1
|
Rai S, Sharma N, Rai D. Structured water chains in external electric fields. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1662957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Smita Rai
- Department of Physics, Sikkim University, Samdur, India
| | - Nayan Sharma
- Department of Physics, Sikkim University, Samdur, India
| | - Dhurba Rai
- Department of Physics, Sikkim University, Samdur, India
| |
Collapse
|
2
|
Shafiei M, Ojaghlou N, Zamfir SG, Bratko D, Luzar A. Modulation of structure and dynamics of water under alternating electric field and the role of hydrogen bonding. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1651919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- M. Shafiei
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - N. Ojaghlou
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - S. G. Zamfir
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - D. Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - A. Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
3
|
Shafiei M, von Domaros M, Bratko D, Luzar A. Anisotropic structure and dynamics of water under static electric fields. J Chem Phys 2019; 150:074505. [DOI: 10.1063/1.5079393] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mahdi Shafiei
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Michael von Domaros
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| |
Collapse
|
4
|
He Y, Sun G, Koga K, Xu L. Electrostatic field-exposed water in nanotube at constant axial pressure. Sci Rep 2014; 4:6596. [PMID: 25318649 PMCID: PMC4198863 DOI: 10.1038/srep06596] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/17/2014] [Indexed: 11/19/2022] Open
Abstract
Water confined within nanoscale geometries under external field has many interesting properties which is very important for its application in biological processes and engineering. Using molecular dynamics simulations, we investigate the effect of external fields on polarization and structure as well as phase transformations of water confined within carbon nanotubes. We find that dipoles of water molecules tend to align along external field in nanoscale cylindrical confinement. Such alignment directly leads to the longitudinal electrostriction and cross-sectional dilation of water in nanotube. It also influences the stability of ice structures. As the electrostatic field strengthens, the confined water undergoes phase transitions from a prism structure to a helical one to a single chain as the electrostatic field strengthens. These results imply a rich phase diagram of the confined water due to the presence of external electriostatic field, which can be of importance for the industrial applications in nanopores.
Collapse
Affiliation(s)
- Yuchi He
- International Center for Quantum Materials and School of Physics, Peking University
| | - Gang Sun
- International Center for Quantum Materials and School of Physics, Peking University
| | - Kenichiro Koga
- Department of Chemistry, Okayama University, Tsushima-Naka 3-1-1, Okayama 700-8530, Japan
| | - Limei Xu
- 1] International Center for Quantum Materials and School of Physics, Peking University [2] Collaborative Innovation Center of Quantum Matter, Beijing, China
| |
Collapse
|
5
|
Vanzo D, Bratko D, Luzar A. Dynamic Control of Nanopore Wetting in Water and Saline Solutions under an Electric Field. J Phys Chem B 2014; 119:8890-9. [DOI: 10.1021/jp506389p] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Davide Vanzo
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| |
Collapse
|
6
|
Zykwinska A, Pihet M, Radji S, Bouchara JP, Cuenot S. Self-assembly of proteins into a three-dimensional multilayer system: investigation of the surface of the human fungal pathogen Aspergillus fumigatus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1137-44. [PMID: 24631542 DOI: 10.1016/j.bbapap.2014.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 10/25/2022]
Abstract
Hydrophobins are small surface active proteins that fulfil a wide spectrum of functions in fungal growth and development. The human fungal pathogen Aspergillus fumigatus expresses RodA hydrophobins that self-assemble on the outer conidial surface into tightly organized nanorods known as rodlets. AFM investigation of the conidial surface allows us to evidence that RodA hydrophobins self-assemble into rodlets through bilayers. Within bilayers, hydrophilic domains of hydrophobins point inward, thus making a hydrophilic core, while hydrophobic domains point outward. AFM measurements reveal that several rodlet bilayers are present on the conidial surface thus showing that proteins self-assemble into a complex three-dimensional multilayer system. The self-assembly of RodA hydrophobins into rodlets results from attractive interactions between stacked β-sheets, which conduct to a final linear cross-β spine structure. A Monte Carlo simulation shows that anisotropic interactions are the main driving forces leading the hydrophobins to self-assemble into parallel rodlets, which are further structured in nanodomains. Taken together, these findings allow us to propose a mechanism, which conducts RodA hydrophobins to a highly ordered rodlet structure. The mechanism of hydrophobin assembly into rodlets offers new prospects for the development of more efficient strategies leading to disruption of rodlet formation allowing a rapid detection of the fungus by the immune system.
