1
|
Majumder R, Sokolov AY. Algebraic Diagrammatic Construction Theory of Charged Excitations with Consistent Treatment of Spin-Orbit Coupling and Dynamic Correlation. J Chem Theory Comput 2025; 21:2414-2431. [PMID: 39979128 DOI: 10.1021/acs.jctc.4c01762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
We present algebraic diagrammatic construction theory for simulating spin-orbit coupling and electron correlation in charged electronic states and photoelectron spectra. Our implementation supports Hartree-Fock and multiconfigurational reference wave functions, enabling efficient correlated calculations of relativistic effects using single-reference (SR-) and multireference-algebraic diagrammatic construction (MR-ADC). We combine the SR- and MR-ADC methods with three flavors of spin-orbit two-component Hamiltonians and benchmark their performance for a variety of atoms and small molecules. When multireference effects are not important, the SR-ADC approximations are competitive in accuracy to MR-ADC, often showing closer agreement with experimental results. However, for electronic states with multiconfigurational character and in nonequilibrium regions of potential energy surfaces, the MR-ADC methods are more reliable, predicting accurate excitation energies and zero-field splittings. Our results demonstrate that the spin-orbit ADC methods are promising approaches for interpreting and predicting the results of modern spectroscopies.
Collapse
Affiliation(s)
- Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Roy M, DeYonker NJ, Gopalakrishnan R. Calculation of ion-ion mutual neutralization rate constants using Landau-Zener theory coupled with trajectory simulations for Ar+-Cl-, Br-, I. J Chem Phys 2025; 162:094104. [PMID: 40029084 DOI: 10.1063/5.0250048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
In this computational study, we self-consistently calculate the rate constants of mutual neutralization reactions by incorporating the electron transfer probability, using Landau-Zener state transition theory with inputs derived from ab initio quantum chemistry calculations, into classical trajectory simulations. Electronic structure calculations are done using correlation consistent basis sets with multi-reference configuration interaction to map all the molecular electronic states below the ion-dissociation limit as a function of the distance between the reacting species. Our electronic structure calculations have been significantly improved from our previous work [Liu et al., J. Chem. Phys. 159, 114111 (2023)] through improved selection of molecular electronic configurations maintaining a fine grid of 1a0 over a wide range of bond lengths and accurate treatment of spin-orbit couplings. Non-adiabatic coupling matrix elements are calculated with the three-point central difference method near each avoided crossing to estimate the exact crossing point Rx and coupling parameter Hif, which are inputs to the multi-channel Landau-Zener theory to calculate the electron transition probability. Our approach is applied to estimate the mutual neutralization rate constants for the following ion pairs: Ar+-Cl-, Ar+-Br-, Ar+-I- at ∼133 Pa. Our predictions are compared against the experimental data reported by Shuman et al. [J. Chem. Phys. 140, 044304 (2014)]. It is seen that the improvement in the electronic structure calculation results in excellent agreement between the simulation results and the available experimental data to within a factor of ∼2 or ∼±50%.
Collapse
Affiliation(s)
- Mrittika Roy
- Department of Mechanical Engineering, The University of Memphis, Memphis, Tennessee 38152, USA
| | - Nathan J DeYonker
- Department of Chemistry, The University of Memphis, Memphis, Tennessee 38152, USA
| | | |
Collapse
|
3
|
Romeu JGF, Ornellas FR. Thermodynamic Stability in Transition Metal-Hydrogen Dications: Potential Energy Curves, Spectroscopic Parameters, and Bonding for VH 2. J Comput Chem 2025; 46:e27530. [PMID: 39754406 DOI: 10.1002/jcc.27530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 01/06/2025]
Abstract
Seventeen electronic states of the dication VH2+ were characterized by the SA-CASSCF/icMRCI methodology using very extended basis sets; 11 were described for the first time. Potential energy curves were constructed and the associated spectroscopic parameters evaluated. Triplet and quintet states correlating with the V2+ + H channel are thermodynamic stable. For states dissociating into the channel V+ + H+, avoided crossings at large distances give rise to thermodynamic metastability but do not affect the characterization of the bound region. Configuration state functions with the 3σ orbital /doubly occupied give rise to covalent contributions to the bonding; the major contribution, however, comes from the electrostatic charge-induced dipole interaction. This explains the shape and proximity of the potential energy curves beyond their equilibrium distances. Dipole moment functions and vibrationally averaged dipole moments quantify the polarity of the molecule. Spin-orbit couplings give rise to complex and dense regions of very close-lying Ω states.
