1
|
Lee S. Operator algebraic methods in the theory of
diffusion‐influenced
reaction kinetics. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sangyoub Lee
- Professor Sangyoub Lee, Department of Chemistry Seoul National University Seoul South Korea
| |
Collapse
|
2
|
Ghosal A. Statistics of Reaction Flux and Dynamical Activity Associated with a Diffusion-Influenced Ligand-Binding Reaction. J Phys Chem B 2021; 125:1760-1767. [PMID: 33565882 DOI: 10.1021/acs.jpcb.0c10350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we consider a macromolecule with two competitive binding sites where a ligand can bind to and gives rise to a unicyclic reaction network consisting of four states-(i) a single state with both binding sites vacant, (ii) two states with one bound site and one free binding site, and (iii) an another single state with both sites occupied. We obtain probability densities of the time-integrated current along the clockwise direction and the dynamical activity or mean number of jumps between different states for finite times at a fast diffusion limit. On the other hand, in the diffusion-limited case, ligand diffusion between the two binding sites directly connects the mono-ligated states-changing the reaction scheme. Addition of the new reaction channel alters the precision of ligand occupancy to a single site, the mean dynamical activity, and the mean entropy production rate. All of these quantities are calculated with varying degrees of competition between the two sites for ligands, and we find that increase in the competition between the two sites decreases all above-mentioned additive functionals. The upper bound of precision associated with a single-site ligand occupancy for a diffusion-influenced reaction network is set by the mean dynamical activity (mean entropy production rate) at small (large) ligand concentrations at the steady-state limit.
Collapse
Affiliation(s)
- Aishani Ghosal
- Dept. of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Diffusion-Limited Reaction Kinetics of a Reactant with Square Reactive Patches on a Plane. Symmetry (Basel) 2020. [DOI: 10.3390/sym12101744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We present a simple reaction model to study the influence of the size, number, and spatial arrangement of reactive patches on a reactant placed on a plane. Specifically, we consider a reactant whose surface has an N × N square grid structure, with each square cell (or patch) being chemically reactive or inert for partner reactant molecules approaching the cell via diffusion. We calculate the rate constant for various cases with different reactive N × N square patterns using the finite element method. For N = 2, 3, we determine the reaction kinetics of all possible reactive patterns in the absence and presence of periodic boundary conditions, and from the analysis, we find that the dependences of the kinetics on the size, number, and spatial arrangement are similar to those observed in reactive patches on a sphere. Furthermore, using square reactant models, we present a method to significantly increase the rate constant by sequentially breaking the patches into smaller patches and arranging them symmetrically. Interestingly, we find that a reactant with a symmetric patch distribution has a power–law relation between the rate constant and the number of reactive patches and show that this works well when the total reactive area is much less than the total surface area of the reactant. Since our N × N discrete models enable us to examine all possible reactive cases completely, they provide a solid understanding of the surface reaction kinetics, which would be helpful for understanding the fundamental aspects of the competitions between reactive patches arising in real applications.
Collapse
|
4
|
Eun C. Effects of the Size, the Number, and the Spatial Arrangement of Reactive Patches on a Sphere on Diffusion-limited Reaction Kinetics: A Comprehensive Study. Int J Mol Sci 2020; 21:ijms21030997. [PMID: 32028667 PMCID: PMC7037656 DOI: 10.3390/ijms21030997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 11/17/2022] Open
Abstract
We investigate how the size, the number, and the spatial arrangement of identical nonoverlapping reactive patches on a sphere influence the overall reaction kinetics of bimolecular diffusion-limited (or diffusion-controlled) reactions that occur between the patches and the reactants diffusing around the sphere. First, in the arrangement of two patches, it is known that the overall rate constant increases as the two patches become more separated from each other but decreases when they become closer to each other. In this work, we further study the dependence of the patch arrangement on the kinetics with three and four patches using the finite element method (FEM). In addition to the patch arrangement, the kinetics is also dependent on the number and size of the patches. Therefore, we study such dependences by calculating the overall rate constants using the FEM for various cases, especially for large-sized patches, and this study is complementary to the kinetic studies that were performed by Brownian dynamics (BD) simulation methods for small-sized patches. The numerical FEM and BD simulation results are compared with the results from various kinetic theories to evaluate the accuracies of the theories. Remarkably, this comparison indicates that our theory, which was recently developed based on the curvature-dependent kinetic theory, shows good agreement with the FEM and BD numerical results. From this validation, we use our theory to further study the variation of the overall rate constant when the patches are arbitrarily arranged on a sphere. Our theory also confirms that to maximize the overall rate constant, we need to break large-sized patches into smaller-sized patches and arrange them to be maximally separated to reduce their competition.
