1
|
Sunaga A. Structure and Excitation Spectra of Third-Row Transition Metal Hexafluorides Based on Multi-Reference Exact Two-Component Theory. Inorg Chem 2024; 63:18355-18364. [PMID: 39283310 DOI: 10.1021/acs.inorgchem.4c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The structures and some vertical excitation energies of third-row transition metal hexafluorides (MF6, M = Re, Os, Ir, Pt, Au, Hg) were calculated using the generalized-active-space configuration interaction (GASCI) theory based on the exact two-component (X2C) Hamiltonian. The spin-orbit coupling (SOC) was included at the Hartree-Fock level, enabling us to analyze the SOC at the orbital level (spinor-representation). The excitation spectra were assigned based on the double group, a relativistic group theory applicable to states with the SOC. This study provides a fundamental understanding of the ligand field splitting, including the SOC, that is useful for the photochemistry and spin chemistry involving heavy elements.
Collapse
Affiliation(s)
- Ayaki Sunaga
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Uhlířová T, Cianchino D, Nottoli T, Lipparini F, Gauss J. Cholesky Decomposition in Spin-Free Dirac-Coulomb Coupled-Cluster Calculations. J Phys Chem A 2024; 128:8292-8303. [PMID: 39268870 DOI: 10.1021/acs.jpca.4c04353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
We present an implementation for the use of Cholesky decomposition (CD) of two-electron integrals within the spin-free Dirac-Coulomb (SFDC) scheme that enables to perform high-accuracy coupled-cluster (CC) calculations at costs almost comparable to those of their nonrelativistic counterparts. While for nonrelativistic CC calculations, atomic-orbital (AO)-based algorithms, due to their significantly reduced disk-space requirements, are the key to efficient large-scale computations, such algorithms are less advantageous in the SFDC case due to their increased computational cost in that case. Here, molecular-orbital (MO)-based algorithms exploiting the CD of the two-electron integrals allow us to reduce disk-space requirements and lead to computational cost in the CC step that is more or less the same as in the nonrelativistic case. The only remaining overhead in a CD-SFDC-CC calculation is due to the need to compute additional two-electron integrals, the somewhat higher cost of the Hartree-Fock calculation in the SFDC case, and additional cost in the transformation of the Cholesky vectors from the AO to the MO representation. However, these additional costs typically amount to less than 5-15% of the total wall time and are thus acceptable. We illustrate the efficiency of our CD scheme for SFDC-CC calculations on a series of illustrative calculations for the X(CO)4 molecules with X = Ni, Pd, Pt.
Collapse
Affiliation(s)
- Tereza Uhlířová
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - Davide Cianchino
- Dipartimento di Chimica e Chimica Industriale, Universitá di Pisa, Via G. Moruzzi 13, Pisa I-56124, Italy
| | - Tommaso Nottoli
- Dipartimento di Chimica e Chimica Industriale, Universitá di Pisa, Via G. Moruzzi 13, Pisa I-56124, Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Universitá di Pisa, Via G. Moruzzi 13, Pisa I-56124, Italy
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| |
Collapse
|
3
|
Kaka KS, Castet F, Champagne B. On the third-order nonlinear optical responses of cis and trans stilbenes - a quantum chemistry investigation. Phys Chem Chem Phys 2024; 26:14808-14824. [PMID: 38717796 DOI: 10.1039/d4cp00522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The second hyperpolarizabilities (γ) of the stilbene molecular switch in its trans and cis forms have been calculated using quantum chemistry methods to address their third-order nonlinear optical contrasts, to assess the reliability of lower-cost DFT methods, and to make comparisons with experiments. First, the reference CCSD(T) method shows that trans-stilbene presents a γ‖ value twice larger than its cis isomer (its γTHS value is 2.7 times larger). Among more cost-effective methods, reliable results are obtained at MP2 as well as with DFT, provided the CAM-B3LYP or ωB97X-D XCFs are employed. Supplementary DFT calculations have investigated the relationships between the accuracy of the exchange-correlation functionals, the fulfillment of Koopmans' theorem, and the delocalization error, and they demonstrated that satisfying Koopmans' theorem is not the condition for the best accuracy but that functionals with small delocalization errors are generally efficient. Using the selected CAM-B3LYP, large γ enhancements by about 70% (trans-stilbene) and 50% (cis-stilbene) have been evidenced when accounting for solvent effects using an implicit solvation model (IEFPCM), even for apolar solvents. Then, the frequency dispersion of the γ responses has been described using Bishop polynomial expansions, allowing comparisons with a broad set of experimental data. To a certain extent, no systematic agreement between the calculations and the measured values was found. On the one hand, the agreement is satisfactory for the γ(-ω;ω,-ω,ω) quantities, provided that the dominant vibrational contribution is taken into account. On the other hand, the agreement is poor for the γ(-2ω;ω,ω,0) and γ(-3ω;ω,ω,ω) quantities, while some inconsistencies between experimental values are also highlighted.
