1
|
Shen K, Sun K, Gelin MF, Zhao Y. Cavity-Tuned Exciton Dynamics in Transition Metal Dichalcogenides Monolayers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4127. [PMID: 39203305 PMCID: PMC11356741 DOI: 10.3390/ma17164127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
A fully quantum, numerically accurate methodology is presented for the simulation of the exciton dynamics and time-resolved fluorescence of cavity-tuned two-dimensional (2D) materials at finite temperatures. This approach was specifically applied to a monolayer WSe2 system. Our methodology enabled us to identify the dynamical and spectroscopic signatures of polaronic and polaritonic effects and to elucidate their characteristic timescales across a range of exciton-cavity couplings. The approach employed can be extended to simulation of various cavity-tuned 2D materials, specifically for exploring finite temperature nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F. Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
2
|
Schotte F, Cho HS, Dyda F, Anfinrud P. Watching a signaling protein function: What has been learned over four decades of time-resolved studies of photoactive yellow protein. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:021303. [PMID: 38595979 PMCID: PMC11003764 DOI: 10.1063/4.0000241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
Photoactive yellow protein (PYP) is a signaling protein whose internal p-coumaric acid chromophore undergoes reversible, light-induced trans-to-cis isomerization, which triggers a sequence of structural changes that ultimately lead to a signaling state. Since its discovery nearly 40 years ago, PYP has attracted much interest and has become one of the most extensively studied proteins found in nature. The method of time-resolved crystallography, pioneered by Keith Moffat, has successfully characterized intermediates in the PYP photocycle at near atomic resolution over 12 decades of time down to the sub-picosecond time scale, allowing one to stitch together a movie and literally watch a protein as it functions. But how close to reality is this movie? To address this question, results from numerous complementary time-resolved techniques including x-ray crystallography, x-ray scattering, and spectroscopy are discussed. Emerging from spectroscopic studies is a general consensus that three time constants are required to model the excited state relaxation, with a highly strained ground-state cis intermediate formed in less than 2.4 ps. Persistent strain drives the sequence of structural transitions that ultimately produce the signaling state. Crystal packing forces produce a restoring force that slows somewhat the rates of interconversion between the intermediates. Moreover, the solvent composition surrounding PYP can influence the number and structures of intermediates as well as the rates at which they interconvert. When chloride is present, the PYP photocycle in a crystal closely tracks that in solution, which suggests the epic movie of the PYP photocycle is indeed based in reality.
Collapse
Affiliation(s)
- Friedrich Schotte
- National Institutes of Health, NIDDK, LCP, Bethesda, Maryland 20892, USA
| | - Hyun Sun Cho
- National Institutes of Health, NIDDK, LCP, Bethesda, Maryland 20892, USA
| | - Fred Dyda
- National Institutes of Health, NIDDK, LMB, Bethesda, Maryland 20892, USA
| | - Philip Anfinrud
- National Institutes of Health, NIDDK, LCP, Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
Sun K, Shen K, Gelin MF, Zhao Y. Exciton Dynamics and Time-Resolved Fluorescence in Nanocavity-Integrated Monolayers of Transition-Metal Dichalcogenides. J Phys Chem Lett 2023; 14:221-229. [PMID: 36583951 DOI: 10.1021/acs.jpclett.2c03511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We have developed an ab initio-based, fully quantum, numerically accurate methodology for the simulation of the exciton dynamics and time- and frequency-resolved fluorescence spectra of the cavity-controlled two-dimensional materials at finite temperatures and applied this methodology to the single-layer WSe2 system. Specifically, the multiple Davydov D2 Ansatz has been employed in combination with the method of thermofield dynamics for the finite-temperature extension of accurate time-dependent variation. This allowed us to establish dynamical and spectroscopic signatures of the polaronic and polaritonic effects as well as uncover their characteristic time scales in the relevant range of temperatures. Our study reveals the pivotal role of multidimensional conical intersections in controlling the many-body dynamics of highly intertwined excitonic, phononic, and photonic modes.