Collapse
Affiliation(s)
| | - Fernando R Ornellas
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, Brazil
| |
Collapse
|
4
|
Waigum A, Ertürk M, Köhn A. Accurate Thermochemistry with Multireference Methods: A Stress Test for Internally Contracted Multireference Coupled-Cluster Theory. J Phys Chem A 2024; 128:10053-10070. [PMID: 39535968 DOI: 10.1021/acs.jpca.4c05819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The internally contracted multireference coupled-cluster method with single, double and perturbative triple excitations, icMRCCSD(T), was tested for its performance in the context of computational high-accuracy thermochemistry. The results were gauged against the standard single-reference coupled-cluster hierarchy with up to 5-fold excitations. The test set comprised of a selection of first-row dinuclear compounds and the three 3d-transition metal compounds MnH, FeH, and CoH. The results revealed two problems with the current formulation of icMRCCSD(T). First, the choice of the Dyall Hamiltonian as the zeroth-order Hamiltonian, which leads to a biased description of the different orbital subspaces and particularly poor results for the atomic correlation energies, and second, the tendency to overestimate the perturbative correction for triply excited clusters, in particular in the presence of open shells and correspondingly low orbital-energy gaps. The two problems could be solved by resorting to the effective Fock operator as zeroth-order Hamiltonian and by adopting a modified amplitude equation that includes terms quadratic in the pair clusters. A similar modification was recently proposed by Masios et al. (Phys. Rev. Lett. 2023, 131, 186401) in the context of applying single-reference coupled-cluster theory to systems with small or vanishing band gaps and we chose the acronym '(cT*) correction' in analogy to that work. In contrast to the work of Masios et al., additional terms including single excitation clusters were omitted, as these again lead to an overestimation of correlation effects in more difficult cases. We also tested another alternative for the zeroth-order Hamiltonian and additional higher-order corrections for the correlation energy. These extensions did not significantly improve the results and were also computationally more demanding. The improved icMRCCSD(cT*)F method yields very accurate results with errors, relative to accurate benchmarks, better than 2 kJ/mol for total energies and atomization energies for the entire set of examples considered in this work.
Collapse
Affiliation(s)
- Alexander Waigum
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Murat Ertürk
- Faculty of Sciences, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Türkiye
| | - Andreas Köhn
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
5
|
Zhang ZP, Wang SH, Shang YL, Liu JH, Luo SN. Theoretical Study on Ethylamine Dissociation Reactions Using VRC-VTST and SS-QRRK Methods. J Phys Chem A 2024; 128:2191-2199. [PMID: 38456900 DOI: 10.1021/acs.jpca.3c08373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Barrierless bond dissociation reactions play an important role in fuel combustion. In this work, the pressure-dependent dissociation rate constants of ethylamine (EA) are accurately determined using variable-reaction-coordinate variational transition-state theory combined with the system-specific quantum Rice-Ramsperger-Kassel method. Before the kinetics calculations, the performances of four density functional theory methods in describing the bond dissociation of EA are evaluated against the benchmark method, FIC-MRCISD(T)+Q/cc-pVTZ, and the MN15-L/cc-pVTZ method is the best choice. By comparison of the Gibbs free energies and the rate constants for the bond dissociation reactions of EA, ethanol, and propane, the influence of functional groups on the reaction kinetics is discussed. The kinetics calculations show that the dissociation rate constants of EA are sensitive to pressure at low pressures and high temperatures, and the dominant channel is the reaction that yields C2H5 and NH2 radicals. A literature combustion model of EA is updated with our calculations, and the satisfactory agreement between the model predictions and reported ignition delay times of EA suggests the reliability of our calculations.
Collapse
Affiliation(s)
- Z P Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
- Dynamic Materials Data Science Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - S H Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
- Dynamic Materials Data Science Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Y L Shang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, P. R. China
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610027, P. R. China
- Dynamic Materials Data Science Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - J H Liu
- Chengdu JiangDe Technology Co., Ltd, Chengdu, Sichuan 610100, P. R. China
| | - S N Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
- Dynamic Materials Data Science Center, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| |
Collapse
|
6
|
Smith TC, Tarroni R, Clouthier DJ. Spectroscopic detection of the gallium methylene (GaCH2 and GaCD2) free radical in the gas phase by laser-induced fluorescence and emission spectroscopy. J Chem Phys 2024; 160:024306. [PMID: 38197445 DOI: 10.1063/5.0182504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
GaCH2, a free radical thought to play a role in the chemical vapor deposition of gallium-containing thin films and semiconductors, has been spectroscopically detected for the first time. The radical was produced in a pulsed discharge jet using a precursor mixture of trimethylgallium vapor in high pressure argon and studied by laser-induced fluorescence and wavelength resolved emission techniques. Partially rotationally resolved spectra of the hydrogenated and deuterated species were obtained, and they exhibit the nuclear statistical weight variations and subband structure expected for a 2A2-2B1 electronic transition. The measured spectroscopic quantities have been compared to our own ab initio calculations of the ground and excited state properties. The electronic spectrum of gallium methylene is similar to the corresponding spectrum of the aluminum methylene radical, which we reported in 2022.
Collapse
Affiliation(s)
- Tony C Smith
- Ideal Vacuum Products, LLC, 5910 Midway Park Blvd. NE, Albuquerque, New Mexico 87109, USA
| | - Riccardo Tarroni
- Dipartimento di Chimica Industriale "Toso Montanari," Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Dennis J Clouthier
- Ideal Vacuum Products, LLC, 5910 Midway Park Blvd. NE, Albuquerque, New Mexico 87109, USA
| |
Collapse
|
7
|
de Moraes MMF, Aoto YA. Multi- d-Occupancy as an Alternative Definition for the Double d-Shell Effect. J Phys Chem A 2023; 127:10075-10090. [PMID: 37983730 DOI: 10.1021/acs.jpca.3c04709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Despite the prevalence of first-row transition metal-containing compounds in virtually all areas of chemistry, the accurate modeling of these systems is a known challenge for the theoretical chemistry community. Such a challenge is shown in a myriad of facets; among them are difficulties in defining ground-state multiplicities, disagreement in the results from methods considered highly accurate, and convergence problems in calculations for excited states. These problems cause a scarcity of reliable theoretical data for transition metal-containing systems. In this work, we explore the double d-shell effect that plagues and makes the application of multireference methods to this type of system difficult. We propose an alternative definition for this effect based on the mixing among d-occupancy configurations or the multi-d-occupancy character of the wave function. Moreover, we present a protocol able to include this effect in multireference calculations using an active space smaller than that usually used in the literature. A molybdenum-copper model system and its copper subsystem are used as example study cases, in particular, the molybdenum-copper charge transfer of the former and the electron affinity of the latter. We have shown that our alternative definition can be used to analyze their reference wave functions qualitatively. Based on this qualitative description, it is possible to optimize an active space without a second d-shell able to obtain relative energies accurately. Seeing the double d-shell effect through the lens of a multi-d-occupancy character, it is possible to correctly describe the wave function, improve the accuracy of the relative energies, and reduce the computational cost of multireference calculations. That way, we believe that this alternative definition has the potential to improve the modeling of first-row transition metal-containing compounds both for their ground and excited electronic structures.