Collapse
Affiliation(s)
- Komlanvi Sèvi Kaka
- Theoretical Chemistry Laboratory, Unit of Theoretical and Structural Physical Chemistry, NISM (Namur Institute of Structured Matter), University of Namur (UNamur), B-5000 Namur, Belgium.
| | - Frédéric Castet
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Cedex Talence, France
| | - Benoît Champagne
- Theoretical Chemistry Laboratory, Unit of Theoretical and Structural Physical Chemistry, NISM (Namur Institute of Structured Matter), University of Namur (UNamur), B-5000 Namur, Belgium.
| |
Collapse
|
4
|
Vasiliu M, Peterson KA, Dixon DA. Bond Dissociation Energies in Heavy Element Chalcogen and Halogen Small Molecules. J Phys Chem A 2021; 125:1892-1902. [PMID: 33645983 DOI: 10.1021/acs.jpca.0c11393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Thermodynamic properties including bond dissociation energies (BDEs), heats of formation, and gas-phase acidities for the hydrides and dimers of chalcogens and halogens, H2Y, HX, Y2, and X2 for Y = Se, Te, and At and X = Br, I, and At, have been predicted using the Feller-Peterson-Dixon composite-correlated molecular orbital theory approach. A full four-component CCSD(T) approach was used to calculate the spin-orbit effects on thermodynamic properties, except for Se2, where the AoC-DHF value was used due to strong multireference effects in Se2 for the SO calculations. The calculated results show that the At2 BDE is quite small, 19.5 kcal/mol, with much of the low bond energy due to spin-orbit effects. H2Po is not predicted to be stable to dehydrogenation to Po + H2 in terms of the free energy at 298 K. In the gas phase, HAt is predicted to be a stronger acid than H2SO4. The current results provide insights into potential difficulties in the actual experimental observation of such species for heavy elements.
Collapse
Affiliation(s)
- Monica Vasiliu
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| |
Collapse
|
5
|
Wang T, Ma Y, Zhao L, Jiang J. Portably parallel construction of a configuration-interaction wave function from a matrix-product state using the Charm++ framework. J Comput Chem 2020; 41:2707-2721. [PMID: 32986283 DOI: 10.1002/jcc.26424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/16/2020] [Accepted: 09/02/2020] [Indexed: 11/10/2022]
Abstract
The construction of configuration-interaction (CI) expansions from a matrix product state (MPS) involves numerous matrix operations and the skillful sampling of important configurations in a large Hilbert space. In this work, we present an efficient procedure for constructing CI expansions from MPS employing the parallel object-oriented Charm++ programming framework, upon which automatic load-balancing and object migrating facilities can be employed. This procedure was employed in the MPS-to-CI utility (Moritz et al., J. Chem. Phys. 2007, 126, 224109), the sampling-reconstructed complete active-space algorithm (SR-CAS, Boguslawski et al., J. Chem. Phys. 2011, 134, 224101), and the entanglement-driven genetic algorithm (EDGA, Luo et al., J. Chem. Theory Comput. 2017, 13, 4699). It enhances productivity and allows the sampling programs to evolve to their population-expansion versions, for example, EDGA with population expansion (PE-EDGA). Further, examples of 1,2-dioxetanone and firefly dioxetanone anion (FDO- ) molecules demonstrated the following: (a) parallel efficiencies can be persistently improved by simply by increasing the proportions of the asynchronous executions and (b) a sampled CAS-type CI wave function of a bi-radical-state FDO- molecule utilizing the full valence (30e,26o) active space can be constructed within a few hours with using thousands of cores.