Collapse
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou310018, China
| | - Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore639798, Singapore
| |
Collapse
|
4
|
van Wilderen LJGW, Blankenburg L, Bredenbeck J. Femtosecond-to-millisecond mid-IR spectroscopy of Photoactive Yellow Protein uncovers structural micro-transitions of the chromophore's protonation mechanism. J Chem Phys 2022; 156:205103. [DOI: 10.1063/5.0091918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protein structural dynamics can span many orders of magnitude in time. Photoactive Yellow Protein's (PYP) reversible photocycle encompasses picosecond isomerization of the light-absorbing chromophore as well as large scale protein backbone motions occurring on a millisecond timescale. Femtosecond-to-millisecond time-resolved mid-Infrared (IR) spectroscopy is employed here to uncover structural details of photocycle intermediates up to chromophore protonation and the first structural changes leading to formation of the partially-unfolded signalling state pB. The data show that a commonly thought stable transient photocycle intermediate is actually formed after a sequence of several smaller structural changes. We provide residue-specific spectroscopic evidence that protonation of the chromophore on a hundreds of microseconds timescale is delayed with respect to deprotonation of the nearby E46 residue. That implies that the direct proton donor is not E46 but most likely a water molecule. Such details may assist ongoing photocycle and protein folding simulation efforts on the complex and wide time-spanning photocycle of the model system PYP.
Collapse
|
5
|
Schmidt-Engler JM, Blankenburg L, Zangl R, Hoffmann J, Morgner N, Bredenbeck J. Local dynamics of the photo-switchable protein PYP in ground and signalling state probed by 2D-IR spectroscopy of –SCN labels. Phys Chem Chem Phys 2020; 22:22963-22972. [DOI: 10.1039/d0cp04307a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We employ 2D-IR spectroscopy of the protein label –SCN to describe the local dynamics in the photo-switchable protein PYP in its dark state (pG) and after photoactivation, concomitant with vast structural rearrangements, in its signalling state (pB).
Collapse
Affiliation(s)
| | - Larissa Blankenburg
- Johann Wolfgang Goethe-University
- Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
| | - Rene Zangl
- Johann Wolfgang Goethe-University
- Institute of Physical and Theoretical Chemistry
- Frankfurt am Main
- Germany
| | - Jan Hoffmann
- Johann Wolfgang Goethe-University
- Institute of Physical and Theoretical Chemistry
- Frankfurt am Main
- Germany
| | - Nina Morgner
- Johann Wolfgang Goethe-University
- Institute of Physical and Theoretical Chemistry
- Frankfurt am Main
- Germany
| | - Jens Bredenbeck
- Johann Wolfgang Goethe-University
- Institute of Biophysics
- 60438 Frankfurt am Main
- Germany
| |
Collapse
|
6
|
Fang C, Tang L, Chen C. Unveiling coupled electronic and vibrational motions of chromophores in condensed phases. J Chem Phys 2019; 151:200901. [PMID: 31779327 DOI: 10.1063/1.5128388] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The quest for capturing molecular movies of functional systems has motivated scientists and engineers for decades. A fundamental understanding of electronic and nuclear motions, two principal components of the molecular Schrödinger equation, has the potential to enable the de novo rational design for targeted functionalities of molecular machines. We discuss the development and application of a relatively new structural dynamics technique, femtosecond stimulated Raman spectroscopy with broadly tunable laser pulses from the UV to near-IR region, in tracking the coupled electronic and vibrational motions of organic chromophores in solution and protein environments. Such light-sensitive moieties hold broad interest and significance in gaining fundamental knowledge about the intramolecular and intermolecular Hamiltonian and developing effective strategies to control macroscopic properties. Inspired by recent experimental and theoretical advances, we focus on the in situ characterization and spectroscopy-guided tuning of photoacidity, excited state proton transfer pathways, emission color, and internal conversion via a conical intersection.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
7
|
Blankenburg L, Schroeder L, Habenstein F, Błasiak B, Kottke T, Bredenbeck J. Following local light-induced structure changes and dynamics of the photoreceptor PYP with the thiocyanate IR label. Phys Chem Chem Phys 2019; 21:6622-6634. [PMID: 30855039 DOI: 10.1039/c8cp05399e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoactive Yellow Protein (PYP) is a bacterial blue light receptor that enters a photocycle after excitation. The intermediate states are formed on time scales ranging from femtoseconds up to hundreds of milliseconds, after which the signaling state with a lifetime of about 1 s is reached. To investigate structural changes and dynamics, we incorporated the SCN IR label at distinct positions of the photoreceptor via cysteine mutation and cyanylation. FT-IR measurements of the SCN label at different sites of the well-established dark state structure of PYP characterized the spectral response of the label to differences in the environment. Under constant blue light irradiation, we observed the formation of the signaling state with significant changes of wavenumber and lineshape of the SCN bands. Thereby we deduced light-induced structural changes in the local environment of the labels. These results were supported by molecular dynamics simulations on PYP providing the solvent accessible surface area (SASA) at the different positions. To follow protein dynamics via the SCN label during the photocycle, we performed step-scan FT-IR measurements with a time resolution of 10 μs. Global analysis yielded similar time constants of τ1 = 70 μs, τ2 = 640 μs, and τ3 > 20 ms for the wild type and τ1 = 36 μs, τ2 = 530 μs, and τ3 > 20 ms for the SCN-labeled mutant PYP-A44C*, a mutant which provided a sufficiently large SCN difference signal to measure step-scan FT-IR spectra. In comparison to the protein (amide, E46) and chromophore bands the dynamics of the SCN label show a different behavior. This result indicates that the local kinetics sensed by the label are different from the global protein kinetics.