Collapse
Affiliation(s)
- Matheus Morato F de Moraes
- Center of Mathematics Computing and Cognition, Federal University of ABC (UFABC), Santo André, SP 09280-560, Brazil
| | - Yuri Alexandre Aoto
- Center of Mathematics Computing and Cognition, Federal University of ABC (UFABC), Santo André, SP 09280-560, Brazil
| |
Collapse
|
8
|
Schröder B. Ab Initio Rovibrational Spectroscopy of the Acetylide Anion. Molecules 2023; 28:5700. [PMID: 37570670 PMCID: PMC10420331 DOI: 10.3390/molecules28155700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/22/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
In this work the rovibrational spectrum of the acetylide anion HCC- is investigated using high-level electronic structure methods and variational rovibrational calculations. Using a composite approach the potential energy surface and dipole surface is constructed from explicitly correlated coupled-cluster accounting for corrections due to core-valence correlation, scalar relativistic effects and higher-order excitation effects. Previous approaches for approximating the latter are critically evaluated. Employing the composite potential, accurate spectroscopic parameters determined from variational calculations are presented. In comparison to the few available reference data the present results show excellent agreement with ground state rotational constants within 0.005% of the experimental value. Intensities determined from the variational calculations suggest the bending fundamental transition ν2 around 510 cm-1 to be the best target for detection. The rather weak CD stretching fundamental ν1 in deuterated isotopologues show a second-order resonance with the (0,20,1) state and the consequences are discussed in some detail. The spectroscopic parameters and band intensities provided for a number of vibrational bands in isotopologues of the acetylide anion should facilitate future spectroscopic investigations.
Collapse
Affiliation(s)
- Benjamin Schröder
- Institute of Physical Chemistry, University of Goettingen, Tammannstr. 6, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Győri T, Czakó G. A comprehensive benchmark ab initio survey of the stationary points and products of the OH· + CH 3OH system. J Chem Phys 2023; 158:034301. [PMID: 36681627 DOI: 10.1063/5.0133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Reactions between methanol and the hydroxyl radical are of significant interest for combustion-, atmospheric-, and astrochemistry. While the two primary product channels (the formation of H2O with either CH3O· or ·CH2OH) have been the subject of numerous studies, the possibility of other products has seen little attention. Here, we present a comprehensive thermochemical survey of the stationary points and plausible products of the reaction, featuring 29 geometries optimized at the UCCSD(T)-F12b/aug-cc-pVTZ level, followed by accurate composite ab initio computations for all stationary points (including ·CH2OH dissociation and isomerization) and five product channels, with a detailed evaluation of basis set convergence and efficiency. The computations reveal that the formation of methanediol and the hydroxymethoxy radical is thermodynamically favorable and the endothermicity of formaldehyde formation is low enough to be a plausible product channel. We also observe unexpectedly large energy deviations between the partially-spin-adapted ROHF-RCCSD(T) method and ROHF-UCCSD(T) as well as between UHF-UCCSDT(Q) and ROHF-UCCSDT(Q) results.