Collapse
Affiliation(s)
- Ting Wang
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.,Center of Scientific Computing Applications and Research, Chinese Academy of Sciences, Beijing, China.,School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Yingjin Ma
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.,Center of Scientific Computing Applications and Research, Chinese Academy of Sciences, Beijing, China
| | - Lian Zhao
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.,Center of Scientific Computing Applications and Research, Chinese Academy of Sciences, Beijing, China
| | - Jinrong Jiang
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.,Center of Scientific Computing Applications and Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Saue T, Bast R, Gomes ASP, Jensen HJA, Visscher L, Aucar IA, Di Remigio R, Dyall KG, Eliav E, Fasshauer E, Fleig T, Halbert L, Hedegård ED, Helmich-Paris B, Iliaš M, Jacob CR, Knecht S, Laerdahl JK, Vidal ML, Nayak MK, Olejniczak M, Olsen JMH, Pernpointner M, Senjean B, Shee A, Sunaga A, van Stralen JNP. The DIRAC code for relativistic molecular calculations. J Chem Phys 2020; 152:204104. [PMID: 32486677 DOI: 10.1063/5.0004844] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree-Fock, Kohn-Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.
Collapse
Affiliation(s)
- Trond Saue
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS-Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Radovan Bast
- Department of Information Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - André Severo Pereira Gomes
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Lucas Visscher
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| | - Ignacio Agustín Aucar
- Instituto de Modelado e Innovación Tecnológica, CONICET, and Departamento de Física-Facultad de Ciencias Exactas y Naturales, UNNE, Avda. Libertad 5460, W3404AAS Corrientes, Argentina
| | - Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kenneth G Dyall
- Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229, USA
| | - Ephraim Eliav
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Elke Fasshauer
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark
| | - Timo Fleig
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS-Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Loïc Halbert
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Erik Donovan Hedegård
- Division of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
| | - Christoph R Jacob
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Stefan Knecht
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Marta L Vidal
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Malaya K Nayak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Małgorzata Olejniczak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | | | - Bruno Senjean
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| | - Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ayaki Sunaga
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-city, Tokyo 192-0397, Japan
| | - Joost N P van Stralen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| |
Collapse
|
7
|
Yamamoto S, Tatewaki H. The ground and first excited states of HoS studied by four-component relativistic KR-MCSCF and KRCI. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-2586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Vasiliu M, Peterson KA, Christe KO, Dixon DA. Electronic Structure Predictions of the Energetic Properties of Tellurium Fluorides. Inorg Chem 2019; 58:8279-8292. [PMID: 30648862 DOI: 10.1021/acs.inorgchem.8b03235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heats of formation, bond dissociation energies (BDEs), fluoride affinities (FA), fluorocation affinities (FCA), electron affinities (EA), and ionization energies (IP) of TeF n ( n = 1-6) have been predicted using the Feller-Peterson-Dixon (FPD) approach. To benchmark the approach, the bond dissociation energies of Te2 and TeO, the heats of formation of Te2, TeH2, TeO, and TeO2, and the electron affinity for TeO and TeO2 were calculated as there are experimental thermodynamic data available for these tellurium compounds, which allow confirmation of the heat of formation of Te gas as Δ Hf,0K(Te) = 50.7 ± 0.6 kcal/mol. Spin-orbit corrections are required for good results and cannot be ignored. A comparison among fluoride affinities, fluorocation affinities, electron affinities, and ionization energies of TeF n and SeF n is reported.