Collapse
Affiliation(s)
- Larissa Blankenburg
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Domratcheva T, Schlichting I. Spiers Memorial Lecture. Introductory lecture: the impact of structure on photoinduced processes in nucleic acids and proteins. Faraday Discuss 2018; 207:9-26. [PMID: 29583144 DOI: 10.1039/c8fd00058a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light is an important environmental variable and most organisms have evolved means to sense, exploit or avoid it and to repair detrimental effects on their genome. In general, light absorption is the task of specific chromophores, however other biomolecules such as oligonucleotides also do so which can result in undesired outcomes such as mutations and cancer. Given the biological importance of light-induced processes and applications for imaging, optogenetics, photodynamic therapy or photovoltaics, there is a great interest in understanding the detailed molecular mechanisms of photoinduced processes in proteins and nucleic acids. The processes are typically characterized by time-resolved spectroscopic approaches or computation, inferring structural information on transient species from stable ground state structures. Recently, however, structure determination of excited states or other short-lived species has become possible with the advent of X-ray free-electron lasers. This review gives an overview of the impact of structure on the understanding of photoinduced processes in macromolecules, focusing on systems presented at this Faraday Discussion meeting.
Collapse
Affiliation(s)
- Tatiana Domratcheva
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany.
| | - Ilme Schlichting
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Mix LT, Carroll EC, Morozov D, Pan J, Gordon WR, Philip A, Fuzell J, Kumauchi M, van Stokkum I, Groenhof G, Hoff WD, Larsen DS. Excitation-Wavelength-Dependent Photocycle Initiation Dynamics Resolve Heterogeneity in the Photoactive Yellow Protein from Halorhodospira halophila. Biochemistry 2018; 57:1733-1747. [PMID: 29465990 DOI: 10.1021/acs.biochem.7b01114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photoactive yellow proteins (PYPs) make up a diverse class of blue-light-absorbing bacterial photoreceptors. Electronic excitation of the p-coumaric acid chromophore covalently bound within PYP results in triphasic quenching kinetics; however, the molecular basis of this behavior remains unresolved. Here we explore this question by examining the excitation-wavelength dependence of the photodynamics of the PYP from Halorhodospira halophila via a combined experimental and computational approach. The fluorescence quantum yield, steady-state fluorescence emission maximum, and cryotrapping spectra are demonstrated to depend on excitation wavelength. We also compare the femtosecond photodynamics in PYP at two excitation wavelengths (435 and 475 nm) with a dual-excitation-wavelength-interleaved pump-probe technique. Multicompartment global analysis of these data demonstrates that the excited-state photochemistry of PYP depends subtly, but convincingly, on excitation wavelength with similar kinetics with distinctly different spectral features, including a shifted ground-state beach and altered stimulated emission oscillator strengths and peak positions. Three models involving multiple excited states, vibrationally enhanced barrier crossing, and inhomogeneity are proposed to interpret the observed excitation-wavelength dependence of the data. Conformational heterogeneity was identified as the most probable model, which was supported with molecular mechanics simulations that identified two levels of inhomogeneity involving the orientation of the R52 residue and different hydrogen bonding networks with the p-coumaric acid chromophore. Quantum calculations were used to confirm that these inhomogeneities track to altered spectral properties consistent with the experimental results.