Collapse
Affiliation(s)
- Tibor Győri
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
10
|
Wang M, Fang WH, Li C. Assessment of State-Averaged Driven Similarity Renormalization Group on Vertical Excitation Energies: Optimal Flow Parameters and Applications to Nucleobases. J Chem Theory Comput 2023; 19:122-136. [PMID: 36534617 DOI: 10.1021/acs.jctc.2c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a comprehensive excited-state benchmark for the state-averaged (SA) driven similarity renormalization group (DSRG) [Li, C.; Evangelista, F. A. J. Chem. Phys. 2018, 148, 124106]. Following the QUEST database [Véril, M.; Scemama, A.; Caffarel, M.; Lipparini, F.; Boggio-Pasqua, M.; Jacquemin, D.; Loos, P.-F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1517], 280 vertical transition energies of 35 medium-sized molecules are computed using the SA-DSRG derived second- and third-order perturbation theories (PT2/PT3) along with a nonperturbative approach [sq-LDSRG(2)]. Comparing to the theoretical best estimates, the optimal flow parameter is found to be 0.35 and 2.0 Eh-2 for SA-DSRG-PT2 and SA-DSRG-PT3, respectively. For SA-sq-LDSRG(2), a flow parameter of 1.5 Eh-2 provides converged equations without compromising the accuracy. We then assess the accuracy of the SA-DSRG hierarchy using these parameters. The SA-DSRG-PT2 scheme outperforms the level-shifted CASPT2 by 0.10 eV in mean absolute error (MAE), yet this accuracy is slightly inferior than that of CASPT2 with the ionization-potential-electron-affinity shift. Both SA-DSRG-PT3 and SA-sq-LDSRG(2) yield a MAE of 0.10 eV, which is comparable to that of CASPT3 (0.09 eV). Finally, we compute vertical excitation energies of several low-lying singlet states of nucleobases. The SA-sq-LDSRG(2) approach provides highly accurate results for π → π* excitations, while n → π* transitions are better described by SA-DSRG-PT3.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Zhang Q, Bornhauser P, Knopp G, Radi P, Harmant G, Marquardt R. Experimental and theoretical investigation of excited g-symmetry states of Cu2. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Jin J, Zhang Q, Bornhauser P, Knopp G, Marquardt R, Radi PP. Rovibrational investigation of a new high-lying 0 u + state of Cu 2 by using two-color resonant four-wave-mixing spectroscopy. J Chem Phys 2022; 156:184305. [PMID: 35568551 DOI: 10.1063/5.0087743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A highly excited electronic state of dicopper is observed and characterized for the first time. The [39.6]0u +-X1Σg +(0g +) system is measured at rotational resolution by using degenerate and two-color resonant four-wave-mixing, as well as laser induced fluorescence spectroscopy. Double-resonance experiments are performed by labeling selected rotational levels of the ground state by tuning the probe laser wavelength to transitions in the well-known (1-0) band of the B0u +-X1Σg +(0g +) electronic system. Spectra obtained by scans of the pump laser in the UV wavelength range were then assigned unambiguously by the stringent double-resonance selection rules. The absence of a Q-band suggests a parallel transition (ΔΩ = 0) and determines the term symbol of the state as 0u + in Hund's case (c) notation. The equilibrium constants for 63Cu2 are Te = 39 559.921(92) cm-1, ωe = 277.70(14) cm-1, Be = 0.104 942(66) cm-1, and re = 2.2595(11) Å. These findings are supported by high-level ab initio calculations at the MRCI+Q level, which clearly identifies this state as resulting from a 4p ← 3d transition. In addition, three dark perturber states are found in the v = 1 and v = 2 vibrational levels of the new state. A deperturbation analysis characterizes the interaction and rationalizes the anomalous dips in the excitation spectrum of the [39.6]0u +-X1Σg +(0g +) system.
Collapse
Affiliation(s)
- Jiaye Jin
- Photon Science Division, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Qiang Zhang
- Photon Science Division, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Peter Bornhauser
- Photon Science Division, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Gregor Knopp
- Photon Science Division, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Roberto Marquardt
- Laboratoire de Chimie Quantique, Institut de Chimie, Université de Strasbourg, 4 rue Blaise Pascal - CS90032, 67081 Strasbourg Cedex, France
| | - Peter P Radi
- Photon Science Division, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
13
|
Tarroni R, Clouthier DJ. Which Triatomic Monohalosilylenes, Monohalogermylenes, and Monohalostannylenes (HMX) Fluoresce or Phosphoresce and Why? An Ab Initio Investigation. J Chem Phys 2022; 156:064304. [DOI: 10.1063/5.0083068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Riccardo Tarroni
- Dipartimento di Chimica Industriale, University of Bologna Department of Industrial Chemistry Toso Montanari, Italy
| | | |
Collapse
|
14
|
Lykhin AO, Truhlar DG, Gagliardi L. Dipole Moment Calculations Using Multiconfiguration Pair-Density Functional Theory and Hybrid Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2021; 17:7586-7601. [PMID: 34793166 DOI: 10.1021/acs.jctc.1c00915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dipole moment is the molecular property that most directly indicates molecular polarity. The accuracy of computed dipole moments depends strongly on the quality of the calculated electron density, and the breakdown of single-reference methods for strongly correlated systems can lead to poor predictions of the dipole moments in those cases. Here, we derive the analytical expression for obtaining the electric dipole moment by multiconfiguration pair-density functional theory (MC-PDFT), and we assess the accuracy of MC-PDFT for predicting dipole moments at equilibrium and nonequilibrium geometries. We show that MC-PDFT dipole moment curves have reasonable behavior even for stretched geometries, and they significantly improve upon the CASSCF results by capturing more electron correlation. The analysis of a dataset consisting of 18 first-row transition-metal diatomics and 6 main-group polyatomic molecules with a multireference character suggests that MC-PDFT and its hybrid extension (HMC-PDFT) perform comparably to CASPT2 and MRCISD+Q methods and have a mean unsigned deviation of 0.2-0.3 D with respect to the best available dipole moment reference values. We explored the dependence of the predicted dipole moments upon the choice of the on-top density functional and active space, and we recommend the tPBE and hybrid tPBE0 on-top choices for the functionals combined with the moderate correlated-participating-orbitals scheme for selecting the active space. With these choices, the mean unsigned deviations (in debyes) of the calculated equilibrium dipole moments from the best estimates are 0.77 for CASSCF, 0.29 for MC-PDFT, 0.24 for HMC-PDFT, 0.28 for CASPT2, and 0.25 for MRCISD+Q. These results are encouraging because the computational cost of MC-PDFT or HMC-PDFT is largely reduced compared to the CASPT2 and MRCISD+Q methods.