Collapse
Affiliation(s)
- Monica Vasiliu
- Department of Chemistry and Biochemistry, Shelby Hall , The University of Alabama , Box 870336, Tuscaloosa , Alabama 35487-0336 , United States
| | - Kirk A Peterson
- Department of Chemistry , Washington State University , Pullman , Washington 99164-4630 , United States
| | - Karl O Christe
- Loker Hydrocarbon Research Institute and Department of Chemistry University of Southern California , Los Angeles , California 90089-1661 , United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, Shelby Hall , The University of Alabama , Box 870336, Tuscaloosa , Alabama 35487-0336 , United States
| |
Collapse
|
9
|
Armentrout PB, Demireva M, Peterson KA. Guided ion beam and theoretical studies of the bond energy of SmS . J Chem Phys 2017; 147:214307. [PMID: 29221388 DOI: 10.1063/1.5009916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous work has shown that atomic samarium cations react with carbonyl sulfide to form SmS+ + CO in an exothermic and barrierless process. To characterize this reaction further, the bond energy of SmS+ is determined in the present study using guided ion beam tandem mass spectrometry. Reactions of SmS+ with Xe, CO, and O2 are examined. Results for collision-induced dissociation processes with all three molecules along with the endothermicity of the SmS+ + CO → Sm+ + COS exchange reaction are combined to yield D0(Sm+-S) = 3.37 ± 0.20 eV. The CO and O2 reactions also yield a SmSO+ product, with measured endothermicities that indicate D0(SSm+-O) = 3.73 ± 0.16 eV and D0(OSm+-S) = 1.38 ± 0.27 eV. The SmS+ bond energy is compared with theoretical values characterized at several levels of theory, including CCSD(T) complete basis set extrapolations using all-electron basis sets. Multireference configuration interaction calculations with explicit spin-orbit calculations along with composite thermochemistry using the Feller-Peterson-Dixon method and all-electron basis sets were also explored for SmS+, and for comparison, SmO, SmO+, and EuO.
Collapse
Affiliation(s)
- P B Armentrout
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Maria Demireva
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| |
Collapse
|
10
|
Vogiatzis KD, Ma D, Olsen J, Gagliardi L, de Jong WA. Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations. J Chem Phys 2017; 147:184111. [DOI: 10.1063/1.4989858] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Konstantinos D. Vogiatzis
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431, USA
| | - Dongxia Ma
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431, USA
| | - Jeppe Olsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Laura Gagliardi
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455-0431, USA
| | - Wibe A. de Jong
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Feng R, Peterson KA. Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr. J Chem Phys 2017; 147:084108. [DOI: 10.1063/1.4994725] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rulin Feng
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | - Kirk A. Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| |
Collapse
|
12
|
Lipparini F, Kirsch T, Köhn A, Gauss J. Internally Contracted Multireference Coupled Cluster Calculations with a Spin-Free Dirac–Coulomb Hamiltonian: Application to the Monoxides of Titanium, Zirconium, and Hafnium. J Chem Theory Comput 2017; 13:3171-3184. [DOI: 10.1021/acs.jctc.7b00110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Filippo Lipparini
- Institut
für Physikalische Chemie, Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Till Kirsch
- Institut
für Physikalische Chemie, Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Andreas Köhn
- Institut
für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring
55, D-70569 Stuttgart, Germany
| | - Jürgen Gauss
- Institut
für Physikalische Chemie, Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
13
|
Saue T, Fromager E. Foreword for the special issue of Molecular Physics in honour of Hans Jørgen Aagaard Jensen. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1259259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Trond Saue
- Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, Strasbourg, France
| |
Collapse
|
14
|
Ackermann J, Hogreve H. Stability and spectral properties of the dication Ne2+2. Phys Chem Chem Phys 2017; 19:32433-32442. [DOI: 10.1039/c7cp07194a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Two different types of metastable states in Ne2+2 are predicted and possible decay transitions as well as the ensuing lifetimes and intensity distributions are studied.