Collapse
Affiliation(s)
- Agata Zykwinska
- Institut des Matériaux Jean Rouxel, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
| | - Marc Pihet
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire d'Angers, France; UNAM Université, Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES-EA 3142 Angers, France
| | - Sadia Radji
- IPREM Equipe de Physique et Chimie des Polymères, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex, France
| | - Jean-Philippe Bouchara
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire d'Angers, France; UNAM Université, Université d'Angers, Groupe d'Etude des Interactions Hôte-Pathogène, UPRES-EA 3142 Angers, France
| | - Stéphane Cuenot
- Institut des Matériaux Jean Rouxel, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France.
| |
Collapse
|
7
|
Vanzo D, Bratko D, Luzar A. Nanoconfined water under electric field at constant chemical potential undergoes electrostriction. J Chem Phys 2014; 140:074710. [DOI: 10.1063/1.4865126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Daub CD, Bratko D, Luzar A. Nanoscale Wetting Under Electric Field from Molecular Simulations. MULTISCALE MOLECULAR METHODS IN APPLIED CHEMISTRY 2011; 307:155-79. [DOI: 10.1007/128_2011_188] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
England JL, Pande VS. Charge, hydrophobicity, and confined water: putting past simulations into a simple theoretical framework. Biochem Cell Biol 2010; 88:359-69. [PMID: 20453936 PMCID: PMC5328680 DOI: 10.1139/o09-187] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Water permeates all life, and mediates forces that are essential to the process of macromolecular self-assembly. Predicting these forces in a given biological context is challenging, since water organizes itself differently next to charged and hydrophobic surfaces, both of which are typically at play on the nanoscale in vivo. In this work, we present a simple statistical mechanical model for the forces water mediates between different confining surfaces, and demonstrate that the model qualitatively unifies a wide range of phenomena known in the simulation literature, including several cases of protein folding under confinement.
Collapse
Affiliation(s)
- Jeremy L England
- Department of Physics, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
10
|
Bratko D, Daub CD, Luzar A. Water-mediated ordering of nanoparticles in an electric field. Faraday Discuss 2009; 141:55-66; discussion 81-98. [PMID: 19227351 DOI: 10.1039/b809135h] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interfacial polar molecules feature a strongly anisotropic response to applied electric field, favoring dipole orientations parallel to the interface. In water, in particular, this effect combines with generic orientational preferences induced by spatial asymmetry of water hydrogen bonding under confined geometry, which may give rise to a Janus interface. The two effects manifest themselves in considerable dependence of water polarization on both the field direction relative to the interface and the polarity (sign) of the field. Using molecular simulations, we demonstrate strong field-induced orientational forces acting on apolar surfaces through water mediation. At a field strength comparable to electric fields around a DNA polyion, the torques we predict to act on an adjacent nanoparticle are sufficient to overcome thermal fluctuations. These torques can align a particle with surface as small as 1 nm2. The mechanism can support electrically controlled ordering of suspended nanoparticles as a means of tuning their properties and can find application in electro-nanomechanical devices.
Collapse
Affiliation(s)
- Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| | | | | |
Collapse
|
11
|
Interplay of local hydrogen-bonding and long-ranged dipolar forces in simulations of confined water. Proc Natl Acad Sci U S A 2008; 105:19136-41. [PMID: 19064931 DOI: 10.1073/pnas.0807623105] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spherical truncations of Coulomb interactions in standard models for water permit efficient molecular simulations and can give remarkably accurate results for the structure of the uniform liquid. However, truncations are known to produce significant errors in nonuniform systems, particularly for electrostatic properties. Local molecular field (LMF) theory corrects such truncations by use of an effective or restructured electrostatic potential that accounts for effects of the remaining long-ranged interactions through a density-weighted mean field average and satisfies a modified Poisson's equation defined with a Gaussian-smoothed charge density. We apply LMF theory to 3 simple molecular systems that exhibit different aspects of the failure of a naïive application of spherical truncations-water confined between hydrophobic walls, water confined between atomically corrugated hydrophilic walls, and water confined between hydrophobic walls with an applied electric field. Spherical truncations of 1/r fail spectacularly for the final system, in particular, and LMF theory corrects the failings for all three. Further, LMF theory provides a more intuitive way to understand the balance between local hydrogen bonding and longer-ranged electrostatics in molecular simulations involving water.
Collapse
|
12
|
Bratko D, Daub CD, Luzar A. Field-exposed water in a nanopore: liquid or vapour? Phys Chem Chem Phys 2008; 10:6807-13. [DOI: 10.1039/b809072f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|