Collapse
Affiliation(s)
- Aleksandr O Lykhin
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
15
|
Wang H, Li Y, Jiao Z, Zhang H, Xiao C, Yang X. Differential cross sections of F+HD → DF+H reaction at collision energies from 3.03 MeV to 17.97 MeV. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2111232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Heilong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yu Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhirun Jiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongtao Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
16
|
Li C, Evangelista FA. Spin-free formulation of the multireference driven similarity renormalization group: A benchmark study of first-row diatomic molecules and spin-crossover energetics. J Chem Phys 2021; 155:114111. [PMID: 34551530 DOI: 10.1063/5.0059362] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a spin-free formulation of the multireference (MR) driven similarity renormalization group (DSRG) based on the ensemble normal ordering of Mukherjee and Kutzelnigg [J. Chem. Phys. 107, 432 (1997)]. This ensemble averages over all microstates of a given total spin quantum number, and therefore, it is invariant with respect to SU(2) transformations. As such, all equations may be reformulated in terms of spin-free quantities and they closely resemble those of spin-adapted closed-shell coupled cluster (CC) theory. The current implementation is used to assess the accuracy of various truncated MR-DSRG methods (perturbation theory up to third order and iterative methods with single and double excitations) in computing the constants of 33 first-row diatomic molecules. The accuracy trends for these first-row diatomics are consistent with our previous benchmark on a small subset of closed-shell diatomic molecules. We then present the first MR-DSRG application on transition-metal complexes by computing the spin splittings of the [Fe(H2O)6]2+ and [Fe(NH3)6]2+ molecules. A focal point analysis (FPA) shows that third-order perturbative corrections are essential to achieve reasonably converged energetics. The FPA based on the linearized MR-DSRG theory with one- and two-body operators and up to a quintuple-ζ basis set predicts the spin splittings of [Fe(H2O)6]2+ and [Fe(NH3)6]2+ to be -35.7 and -17.1 kcal mol-1, respectively, showing good agreement with the results of local CC theory with singles, doubles, and perturbative triples.
Collapse
Affiliation(s)
- Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
17
|
Matsika S. Electronic Structure Methods for the Description of Nonadiabatic Effects and Conical Intersections. Chem Rev 2021; 121:9407-9449. [PMID: 34156838 DOI: 10.1021/acs.chemrev.1c00074] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonadiabatic effects are ubiquitous in photophysics and photochemistry, and therefore, many theoretical developments have been made to properly describe them. Conical intersections are central in nonadiabatic processes, as they promote efficient and ultrafast nonadiabatic transitions between electronic states. A proper theoretical description requires developments in electronic structure and specifically in methods that describe conical intersections between states and nonadiabatic coupling terms. This review focuses on the electronic structure aspects of nonadiabatic processes. We discuss the requirements of electronic structure methods to describe conical intersections and nonadiabatic couplings, how the most common excited state methods perform in describing these effects, and what the recent developments are in expanding the methodology and implementing nonadiabatic couplings.
Collapse
Affiliation(s)
- Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
18
|
Accurate estimation of singlet-triplet gap of strongly correlated systems by CCSD(T) method using improved orbitals. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Affiliation(s)
- Jean Demaison
- Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), CP160/09, Faculté des Sciences, Université Libre de Bruxelles (U.L.B.) Brussels, Belgium
| | - Jacques Liévin
- Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), CP160/09, Faculté des Sciences, Université Libre de Bruxelles (U.L.B.) Brussels, Belgium
| |
Collapse
|
20
|
Gonçalves dos Santos L, Franzreb K, Ornellas FR. Thermodynamic stability in transition metal-containing dicationic diatomics: Examining the case of CrO2+. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
|
22
|
Li J, Li J. A Full-Dimensional Potential Energy Surface and Dynamics of the Multichannel Reaction between H and HO 2. J Phys Chem A 2021; 125:1540-1552. [PMID: 33591185 DOI: 10.1021/acs.jpca.0c11213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In addition to its vital significance in combustion and atmospheric chemistry, the reaction between H' and HO2 on the ground triplet state represents a prototype with multiple product channels, including H2 + O2, OH + OH, O + H2O, and H + H'O2. In this work, a full-dimensional accurate potential energy surface (PES) for the title reaction was developed to provide reliable descriptions for all dynamically relevant regions. Using this PES, we adopted the quasi-classical trajectory approach to study the corresponding reaction dynamics, including the reactivity of each product channel and the associated product branching ratio, the product energy distributions, product angular distributions, and associated microscopic mechanisms. For representing distributions of the product energies, such as product translational energy as well as product rotational and vibrational energies, both the traditional histogram and the kernel density estimation (KDE) methods were used and compared. It seems that the features of the resulting distributions in this work are very similar to each other among different methods. The KDE method is suggested for statistics, particularly for those populations with small oscillations in the histogram plot.
Collapse
Affiliation(s)
- Jia Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
23
|
Zhang X, Chen J, Xu X, Liu S, Zhang DH. A neural network potential energy surface for the F + H2O ↔ HF + OH reaction and quantum dynamics study of the isotopic effect. Phys Chem Chem Phys 2021; 23:8809-8816. [DOI: 10.1039/d1cp00641j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here a global and full dimensional neural network potential energy surface for the F + CH4 reaction and investigate the isotopic effect on the total reaction probabilities using the time-dependent wave packet method.