Collapse
Affiliation(s)
- J. Ackermann
- Molecular Bioinformatics
- Johann Wolfgang Goethe Universität
- D-60325 Frankfurt
- Germany
| | - H. Hogreve
- IFISR – International Foundation for Independent Scientific Research
- New York
- USA
| |
Collapse
|
15
|
Hogreve H. Metastable homonuclear diatomic trications X23+ for elements X from the first three rows of the periodic table. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Lipparini F, Gauss J. Cost-Effective Treatment of Scalar Relativistic Effects for Multireference Systems: A CASSCF Implementation Based on the Spin-free Dirac–Coulomb Hamiltonian. J Chem Theory Comput 2016; 12:4284-95. [DOI: 10.1021/acs.jctc.6b00609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Filippo Lipparini
- Institut
für Physikalische
Chemie, Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Jürgen Gauss
- Institut
für Physikalische
Chemie, Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
17
|
Suo B, Yu YM, Han H. Relativistic configuration interaction calculation on the ground and excited states of iridium monoxide. J Chem Phys 2015; 142:094303. [PMID: 25747077 DOI: 10.1063/1.4913638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for Ω = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of Ω = 1/2, which is highly mixed with (4)Σ(-) and (2)Π states in Λ - S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm(-1) above, respectively. The equilibrium bond length 1.712 Å and the harmonic vibrational frequency 903 cm(-1) of the 5/2 state are close to the experimental measurement of 1.724 Å and 909 cm(-1), which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for Ω = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths.
Collapse
Affiliation(s)
- Bingbing Suo
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yan-Mei Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
| | - Huixian Han
- School of Physics, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
18
|
Yamamoto S, Tatewaki H. Electronic spectra of DyF studied by four-component relativistic configuration interaction methods. J Chem Phys 2015; 142:094312. [PMID: 25747086 DOI: 10.1063/1.4913631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f(9))(6s(2))(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f(10))(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T0 = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f(9))(6s)(6p), but these configurations are not consistent with the large Re's (∼3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f(10))(6p3/2,1/2), (4f(10))(6p3/2,3/2), and (4f(9))(6s)(6p3/2,1/2) at around 3 eV. The former two states have larger Re (3.88 a.u.) than the third, so that it is reasonable to assign (4f(10))(6p3/2,1/2) to [19.3]8.5 and (4f(10))(6p3/2,3/2) to [20.3]8.5.
Collapse
Affiliation(s)
- Shigeyoshi Yamamoto
- School of International Liberal Studies, Chukyo University, 101-2 Yagoto-Honmachi, Showa-ku, Nagoya 466-8666, Japan
| | - Hiroshi Tatewaki
- Institute of Advanced Studies in Artificial Intelligence, Chukyo University, Toyota 470-0393, Japan
| |
Collapse
|
19
|
Gou D, Kuang X, Gao Y, Huo D. Theoretical study on the ground state of the polar alkali-metal-barium molecules: potential energy curve and permanent dipole moment. J Chem Phys 2015; 142:034308. [PMID: 25612710 DOI: 10.1063/1.4906049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this paper, we systematically investigate the electronic structure for the (2)Σ(+) ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.
