clusters and surface: competition between σ H-bond and π stacking interaction. Phys Chem Chem Phys 2015; 16:12503-9. [PMID: 24833261 DOI: 10.1039/c4cp01292e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Using first principle methodologies, we investigate the subtle competition between σ H-bond and π stacking interaction between CO2 and imidazole either isolated, adsorbed on a gold cluster or adsorbed on a gold surface. These computations are performed using MP2 as well as dispersion corrected density functional theory (DFT) techniques. Our results show that the CO2 interaction goes from π-type stacking into σ-type when CO2 interacts with isolated imidazole and Au clusters or surface. The balance between both types of interactions is found when an imidazole is attached to a Au20 gold cluster. Thus, the present study has great significance in understanding and controlling the structures of weakly-bound molecular systems and materials, where hydrogen bonding and van der Waals interactions are competing. The applications are in the fields of the control of CO2 capture and scattering, catalysis and bio- and nanotechnologies.
Collapse
Affiliation(s)
- Muthuramalingam Prakash
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France.
| | | | | | | | | |
Collapse
|
14
|
Chen Y, Wang F. Theoretical study of interactions between electron-deficient arenes and coinage metal anions. J Mol Model 2015; 21:38. [PMID: 25663520 DOI: 10.1007/s00894-015-2584-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/19/2015] [Indexed: 11/25/2022]
Abstract
The binding behavior of coinage metal anions with some electron-deficient arenes has been investigated by MP2 calculations, and the character of interactions in these complexes has been examined by NBO analysis. The results indicate that coinage metal anions can interact with electron-deficient arenes to form anion-π, strong σ-type and hydrogen-bonding complexes. The σ-type structure is the global minimum for triazine, trifluorotriazine, hexafluorobenzene and tricyanobenzene, and the hydrogen-bonding structure is the global minimum for trifluorobenzene. There exist some differences in the stability of anion-π complexes for coinage metal anions: the anion-π complexes of Au(-) are minima expect for triazine complex; the anion-π complexes of Ag(-) are minima expect for tricyanobenzene complex; and the anion-π complexes of Cu(-) are not minima expect for trifluorobenzene complex. The binding strength of anion-π and hydrogen-bonding complexes for Au(-) is larger than that for Ag(-) and Cu(-), but the binding strength of σ complex displays a different sequence: Cu(-) > Au(-) > Ag(-). The binding behavior of coinage metal anions is more similar to that of F(-) than that of Cl(-) and Br(-). The relaxed potential energy surface scans for some selected systems have been performed to help understand the interactions between coinage metal anions with electron-deficient arenes.
Collapse
Affiliation(s)
- Yishan Chen
- School of Chemistry & Chemical Engineering, Qujing Normal University, Qujing, 655011, Yunnan, China,
| | | |
Collapse
|
15
|
Liu XJ, Hamilton I. Adsorption of small molecules on helical gold nanorods: A relativistic density functional study. J Comput Chem 2014; 35:1967-76. [DOI: 10.1002/jcc.23711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/11/2014] [Accepted: 07/25/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao-Jing Liu
- Department of Chemistry; Wilfrid Laurier University; Waterloo Ontario Canada N2L3C5
| | - Ian Hamilton
- Department of Chemistry; Wilfrid Laurier University; Waterloo Ontario Canada N2L3C5
| |
Collapse
|
16
|
Cao GJ, Xu HG, Zheng WJ, Li J. Theoretical and experimental studies of the interactions between Au2− and nucleobases. Phys Chem Chem Phys 2014; 16:2928-35. [DOI: 10.1039/c3cp54478h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Schmidbaur H, Raubenheimer HG, Dobrzańska L. The gold-hydrogen bond, Au-H, and the hydrogen bond to gold, Au∙∙∙H-X. Chem Soc Rev 2013; 43:345-80. [PMID: 23999756 DOI: 10.1039/c3cs60251f] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the first part of this review, the characteristics of Au-H bonds in gold hydrides are reviewed including the data of recently prepared stable organometallic complexes with gold(I) and gold(III) centers. In the second part, the reports are summarized where authors have tried to provide evidence for hydrogen bonds to gold of the type Au∙∙∙H-X. Such interactions have been proposed for gold atoms in the Au(-I), Au(0), Au(I), and Au(III) oxidation states as hydrogen bonding acceptors and H-X units with X = O, N, C as donors, based on both experimental and quantum chemistry studies. To complement these findings, the literature was screened for examples with similar molecular geometries, for which such bonding has not yet been considered. In the discussion of the results, the recently issued IUPAC definitions of hydrogen bonding and the currently accepted description of agostic interactions have been used as guidelines to rank the Au∙∙∙H-X interactions in this broad range of weak chemical bonding. From the available data it appears that all the intra- and intermolecular Au∙∙∙H-X contacts are associated with very low binding energies and non-specific directionality. To date, the energetics have not been estimated, because there are no thermochemical and very limited IR/Raman and temperature-dependent NMR data that can be used as reliable references. Where conspicuous structural or spectroscopic effects have been observed, explanations other than hydrogen bonding Au∙∙∙H-X can also be advanced in most cases. Although numerous examples of short Au∙∙∙H-X contacts exist in the literature, it seems, at this stage, that these probably make only very minor contributions to the energy of a given system and have only a marginal influence on molecular conformations which so far have most often attracted researchers to this topic. Further, more dedicated investigations will be necessary before well founded conclusions can be drawn.