Collapse
Affiliation(s)
- L Tyler Mix
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Elizabeth C Carroll
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Dmitry Morozov
- Department of Chemistry and NanoScience Center , University of Jyväskylä , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Jie Pan
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | | | | | - Jack Fuzell
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Masato Kumauchi
- Department of Microbiology and Molecular Genetics , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Ivo van Stokkum
- Faculty of Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Gerrit Groenhof
- Department of Chemistry and NanoScience Center , University of Jyväskylä , P.O. Box 35, 40014 Jyväskylä , Finland
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics , Oklahoma State University , Stillwater , Oklahoma 74078 , United States
| | - Delmar S Larsen
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
10
|
Šrajer V, Schmidt M. Watching Proteins Function with Time-resolved X-ray Crystallography. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2017; 50:373001. [PMID: 29353938 PMCID: PMC5771432 DOI: 10.1088/1361-6463/aa7d32] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron X-ray sources. An expansive database of more than 100,000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al., 2005a; Schmidt 2008; Neutze and Moffat, 2012; Šrajer 2014). In this approach, short and intense X-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron X-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard X-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond X-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al., 2014; Barends et al., 2015; Pande et al., 2016). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline challenges and further developments necessary to broaden the application of these methods to many important proteins and enzymes of biomedical relevance.
Collapse
Affiliation(s)
- Vukica Šrajer
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, USA
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, IL, USA
| |
Collapse
|
11
|
Schmidt M. A short history of structure based research on the photocycle of photoactive yellow protein. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:032201. [PMID: 28191482 PMCID: PMC5291790 DOI: 10.1063/1.4974172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/04/2017] [Indexed: 05/07/2023]
Abstract
The goals of time-resolved macromolecular crystallography are to extract the molecular structures of the reaction intermediates and the reaction dynamics from time-resolved X-ray data alone. To develop the techniques of time-resolved crystallography, biomolecules with special properties are required. The Photoactive Yellow Protein is the most sparkling of these.
Collapse
Affiliation(s)
- Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee , 3135 N. Maryland Ave, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
12
|
Hutchison CD, van Thor JJ. Populations and coherence in femtosecond time resolved X-ray crystallography of the photoactive yellow protein. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1276726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Jasper J. van Thor
- Molecular Biophysics, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
13
|
Probing the early stages of photoreception in photoactive yellow protein with ultrafast time-domain Raman spectroscopy. Nat Chem 2017. [PMID: 28644485 DOI: 10.1038/nchem.2717] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unveiling the nuclear motions of photoreceptor proteins in action is a crucial goal in protein science in order to understand their elaborate mechanisms and how they achieve optimal selectivity and efficiency. Previous studies have provided detailed information on the structures of intermediates that appear during the later stages (>ns) of such photoreception cycles, yet the initial events immediately after photoabsorption remain unclear because of experimental challenges in monitoring nuclear rearrangements on ultrafast timescales, including protein-specific low-frequency motions. Using time-domain Raman probing with sub-7-fs pulses, we obtain snapshot vibrational spectra of photoactive yellow protein and a mutant with high sensitivity, providing insights into the key responses that drive photoreception. Our data show a drastic intensity drop of the excited-state marker band at 135 cm-1 within a few hundred femtoseconds, suggesting a rapid weakening of the hydrogen bond that anchors the chromophore. We also track formation of the first ground-state intermediate over the first few picoseconds and fully characterize its vibrational structure, revealing a substantially-twisted cis conformation.
Collapse
|
14
|
Abstract
Time-resolved macromolecular crystallography unifies protein structure determination with chemical kinetics. With the advent of fourth generation X-ray sources the time-resolution can be on the order of 10-40 fs, which opens the ultrafast time scale to structure determination. Fundamental motions and transitions associated with chemical reactions in proteins can now be observed. Moreover, new experimental approaches at synchrotrons allow for the straightforward investigation of all kind of reactions in biological macromolecules. Here, recent developments in the field are reviewed.
Collapse
Affiliation(s)
- Marius Schmidt
- Kenwood Interdisciplinary Research Complex, Physics Department, University of Wisconsin-Milwaukee, Room 3087, 3135 North Maryland Avenue, Milwaukee, WI, 53211, USA.