Collapse
Affiliation(s)
- Dezhi Gou
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Xiaoyu Kuang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Yufeng Gao
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Dongming Huo
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Parmar P, Peterson KA, Clark AE. Static electric dipole polarizabilities of An5+/6+ and AnO2+/2+ (An = U, Np, and Pu) ions. J Chem Phys 2014; 141:234304. [DOI: 10.1063/1.4903792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Payal Parmar
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Kirk A. Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Aurora E. Clark
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
- Material Science and Engineering Program, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
21
|
Cheng L, Stopkowicz S, Gauss J. Spin-free Dirac-Coulomb calculations augmented with a perturbative treatment of spin-orbit effects at the Hartree-Fock level. J Chem Phys 2013; 139:214114. [DOI: 10.1063/1.4832739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Aidas K, Angeli C, Bak KL, Bakken V, Bast R, Boman L, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Ekström U, Enevoldsen T, Eriksen JJ, Ettenhuber P, Fernández B, Ferrighi L, Fliegl H, Frediani L, Hald K, Halkier A, Hättig C, Heiberg H, Helgaker T, Hennum AC, Hettema H, Hjertenæs E, Høst S, Høyvik IM, Iozzi MF, Jansík B, Jensen HJA, Jonsson D, Jørgensen P, Kauczor J, Kirpekar S, Kjærgaard T, Klopper W, Knecht S, Kobayashi R, Koch H, Kongsted J, Krapp A, Kristensen K, Ligabue A, Lutnæs OB, Melo JI, Mikkelsen KV, Myhre RH, Neiss C, Nielsen CB, Norman P, Olsen J, Olsen JMH, Osted A, Packer MJ, Pawlowski F, Pedersen TB, Provasi PF, Reine S, Rinkevicius Z, Ruden TA, Ruud K, Rybkin VV, Sałek P, Samson CCM, de Merás AS, Saue T, Sauer SPA, Schimmelpfennig B, Sneskov K, Steindal AH, Sylvester-Hvid KO, Taylor PR, Teale AM, Tellgren EI, Tew DP, Thorvaldsen AJ, Thøgersen L, Vahtras O, Watson MA, Wilson DJD, Ziolkowski M, Agren H. The Dalton quantum chemistry program system. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2013; 4:269-284. [PMID: 25309629 PMCID: PMC4171759 DOI: 10.1002/wcms.1172] [Citation(s) in RCA: 874] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.
Collapse
Affiliation(s)
- Kestutis Aidas
- Department of General Physics and Spectroscopy, Faculty of Physics, Vilnius University Vilnius, Lithuania
| | | | - Keld L Bak
- Aarhus University School of Engineering Aarhus, Denmark
| | - Vebjørn Bakken
- Faculty of Mathematics and Natural Sciences, University of Oslo Oslo, Norway
| | - Radovan Bast
- Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology Stockholm, Sweden
| | | | | | | | - Sonia Coriani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste Trieste, Italy
| | - Pål Dahle
- Norwegian Computing Center Oslo, Norway
| | | | - Ulf Ekström
- CTCC, Department of Chemistry, University of Oslo Oslo, Norway
| | - Thomas Enevoldsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Odense, Denmark
| | | | | | - Berta Fernández
- Department of Physical Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela Santiago de Compostela, Spain
| | - Lara Ferrighi
- CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø Norway
| | - Heike Fliegl
- CTCC, Department of Chemistry, University of Oslo Oslo, Norway
| | - Luca Frediani
- CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø Norway
| | | | | | - Christof Hättig
- Department of Theoretical Chemistry, Ruhr-University Bochum Bochum, Germany
| | | | - Trygve Helgaker
- CTCC, Department of Chemistry, University of Oslo Oslo, Norway
| | | | - Hinne Hettema
- Department of Philosophy, The University of Auckland Auckland, New Zealand
| | - Eirik Hjertenæs
- Department of Chemistry, Norwegian University of Science and Technology Trondheim, Norway
| | - Stinne Høst
- Department of Geoscience, Aarhus University Aarhus, Denmark
| | | | | | | | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Odense, Denmark
| | - Dan Jonsson
- High-Performance Computing Group, UiT The Arctic University of Norway, Tromsø Norway
| | - Poul Jørgensen