Collapse
Affiliation(s)
- Changsun Eun
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Korea
| |
Collapse
|
5
|
Abstract
The influence of diffusion on the kinetics of ligand binding to a macromolecule with two sites is considered for a simple model where, in the reaction-controlled limit, there is no cooperativity and hence the sites are independent. By applying our recently developed formalism to describe a network of coupled diffusion-influenced reactions, we show that the rate constants of chemical kinetics cannot just be renormalized. Rather a new reaction channel, which connects the two singly occupied states, must be introduced. The rate constants of this new channel depend on the committor or capture probability that a ligand that just dissociated from one site rebinds to the other. This result is rederived in an elementary way using the encounter complex model. Illustrative calculations are presented where the kinetics of the fractional saturation of one site is compared with that of a macromolecule that has only this site. If all sites are initially empty, then the second site slows down binding to the first due to competition between the sites. On the other hand, if the second site is initially occupied, the binding of the first site speeds up because of the direct diffusion-induced transitions between the two singly bound states.
Collapse
Affiliation(s)
- Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Attila Szabo
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Abstract
A formalism is developed to describe how diffusion alters the kinetics of coupled reversible association-dissociation reactions in the presence of conformational changes that can modify the reactivity. The major difficulty in constructing a general theory is that, even to the lowest order, diffusion can change the structure of the rate equations of chemical kinetics by introducing new reaction channels (i.e., modifies the kinetic scheme). Therefore, the right formalism must be found that allows the influence of diffusion to be described in a concise and elegant way for networks of arbitrary complexity. Our key result is a set of non-Markovian rate equations involving stoichiometric matrices and net reaction rates (fluxes), in which these rates are coupled by a time-dependent pair association flux matrix, whose elements have a simple physical interpretation. Specifically, each element is the probability density that an isolated pair of reactants irreversibly associates at time t via one reaction channel on the condition that it started out with the dissociation products of another (or the same) channel. In the Markovian limit, the coupling of the chemical rates is described by committors (or splitting/capture probabilities). The committor is the probability that an isolated pair of reactants formed by dissociation at one site will irreversibly associate at another site rather than diffuse apart. We illustrate the use of our formalism by considering three reversible reaction schemes: (1) binding to a single site, (2) binding to two inequivalent sites, and (3) binding to a site whose reactivity fluctuates. In the first example, we recover the results published earlier, while in the second one we show that a new reaction channel appears, which directly connects the two bound states. The third example is particularly interesting because all species become coupled and an exchange-type bimolecular reaction appears. In the Markovian limit, some of the diffusion-modified rate constants that describe new transitions become negative, indicating that memory effects cannot be ignored.
Collapse
Affiliation(s)
- Irina V. Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Attila Szabo
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
7
|
Doktorov AB. Bimolecular multistage diffusion-influenced chemical reactions proceeding from different sites in solutions. I. Rate constants. J Chem Phys 2018; 149:094102. [PMID: 30195296 DOI: 10.1063/1.5040015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
General matrix algebraic equations for calculating rate constants of multistage diffusion-influenced reactions (involving bimolecular exchange reactions as elementary stages) in liquid solutions that proceed from different active sites in the immediate vicinity of the contact of reactants have been obtained on the basis of the kinematic approximation developed by the authors earlier. The equations make it possible to express rate constants of any multistage multisite bimolecular reaction between non-identical reactants in terms of the defined reaction constants and stationary Green functions averaged over reaction sites and completely determined by molecular motion of reactants or their molecular groups. The asymptotic behavior of these rate constants as they attain their steady-state values on completion of the transient stage is established. It is shown that it coincides with the corresponding exact time asymptote. Calculations are made with some specific two-stage (three-channel) bimolecular reactions as an example.
Collapse
Affiliation(s)
- Alexander B Doktorov
- Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Eun C. Effect of surface curvature on diffusion-limited reactions on a curved surface. J Chem Phys 2018; 147:184112. [PMID: 29141428 DOI: 10.1063/1.5005038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To investigate how the curvature of a reactive surface can affect reaction kinetics, we use a simple model in which a diffusion-limited bimolecular reaction occurs on a curved surface that is hollowed inward, flat, or extended outward while keeping the reactive area on the surface constant. By numerically solving the diffusion equation for this model using the finite element method, we find that the rate constant is a non-linear function of the surface curvature and that there is an optimal curvature providing the maximum value of the rate constant, which indicates that a spherical reactant whose entire surface is reactive (a uniformly reactive sphere) is not the most reactive species for a given reactive surface area. We discuss how this result arises from the interplay between two opposing effects: the exposedness of the reactive area to its partner reactants, which causes the rate constant to increase as the curvature increases, and the competition occurring on the reactive surface, which decreases the rate constant. This study helps us to understand the role of curvature in surface reactions and allows us to rationally design reactants that provide a high reaction rate.