| |
Collapse
|
15
|
Pande K, Hutchison CDM, Groenhof G, Aquila A, Robinson JS, Tenboer J, Basu S, Boutet S, DePonte DP, Liang M, White TA, Zatsepin NA, Yefanov O, Morozov D, Oberthuer D, Gati C, Subramanian G, James D, Zhao Y, Koralek J, Brayshaw J, Kupitz C, Conrad C, Roy-Chowdhury S, Coe JD, Metz M, Xavier PL, Grant TD, Koglin JE, Ketawala G, Fromme R, Šrajer V, Henning R, Spence JCH, Ourmazd A, Schwander P, Weierstall U, Frank M, Fromme P, Barty A, Chapman HN, Moffat K, van Thor JJ, Schmidt M. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 2016; 352:725-9. [PMID: 27151871 DOI: 10.1126/science.aad5081] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 04/05/2016] [Indexed: 11/02/2022]
Abstract
A variety of organisms have evolved mechanisms to detect and respond to light, in which the response is mediated by protein structural changes after photon absorption. The initial step is often the photoisomerization of a conjugated chromophore. Isomerization occurs on ultrafast time scales and is substantially influenced by the chromophore environment. Here we identify structural changes associated with the earliest steps in the trans-to-cis isomerization of the chromophore in photoactive yellow protein. Femtosecond hard x-ray pulses emitted by the Linac Coherent Light Source were used to conduct time-resolved serial femtosecond crystallography on photoactive yellow protein microcrystals over a time range from 100 femtoseconds to 3 picoseconds to determine the structural dynamics of the photoisomerization reaction.
Collapse
Affiliation(s)
- Kanupriya Pande
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA. Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Post Office Box 35, 40014 Jyväskylä, Finland
| | - Andy Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Josef S Robinson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jason Tenboer
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Shibom Basu
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel P DePonte
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Thomas A White
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Nadia A Zatsepin
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Oleksandr Yefanov
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Post Office Box 35, 40014 Jyväskylä, Finland
| | - Dominik Oberthuer
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Cornelius Gati
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Daniel James
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Yun Zhao
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Jake Koralek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jennifer Brayshaw
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Christopher Kupitz
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Chelsie Conrad
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Shatabdi Roy-Chowdhury
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Jesse D Coe
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Markus Metz
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Paulraj Lourdu Xavier
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany. IMPRS-UFAST, Max Planck Institute for Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thomas D Grant
- Hauptman-Woodward Institute, State University of New York at Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Jason E Koglin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gihan Ketawala
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Raimund Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Vukica Šrajer
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - Robert Henning
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - John C H Spence
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Matthias Frank
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Petra Fromme
- School of Molecular Sciences and Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287, USA
| | - Anton Barty
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry N Chapman
- Center for Free Electron Laser Science, Deutsches Elektronen Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany. Center for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Keith Moffat
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Jasper J van Thor
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Marius Schmidt
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
16
|
Balevičius V, Valkunas L, Abramavicius D. Modeling of ultrafast time-resolved fluorescence applied to a weakly coupled chromophore pair. J Chem Phys 2015; 143:074101. [DOI: 10.1063/1.4928281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- V. Balevičius
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9, Building 3, LT-10222 Vilnius, Lithuania
| | - L. Valkunas
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9, Building 3, LT-10222 Vilnius, Lithuania
- Center for Physical Sciences and Technology, Institute of Physics, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - D. Abramavicius
- Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9, Building 3, LT-10222 Vilnius, Lithuania
| |
Collapse
|
17
|
Nakamura R, Hamada N. Vibrational Energy Flow in Photoactive Yellow Protein Revealed by Infrared Pump–Visible Probe Spectroscopy. J Phys Chem B 2015; 119:5957-61. [DOI: 10.1021/jp512994q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryosuke Nakamura
- Science
and Technology Entrepreneurship
Laboratory, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Norio Hamada
- Science
and Technology Entrepreneurship
Laboratory, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Liu J, Yabushita A, Taniguchi S, Chosrowjan H, Imamoto Y, Sueda K, Miyanaga N, Kobayashi T. Ultrafast Time-Resolved Pump–Probe Spectroscopy of PYP by a Sub-8 fs Pulse Laser at 400 nm. J Phys Chem B 2013; 117:4818-26. [DOI: 10.1021/jp4001016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun Liu
- Advanced Ultrafast Laser Research