- Department of Chemistry, Aarhus University Aarhus, Denmark
| | - Joanna Kauczor
- Department of Physics, Chemistry and Biology, Linköping University Linköping, Sweden
| | | | | | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Stefan Knecht
- Laboratory of Physical Chemistry, ETH Zürich Zürich, Switzerland
| | - Rika Kobayashi
- Australian National University Supercomputer Facility Canberra, Australia
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology Trondheim, Norway
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Odense, Denmark
| | | | | | - Andrea Ligabue
- Computer Services: Networks and Systems, University of Modena and Reggio Emilia Modena, Italy
| | | | - Juan I Melo
- Physics Department, FCEyN-UBA and IFIBA-CONICET, Universidad de Buenos Aires Buenos Aires, Argentina
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Copenhagen Denmark
| | - Rolf H Myhre
- Department of Chemistry, Norwegian University of Science and Technology Trondheim, Norway
| | - Christian Neiss
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Erlangen, Germany
| | | | - Patrick Norman
- Department of Physics, Chemistry and Biology, Linköping University Linköping, Sweden
| | - Jeppe Olsen
- Department of Chemistry, Aarhus University Aarhus, Denmark
| | - Jógvan Magnus H Olsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Odense, Denmark
| | | | - Martin J Packer
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark Odense, Denmark
| | - Filip Pawlowski
- Institute of Physics, Kazimierz Wielki University Bydgoszcz, Poland
| | | | - Patricio F Provasi
- Department of Physics, University of Northeastern and IMIT-CONICET Corrientes, Argentina
| | - Simen Reine
- CTCC, Department of Chemistry, University of Oslo Oslo, Norway
| | - Zilvinas Rinkevicius
- Department of Theoretical Chemistry and Biology, School of Biotechnology and Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology Stockholm, Sweden
| | | | - Kenneth Ruud
- CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø Norway
| | - Vladimir V Rybkin
- Institute of Physical Chemistry, Karlsruhe Institute of Technology Karlsruhe, Germany
| | | | - Claire C M Samson
- Institute of Physical Chemistry, Karlsruhe Institute of Technology Karlsruhe, Germany
| | | | - Trond Saue
- Paul Sabatier University Toulouse, France
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, Copenhagen Denmark
| | - Bernd Schimmelpfennig
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology Karlsruhe, Germany
| | | | - Arnfinn H Steindal
- CTCC, Department of Chemistry, UiT The Arctic University of Norway, Tromsø Norway
| | | | - Peter R Taylor
- VLSCI and School of Chemistry, University of Melbourne Parkville, Australia
| | - Andrew M Teale
- School of Chemistry, University of Nottingham Nottingham, UK
| | - Erik I Tellgren
- CTCC, Department of Chemistry, University of Oslo Oslo, Norway
| | - David P Tew
- School of Chemistry, University of Bristol Bristol, UK
| | | | | | - Olav Vahtras
- Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology Stockholm, Sweden
| | - Mark A Watson
- Department of Chemistry, Princeton University Princeton, New Jersey
| | - David J D Wilson
- Department of Chemistry and La Trobe Institute for Molecular Sciences, La Trobe University Melbourne, Australia
| | - Marcin Ziolkowski
- CoE for Next Generation Computing, Clemson University Clemson, South Carolina
| | - Hans Agren
- Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology Stockholm, Sweden
| |
Collapse
|
23
|
Parmar P, Peterson KA, Clark AE. Static Electric Dipole Polarizabilities of Tri- and Tetravalent U, Np, and Pu Ions. J Phys Chem A 2013; 117:11874-80. [DOI: 10.1021/jp403078j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Payal Parmar
- Department
of Chemistry, Washington State University, Pullman, Washington 99164,
United States
| | - Kirk A. Peterson
- Department
of Chemistry, Washington State University, Pullman, Washington 99164,
United States
| | - Aurora E. Clark
- Department
of Chemistry, Washington State University, Pullman, Washington 99164,
United States
| |
Collapse
|
24
|
|
25
|