Collapse
Affiliation(s)
- Xiaoren Zhang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Jun Chen
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- P. R. China
| | - Xin Xu
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
24
|
de Melo GF, Franzreb K, Ornellas FR. Exploring the electronic states of the hydroxyl dication OH 2+: thermodynamic (meta)stability, bound-free emission spectra, and charge transfer processes. Phys Chem Chem Phys 2021; 23:13672-13679. [PMID: 34124734 DOI: 10.1039/d1cp01695d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate potential energy curves were constructed for a manifold of electronic states of the hydroxyl dication using a highly correlated electronic structure approach (SA-CASSCF/MRCI+Q/aug-cc-pV5Z). The existence of a bound (meta)stable ground state and bound low-lying states for OH2+ are ruled out, but do not exclude the possibility of its transient formation and dissociation along the repulsive ground state potential energy curve. Our results do not support the conclusion reported for the observation of OH2+ by electron ionization from ground state OH+. Despite the repulsive character of the low-lying states, thermodynamic stability was indeed verified for the states 2 4Π and 3 4Σ- along with a series of metastable high-lying doublet states. For the (quasi)bound states, we obtained vibrational levels, spectroscopic parameters, and dipole moment functions. Using accurate transition dipole moment functions, we also evaluated bound-free emission transition probabilities and radiative lifetimes. For transitions from v'= 0, our estimates of 92.8 ns (4Π) and 9.3 ns (4Σ-) indicate that the ones obtained by a multichannel theory of predissociating states are too short (2-60 ps). Landau-Zener cross sections averaged over the Maxwellian distribution of relative velocities, and rate coefficients for the reaction O2+ + H → O+ + H+ were obtained using the potential energy curves of the states 4Π and 4Σ- associated with the channel O2+ + H and the repulsive ones dissociating into O+ + H+ leading to good results for the rate constant thus supporting its importance to explain the distribution of O+ in astrophysical plasmas.
Collapse
Affiliation(s)
- Gabriel Fernando de Melo
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, Av. Prof. Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| | - Klaus Franzreb
- Arizona State University, Department of Chemistry, Tempe, Arizona, USA
| | - Fernando R Ornellas
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, Av. Prof. Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
25
|
de Melo GF, Ornellas FR. Theoretical investigation of the electronic structure and spectra of sulfur monoiodide cation, SI+. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A manifold of singlet, triplet, and quintet electronic states of the sulfur monoiodide cation (SI+) correlating with the two lowest-lying dissociation channels is characterized theoretically at a high level of theoretical treatment (SA-CASSCF/MRCI+Q/aug-cc-pV5Z) for the first time. Potential energy curves, also including the effect of spin-orbit couplings, are constructed and the associated spectroscopic parameters and dissociation energies determined. As to the molecular polarity, we computed the dipole moment as a function of the internuclear distance and the associated vibrationally averaged dipole moments. Transition dipole moment functions were also constructed, and transition probabilities, as expressed by the Einstein coefficients for spontaneous emission, were evaluated for selected pairs of states that we identify as more easily accessible to experimental investigation. An analysis of the bonding in this system is also presented. Together with previous studies on neutral and cationic sulfur-monohalides, one has a comprehensive view of this series of molecules.
Collapse
Affiliation(s)
- Gabriel Fernando de Melo
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, Av. Prof. Lineu Prestes, 748, São Paulo, São Paulo 05508-000, Brazil
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, Av. Prof. Lineu Prestes, 748, São Paulo, São Paulo 05508-000, Brazil
| | - Fernando R. Ornellas
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, Av. Prof. Lineu Prestes, 748, São Paulo, São Paulo 05508-000, Brazil
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, Av. Prof. Lineu Prestes, 748, São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
26
|
Electronic structure, spectroscopic properties, and bonding in a thermodynamically stable transition metal-containing diatomic dication: The case of ScS2+. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Matthews DA. Analytic Gradients of Approximate Coupled Cluster Methods with Quadruple Excitations. J Chem Theory Comput 2020; 16:6195-6206. [DOI: 10.1021/acs.jctc.0c00522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Tarroni R, Clouthier DJ. Ab initio spectroscopy of the aluminum methylene (AlCH 2) free radical. J Chem Phys 2020; 153:014301. [PMID: 32640824 DOI: 10.1063/5.0010552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extensive ab initio investigations of the ground and electronic excited states of the AlCH2 free radical have been carried out in order to predict the spectroscopic properties of this, as yet, undetected species. Difficulties with erratic predictions of the ground state vibrational frequencies, both in the literature and in the present work, have been traced to serious broken-symmetry instabilities in the unrestricted Hartree-Fock orbitals at the ground state equilibrium geometry. The use of restricted open-shell Hartree-Fock or complete active space self consistent field orbitals avoids these problems and leads to consistent and realistic sets of vibrational frequencies for the ground state. Using the internally contracted multireference configuration interaction method with aug-cc-pV(T+d)Z basis sets, we have calculated the geometries, energies, dipole moments, and vibrational frequencies of eight electronic states of AlCH2 and AlCD2. In addition, we have generated Franck-Condon simulations of the expected vibronic structure of the Ã-X̃, B̃-X̃, C̃-X̃, and C̃-Ã band systems, which will be useful in searches for the electronic spectra of the radical. We have also simulated the expected rotational structure of the 0-0 absorption bands of these transitions at modest resolution under supersonic expansion cooled conditions. Our conclusion is that if AlCH2 can be generated in sufficient concentrations in the gas phase, it is most likely detectable through the B̃2A2-X̃2B1 or C̃2A1-X̃2B1 electronic transitions at 515 nm and 372 nm, respectively. Both band systems have vibrational and rotational signatures, even at modest resolution, that are diagnostic of the aluminum methylene free radical.