Center, University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585 Japan
- State Key Laboratory of High
Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Core Research for Evolutional
Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Atsushi Yabushita
- Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 300, Taiwan
| | - Seiji Taniguchi
- Institute
for Laser Technology, Osaka University,
Yamadaoka 2-6, Suita Osaka, 565-0871
Japan
| | - Haik Chosrowjan
- Institute
for Laser Technology, Osaka University,
Yamadaoka 2-6, Suita Osaka, 565-0871
Japan
| | - Yasushi Imamoto
- Department of Biophysics,
Graduate
School of Science, Kyoto University, Kitashirakawa-Oiwake,
Sakyo, Kyoto 606-8502 Japan
| | - Keiichi Sueda
- Institute of Laser Engineering, Osaka University, Yamadakami 2-6, Suita 565-0871, Ibaraki
567-0047, Japan
| | - Noriaki Miyanaga
- Institute of Laser Engineering, Osaka University, Yamadakami 2-6, Suita 565-0871, Ibaraki
567-0047, Japan
| | - Takayoshi Kobayashi
- Advanced Ultrafast Laser Research
Center, University of Electro-Communications, Chofugaoka 1-5-1, Chofu, Tokyo 182-8585 Japan
- Core Research for Evolutional
Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road,
Hsinchu 300, Taiwan
- Institute of Laser Engineering, Osaka University, Yamadakami 2-6, Suita 565-0871, Ibaraki
567-0047, Japan
| |
Collapse
|
19
|
Nakamura R, Hamada N, Abe K, Yoshizawa M. Structural Evolution in Photoactive Yellow Protein Studied by Femtosecond Stimulated Raman Spectroscopy. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Nakamura R, Hamada N, Abe K, Yoshizawa M. Ultrafast hydrogen-bonding dynamics in the electronic excited state of photoactive yellow protein revealed by femtosecond stimulated Raman spectroscopy. J Phys Chem B 2012; 116:14768-75. [PMID: 23210980 DOI: 10.1021/jp308433a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ultrafast structural dynamics in the electronic excited state of photoactive yellow protein (PYP) is studied by femtosecond stimulated Raman spectroscopy. Stimulated Raman spectra in the electronic excited state, S(1), can be obtained by using a Raman pump pulse in resonance with the S(1)-S(0) transition. This is confirmed by comparing the experimental results with numerical calculations based on the density matrix treatment. We also investigate the hydrogen-bonding network surrounding the wild-type (WT)-PYP chromophore in the ground and excited states by comparing its stimulated Raman spectra with those of the E46Q-PYP mutant. We focus on the relative intensity of the Raman band at 1555 cm(-1), which includes both vinyl bond C═C stretching and ring vibrations and is sensitive to the hydrogen-bonding network around the phenolic oxygen of the chromophore. The relative intensity for the WT-PYP decreases after actinic excitation within the 150 fs time resolution and reaches a similar intensity to that for E46Q-PYP. These observations indicate that the WT-PYP hydrogen-bonding network is immediately rearranged in the electronic excited state to form a structure similar to that of E46Q-PYP.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Science and Technology Entrepreneurship Laboratory, Osaka University, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
21
|
Lincoln CN, Fitzpatrick AE, van Thor JJ. Photoisomerisation quantum yield and non-linear cross-sections with femtosecond excitation of the photoactive yellow protein. Phys Chem Chem Phys 2012; 14:15752-64. [PMID: 23090503 DOI: 10.1039/c2cp41718a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The quantum yield of photoisomerisation of the photoactive yellow protein (PYP) strongly depends on peak power and wavelength with femtosecond optical excitation. Using systematic power titrations and addition of second order dispersion resulting in 140, 300 and 600 fs pulse durations, the one and multi-photon cross-sections at 400, 450 and 490 nm have been assessed from transient absorption spectroscopy and additionally the Z-scan technique. Applying a target model that incorporates photoselection theory, estimates for the cross-sections for stimulated emission and absorption of the first excited state, the amount of ultrafast internal conversion and the underlying species associated dynamics have been determined. The final quantum yields for photoisomerisation were found to be 0.06, 0.14-0.19 and 0.02 for excitation wavelengths 400, 450 and 490 nm and found to increase with increasing pulse durations. Transient absorption measurements and Z-scan measurements at 450 nm, coinciding with the maximum wavelength of the ground state absorption, indicate that the photochemical quantum yield is intrinsically limited by an ultrafast internal conversion reaction as well as by stimulated emission cross-section. With excitation at 400 nm photoisomerisation quantum yield is further significantly limited by competing multi-photon excitation into excited state absorption at 385 nm previously proposed to result in photoionisation. With excitation at 490 nm the photoisomerisation quantum yield is predominantly limited further by the significantly higher stimulated emission cross-section compared to ground state cross-section as well as multi-photon processes. In addition to photoionisation, a second product of multi-photon excitation is identified and characterised by an induced absorption at 500 nm and a time constant of 2 ps for relaxation. With power densities up to 138 GW cm(-2) the measurements have not provided indication for coherent multi-photon absorption of PYP. In the saturation regime with 450 nm excitation, the limit for the photoisomerisation quantum yield was found to be 0.14-0.19 and the excited state absorption cross-section 6.1 × 10(-17) cm(2) or 0.36 times the ground state cross-section of 1.68 × 10(-16) cm(2) per molecule. This places a fundamental restriction on the maximum populations and sample penetration that may be achieved for instance in femtosecond pump-probe experiments with molecular crystals of PYP.