Cheng L, Gauss J. Analytical evaluation of first-order electrical properties based on the spin-free Dirac-Coulomb Hamiltonian. J Chem Phys 2011; 134:244112. [DOI: 10.1063/1.3601056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
26
|
Gomes ASP, Visscher L, Bolvin H, Saue T, Knecht S, Fleig T, Eliav E. The electronic structure of the triiodide ion from relativistic correlated calculations: A comparison of different methodologies. J Chem Phys 2010; 133:064305. [DOI: 10.1063/1.3474571] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
On the inclusion of triple and quadruple electron excitations into MRCISD for multiple states. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.04.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Knecht S, Jensen HJA, Fleig T. Large-scale parallel configuration interaction. II. Two- and four-component double-group general active space implementation with application to BiH. J Chem Phys 2010; 132:014108. [DOI: 10.1063/1.3276157] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
de Jong WA, Bylaska E, Govind N, Janssen CL, Kowalski K, Müller T, Nielsen IMB, van Dam HJJ, Veryazov V, Lindh R. Utilizing high performance computing for chemistry: parallel computational chemistry. Phys Chem Chem Phys 2010; 12:6896-920. [DOI: 10.1039/c002859b] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Sørensen LK, Knecht S, Fleig T, Marian CM. Four-Component Relativistic Coupled Cluster and Configuration Interaction Calculations on the Ground and Excited States of the RbYb Molecule. J Phys Chem A 2009; 113:12607-14. [DOI: 10.1021/jp904914m] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lasse Kragh Sørensen
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Knecht
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Timo Fleig
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christel M. Marian
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
31
|
Réal F, Gomes ASP, Visscher L, Vallet V, Eliav E. Benchmarking Electronic Structure Calculations on the Bare UO22+ Ion: How Different are Single and Multireference Electron Correlation Methods? J Phys Chem A 2009; 113:12504-11. [DOI: 10.1021/jp903758c] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Florent Réal
- Université Lille1 (Sciences et Technologies), Laboratoire PhLAM, CNRS UMR 8523, CERLA, CNRS FR 2416, Bât P5, F-59655 Villeneuve d’Ascq Cedex, France, Amsterdam Center for Multiscale Modeling, Department of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - André Severo Pereira Gomes
- Université Lille1 (Sciences et Technologies), Laboratoire PhLAM, CNRS UMR 8523, CERLA, CNRS FR 2416, Bât P5, F-59655 Villeneuve d’Ascq Cedex, France, Amsterdam Center for Multiscale Modeling, Department of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Lucas Visscher
- Université Lille1 (Sciences et Technologies), Laboratoire PhLAM, CNRS UMR 8523, CERLA, CNRS FR 2416, Bât P5, F-59655 Villeneuve d’Ascq Cedex, France, Amsterdam Center for Multiscale Modeling, Department of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Valérie Vallet
- Université Lille1 (Sciences et Technologies), Laboratoire PhLAM, CNRS UMR 8523, CERLA, CNRS FR 2416, Bât P5, F-59655 Villeneuve d’Ascq Cedex, France, Amsterdam Center for Multiscale Modeling, Department of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ephraim Eliav
- Université Lille1 (Sciences et Technologies), Laboratoire PhLAM, CNRS UMR 8523, CERLA, CNRS FR 2416, Bât P5, F-59655 Villeneuve d’Ascq Cedex, France, Amsterdam Center for Multiscale Modeling, Department of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
32
|
Kleinschmidt M, Marian CM, Waletzke M, Grimme S. Parallel multireference configuration interaction calculations on mini-β-carotenes and β-carotene. J Chem Phys 2009; 130:044708. [DOI: 10.1063/1.3062842] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Fromager E, Réal F, Wåhlin P, Wahlgren U, Jensen HJA. On the universality of the long-/short-range separation in multiconfigurational density-functional theory. II. Investigating f[sup 0] actinide species. J Chem Phys 2009; 131:054107. [DOI: 10.1063/1.3187032] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|