Collapse
Affiliation(s)
- Riccardo Tarroni
- Dipartimento di Chimica Industriale "Toso Montanari," Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | | |
Collapse
|
29
|
Thermodynamic stability and spectroscopic properties of alkaline earth monobromides: The cases of MgBr2+ and BaBr2+. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Reference spaces for multireference coupled-cluster theory: the challenge of the CoH molecule. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-2584-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Menezes da Silva VH, Ornellas FR. Characterizing structures, energetics, and spectra of species on the 1,3[H, C, As] potential energy surfaces: A high-level theoretical contribution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117578. [PMID: 31670030 DOI: 10.1016/j.saa.2019.117578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
The ground and the low lying electronic states of structures on the 1,3[H, C, As] potential energy surfaces were investigated with the highly correlated theoretical approaches CCSD(T), CCSD(T)-F12b, and CASSCF/MRCI along with the series of correlation consistent (aug-cc-pVnZ, n = D, T, Q, 5) basis sets. Energetic and spectroscopic parameters were obtained at the complete basis set limit, and the effect of core-valence correlation on these properties evaluated. Fundamental frequencies were also computed with the variational configuration interaction (VCI) approach. Heats of formation at 0 and 298.15 K were estimated for HCAs and CH, AsH, CAs, and HCAs, as well as the calculation of ionization potentials for HCAs. Comparisons of the present results with literature ones for the systems HCN/HNC, HCP/HPC highlight similarities and differences among these systems. Altogether, this investigation provides a very reliable characterization of the species on the surfaces and should guide future experimental studies on these systems.
Collapse
Affiliation(s)
- Vitor H Menezes da Silva
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, Av. Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil
| | - Fernando R Ornellas
- Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, Av. Lineu Prestes, 748, São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
32
|
Bao JJ, Truhlar DG. Automatic Active Space Selection for Calculating Electronic Excitation Energies Based on High-Spin Unrestricted Hartree–Fock Orbitals. J Chem Theory Comput 2019; 15:5308-5318. [DOI: 10.1021/acs.jctc.9b00535] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie J. Bao
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-043, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-043, United States
| |
Collapse
|
33
|
Karton A. Highly Accurate CCSDT(Q)/CBS Reaction Barrier Heights for a Diverse Set of Transition Structures: Basis Set Convergence and Cost-Effective Approaches for Estimating Post-CCSD(T) Contributions. J Phys Chem A 2019; 123:6720-6732. [DOI: 10.1021/acs.jpca.9b04611] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
34
|
Gans B, Boyé-Péronne S, Liévin J. Vibronic structure of the cyanobutadiyne cation. II. Theoretical exploration of the complex energy landscape of HC 5N +. J Chem Phys 2019; 150:244303. [DOI: 10.1063/1.5097691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Bérenger Gans
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS UMR 8214, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Séverine Boyé-Péronne
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS UMR 8214, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Jacques Liévin
- Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles, CP 160/09, B-1050 Bruxelles, Belgium
| |
Collapse
|
35
|
Electronic states, spectroscopic parameters, transition probabilities, and radiative lifetimes of the scandium monosulfide cation, ScS+: A theoretical contribution. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Black JA, Köhn A. Linear and quadratic internally contracted multireference coupled-cluster approximations. J Chem Phys 2019; 150:194107. [DOI: 10.1063/1.5095070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joshua A. Black
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Andreas Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
37
|
de Melo GF, Ornellas FR. A high-level theoretical characterization of the electronic states and spectroscopic parameters of SrBr2+ and SrI2+, and thermodynamic stability in the family of strontium monohalides dications. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Thermodynamic stability of diatomic dications of the families of alkaline earth oxides and hydrides: The cases of BaO2+ and BaH2+. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Marsili E, Farag MH, Yang X, De Vico L, Olivucci M. Two-State, Three-Mode Parametrization of the Force Field of a Retinal Chromophore Model. J Phys Chem A 2019; 123:1710-1719. [PMID: 30753077 DOI: 10.1021/acs.jpca.8b10010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, the potential energy surfaces of the penta-2,4-dieniminium cation have been investigated using several electronic structure methods. The resulting pool of geometrical, electronic, and energy data provides a suitable basis for the construction of a topographically correct analytical model of the molecule force field and, therefore, for a better understanding of this class of molecules, which includes the chromophore of visual pigments. In the present contribution, we report the construction of such a model for regions of the force field that drive the photochemical and thermal isomerization of the central double bound of the cation. While previous models included only two modes, it is here shown that the proposed three-mode model and corresponding set of parameters are able to reproduce the complex topographical and electronic structure features seen in electronically correlated data obtained at the XMCQDPT2//CASSCF/6-31G* level of theory.