Collapse
Affiliation(s)
- Craig N Lincoln
- Imperial College London, Division of Molecular Biosciences, South Kensington campus, SW7 2AZ, London, UK
| | | | | |
Collapse
|
22
|
|
23
|
Gnanasekaran R, Leitner DM. Dielectric response and vibrational energy relaxation in photoactive yellow protein: A molecular dynamics simulation study. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.09.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Rupenyan AB, Vreede J, van Stokkum IHM, Hospes M, Kennis JTM, Hellingwerf KJ, Groot ML. Proline 68 enhances photoisomerization yield in photoactive yellow protein. J Phys Chem B 2011; 115:6668-77. [PMID: 21542640 DOI: 10.1021/jp112113s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In proteins and enzymes, the local environment of an active cofactor plays an important role in controlling the outcome of a functional reaction. In photoactive yellow protein (PYP), it ensures photoisomerization of the chromophore, a prerequisite for formation of a signaling state. PYP is the prototype of a PAS domain, and the preferred model system for the studies of molecular mechanisms of biological light sensing. We investigated the effect of replacing proline-68, positioned near but not in direct contact with the chromophore, with other neutral amino acids (alanine, glycine, and valine), using ultrafast spectroscopy probing the visible and the mid-IR spectral regions, and molecular simulation to understand the interactions tuning the efficiency of light signaling. Transient absorption measurements indicate that the quantum yield of isomerization in the mutants is lower than the yield observed for the wild type. Subpicosecond mid-IR spectra and molecular dynamics simulations of the four proteins reveal that the hydrogen bond interactions around the chromophore and the access of water molecules in the active site of the protein determine the efficiency of photoisomerization. The mutants provide additional hydrogen bonds to the chromophore, directly and by allowing more water molecules access to its binding pocket. We conclude that proline-68 in the wild type protein optimizes the yield of photochemistry by maintaining a weak hydrogen bond with the chromophore, at the same time restraining the entrance of water molecules close to the alkylic part of pCa. This study provides a molecular basis for the structural optimization of biological light sensing.
Collapse
Affiliation(s)
- Alisa B Rupenyan
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
25
|
Spectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface. Proc Natl Acad Sci U S A 2010; 107:5821-6. [PMID: 20220103 DOI: 10.1073/pnas.0903092107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein-chromophore interactions in photoreceptors often shift the chromophore absorbance maximum to a biologically relevant spectral region. A fundamental question regarding such spectral tuning effects is how the electronic ground state S(0) and excited state S(1) are modified by the protein. It is widely assumed that changes in energy gap between S(0) and S(1) are the main factor in biological spectral tuning. We report a generally applicable approach to determine if a specific residue modulates the energy gap, or if it alters the equilibrium nuclear geometry or width of the energy surfaces. This approach uses the effects that changes in these three parameters have on the absorbance and fluorescence emission spectra of mutants. We apply this strategy to a set of mutants of photoactive yellow protein (PYP) containing all 20 side chains at active site residue 46. While the mutants exhibit significant variation in both the position and width of their absorbance spectra, the fluorescence emission spectra are largely unchanged. This provides strong evidence against a major role for changes in energy gap in the spectral tuning of these mutants and reveals a change in the width of the S(1) energy surface. We determined the excited state lifetime of selected mutants and the observed correlation between the fluorescence quantum yield and lifetime shows that the fluorescence spectra are representative of the energy surfaces of the mutants. These results reveal that residue 46 tunes the absorbance spectrum of PYP largely by modulating the width of the S(1) energy surface.
Collapse
|
26
|
Nakamura R, Hamada N, Ichida H, Tokunaga F, Kanematsu Y. Transient Vibronic Structure in Ultrafast Fluorescence Spectra of Photoactive Yellow Protein. Photochem Photobiol 2008; 84:937-40. [DOI: 10.1111/j.1751-1097.2008.00329.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|