Collapse
Affiliation(s)
- Hubert Schmidbaur
- Department Chemie, Technische Universität München, Garching, Germany.
| | | | | |
Collapse
|
18
|
Wang Y, Tang L. Chemisorption assembly of Au nanorods on mercaptosilanized glass substrate for label-free nanoplasmon biochip. Anal Chim Acta 2013; 796:122-9. [PMID: 24016592 DOI: 10.1016/j.aca.2013.08.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/21/2013] [Accepted: 08/14/2013] [Indexed: 12/12/2022]
Abstract
The fabrication of a localized surface plasmon resonance nanosensor in a chip based format that utilizes Au nanorods (GNRs) as the optical transducer were systematically studied. (3-mercaptopropyl)trimethoxysilane (MPTMS) modified glass substrate offers GNR deposition with maximal sensitivity to local refractive index changes, which subsequently results in better optical recognition of receptor-analyte binding. Kinetics governing the mass transport and chemisorption of nanorods from bulk to solid surface can be dynamically controlled in a predictable fashion. We demonstrate that slight aggregation induced by a low ionic strength (5 mM NaCl) can facilitate the nanorod assembly to result in a dense, well-distributed surface monolayer. In high ionic media (e.g. 40-80 mM), anions present electrostatically bind with the positively charged cetyltrimethylammonium bromide (CTAB) surrounding nanorod surfaces, thereby leading to instability with heavy aggregation in solution. However, once chemically bound on silanized substrates, the nanorods exhibit excellent stability in physiological buffer where high amount of ionic species are present. The fundamental study is followed by demonstration of a practical application of the fabricated biochip in label-free detection based on GNR wavelength shift of the longitudinal palsmon maxima as the optical signature of human IgG model detection.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | |
Collapse
|
19
|
Cao GJ, Xu HG, Li RZ, Zheng W. Hydrogen bonds in the nucleobase-gold complexes: Photoelectron spectroscopy and density functional calculations. J Chem Phys 2012; 136:014305. [DOI: 10.1063/1.3671945] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Vargas R, Martínez A. Non-conventional hydrogen bonds: pterins-metal anions. Phys Chem Chem Phys 2011; 13:12775-84. [DOI: 10.1039/c1cp20134d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Valdespino-Saenz J, Martínez A. Adenine–Au and adenine–uracil–Au. Non-conventional hydrogen bonds of the anions and donator–acceptor properties of the neutrals. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2009.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
|
23
|
Anion interactions of cytosine nucleobase and its nucleosides: Detailed view from DFT study. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2009.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Ončák M, Cao Y, Höckendorf R, Beyer M, Zahradník R, Schwarz H. Thermal NH Bond Activation on Anionic and Cationic Platinum Clusters: Non-Predetermined Reaction Pathways Indicate Transitions to a Bulk Surface Reactivity. Chemistry 2009; 15:8465-8474. [DOI: 10.1002/chem.200900677] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Martínez A. Do Anionic Gold Clusters Modify Conventional Hydrogen Bonds? The Interaction of Anionic Aun (n = 2−4) with the Adenine−Uracil Base Pair. J Phys Chem A 2009; 113:1134-40. [DOI: 10.1021/jp809395a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C. U., P.O. Box 70-360, Coyoacán, 04510
| |
Collapse
|
26
|
Martínez A, Dolgounitcheva O, Zakrzewski VG, Ortiz JV. Nonconventional Hydrogen Bonds: A Theoretical Study of [uracil-L]− (L = F, Cl, Br, I, Al, Ga, In) Complexes. J Phys Chem A 2008; 112:10399-404. [DOI: 10.1021/jp804946w] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ana Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad Universitaria P.O. Box 70-360, Coyoacán, 04510 México, D.F. México
| | - O. Dolgounitcheva
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - V. G. Zakrzewski
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - J. V. Ortiz
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| |
Collapse
|
27
|
|
28
|
Kryachko ES, Remacle F. Implementation of simple logic gates on gold–ammonia bonding patterns in different charge states. Mol Phys 2008. [DOI: 10.1080/00268970701881170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
|