Collapse
Affiliation(s)
- Emanuele Marsili
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , via A. Moro 2 , I-53100 Siena , Italy
| | - Marwa H Farag
- Department of Chemistry , University of Southern California , Los Angeles , California 90089-0482 , United States
| | - Xuchun Yang
- Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States and
| | - Luca De Vico
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , via A. Moro 2 , I-53100 Siena , Italy
| | - Massimo Olivucci
- Dipartimento di Biotecnologie, Chimica e Farmacia , Università di Siena , via A. Moro 2 , I-53100 Siena , Italy.,Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States and.,Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 , Université de Strasbourg-CNRS , F-67034 Strasbourg , France
| |
Collapse
|
40
|
Aoto YA, Bargholz A, Kats D, Werner HJ, Köhn A. Perturbation Expansion of Internally Contracted Coupled-Cluster Theory up to Third Order. J Chem Theory Comput 2019; 15:2291-2305. [DOI: 10.1021/acs.jctc.8b01301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuri Alexandre Aoto
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Center for Mathematics Computing and Cognition, Federal University of ABC (UFABC), Avenida dos Estados 5001, Santo André, Brazil
| | - Arne Bargholz
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Daniel Kats
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Andreas Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
41
|
Bezrukov DS, Kleshchina NN, Kalinina IS, Buchachenko AA. Ab initio interaction potentials of the Ba, Ba + complexes with Ar, Kr, and Xe in the lowest excited states. J Chem Phys 2019; 150:064314. [PMID: 30769967 DOI: 10.1063/1.5071457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The complexes of the Ba atom and Ba+ cation with the rare gas atoms Ar, Kr, and Xe in the states associated with the 6s → 5d, 6p excitations are investigated by means of the multireference configuration interaction techniques. Scalar relativistic potentials are obtained by the complete basis limit extrapolation through the sequence of aug-cc-pwCVnZ basis sets with the cardinal numbers n = Q, T, 5, combined with the suitable effective core potentials and benchmarked against the coupled cluster with singles, doubles, and non-iterative triples calculations and the literature data available for selected electronic states. Spin-orbit coupling is taken into account by means of the state-interacting multireference configuration interaction calculations performed for the Breit-Pauli spin-orbit Hamiltonian. The results show weak spin-orbit coupling between the states belonging to distinct atomic multiplets. General trends in the interaction strength and long-range anisotropy along the rare gas series are discussed. Vibronic spectra of the Ba and Ba+ complexes in the vicinity of the 1S → 1P° and 2S → 2P° atomic transitions and diffusion cross sections of the Ba(1S0, 3DJ) atom in high-temperature rare gases are calculated. Comparison with available experimental data shows that multireference calculations tend to underestimate the interaction strength for excited complexes.
Collapse
Affiliation(s)
- Dmitry S Bezrukov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow 121205, Russia
| | - Nadezhda N Kleshchina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Inna S Kalinina
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow 121205, Russia
| | - Alexei A Buchachenko
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow 121205, Russia
| |
Collapse
|
42
|
de Melo GF, Ornellas FR. The thermodynamic stability of strontium monohalides dications: A theoretical exploration of the electronic states and spectroscopic parameters of SrF2+ and SrCl2+. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.09.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Black JA, Knowles PJ. Quasi-variational coupled-cluster theory: Performance of perturbative treatments of connected triple excitations. J Chem Phys 2018; 148:194102. [DOI: 10.1063/1.5006037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Joshua A. Black
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Peter J. Knowles
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
44
|
Gonçalves dos Santos L, Franzreb K, Ornellas FR. Thermodynamically stable diatomic dications: The cases of SrO2+and SrH2+. J Chem Phys 2018; 148:124306. [DOI: 10.1063/1.5018590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Levi Gonçalves dos Santos
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Perstes, 748, São Paulo 05508-000, Brazil
| | - Klaus Franzreb
- Chemistry Department, Arizona State University, Tempe, Arizona 85287, USA
| | - Fernando R. Ornellas
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Perstes, 748, São Paulo 05508-000, Brazil
| |
Collapse
|
45
|
Li C, Evangelista FA. Driven similarity renormalization group for excited states: A state-averaged perturbation theory. J Chem Phys 2018; 148:124106. [DOI: 10.1063/1.5019793] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenyang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
46
|
Bao JJ, Dong SS, Gagliardi L, Truhlar DG. Automatic Selection of an Active Space for Calculating Electronic Excitation Spectra by MS-CASPT2 or MC-PDFT. J Chem Theory Comput 2018; 14:2017-2025. [DOI: 10.1021/acs.jctc.8b00032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jie J. Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Sijia S. Dong
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
47
|
Li X, Sun Z. Dynamical resonances in
$$\hbox {F}+ {\hbox {H}}_2/\hbox {HD}$$
F
+
H
2
/
HD
reaction scattering. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Chen J, Xu X, Liu S, Zhang DH. A neural network potential energy surface for the F + CH4reaction including multiple channels based on coupled cluster theory. Phys Chem Chem Phys 2018; 20:9090-9100. [DOI: 10.1039/c7cp08365c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report here a new global and full dimensional potential energy surface (PES) for the F + CH4reaction.
Collapse
Affiliation(s)
- Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University
- Xiamen 361005
| | - Xin Xu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
49
|
Reimers JR, Hush NS. The critical role of the transition-state cusp diameter in understanding adiabatic and non-adiabatic electron transfer. RUSS J ELECTROCHEM+ 2017. [DOI: 10.1134/s1023193517090105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Lins IA, Belinassi AR, Ornellas FR, Alves TV. Metastability of the low-lying electronic states of CBr2+: A CASSCF/MRCI study. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.05.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|