Collapse
Affiliation(s)
- Changsun Eun
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, South Korea
| |
Collapse
|
9
|
Kasahara K, Sato H. Dynamics theory for molecular liquids based on an interaction site model. Phys Chem Chem Phys 2017; 19:27917-27929. [DOI: 10.1039/c7cp05423h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dynamics theories for molecular liquids based on an interaction site model have been developed over the past few decades and proved to be powerful tools to investigate various dynamical phenomena.
Collapse
Affiliation(s)
- Kento Kasahara
- Department of Molecular Engineering
- Kyoto University
- Japan
| | - Hirofumi Sato
- Department of Molecular Engineering and Elements Strategy for Catalysts and Batteries (ESICB)
- Kyoto University
- Japan
| |
Collapse
|
10
|
Kasahara K, Sato H. A theory of diffusion controlled reactions in polyatomic molecule system. J Chem Phys 2016; 145:194502. [DOI: 10.1063/1.4967400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Ivanov KL, Lukzen NN, Doktorov AB. On the time dependence of rate coefficients of irreversible reactions between reactants with anisotropic reactivity in liquid solutions. J Chem Phys 2016. [DOI: 10.1063/1.4960174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Konstantin L. Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikita N. Lukzen
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander B. Doktorov
- Novosibirsk State University, Novosibirsk 630090, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia
| |
Collapse
|
12
|
Gopich IV, Szabo A. Influence of diffusion on the kinetics of multisite phosphorylation. Protein Sci 2015; 25:244-54. [PMID: 26096178 DOI: 10.1002/pro.2722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/05/2015] [Indexed: 11/06/2022]
Abstract
When an enzyme modifies multiple sites on a substrate, the influence of the relative diffusive motion of the reactants cannot be described by simply altering the rate constants in the rate equations of chemical kinetics. We have recently shown that, even as a first approximation, new transitions between the appropriate species must also be introduced. The physical reason for this is that a kinase, after phosphorylating one site, can rebind and modify another site instead of diffusing away. The corresponding new rate constants depend on the capture or rebinding probabilities that an enzyme-substrate pair, which is formed after dissociation from one site, reacts at the other site rather than diffusing apart. Here we generalize our previous work to describe both random and sequential phosphorylation by considering inequivalent modification sites. In addition, anisotropic reactive sites (instead of uniformly reactive spheres) are explicitly treated by using localized sink and source terms in the reaction-diffusion equations for the enzyme-substrate pair distribution function. Finally, we show that our results can be rederived using a phenomenological approach based on introducing transient encounter complexes into the standard kinetic scheme and then eliminating them using the steady-state approximation.
Collapse
Affiliation(s)
- Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Attila Szabo
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
13
|
Trapping by clusters of channels, receptors, and transporters: quantitative description. Biophys J 2014; 106:500-9. [PMID: 24507591 DOI: 10.1016/j.bpj.2013.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/06/2013] [Accepted: 12/11/2013] [Indexed: 11/27/2022] Open
Abstract
Various membrane functional units such as receptors, transporters, and channels, whose action necessarily involves capturing diffusing molecules, are often organized into multimeric complexes forming clusters on the cell and organelle membranes. These functional units themselves are usually oligomers of several integral proteins, which have their own symmetry. Depending on the symmetry, they form clusters on different packing lattices. Moreover, local membrane inhomogeneities, e.g., the so-called membrane domains, rafts, stalks, etc., lead to different patterns even within the structures on the same packing lattice. Units in the cluster compete for diffusing molecules and screen each other. Here we propose a general approach that allows one to quantify the screening effects. The approach is used to derive simple approximate formulas giving the trapping rates of diffusing molecules by clusters of absorbers on lattices of different packing symmetries. The obtained results describe smooth variation of the trapping rate from the sum of the rates of individual absorbers forming the cluster to the effective collective rate. The latter shows how the trapping efficiency of an individual absorber decreases as the number of absorbers in the cluster increases and/or the inter-absorber distance decreases. Numerical tests demonstrate good agreement between the rates predicted by the theory and obtained from Brownian dynamics simulations for clusters of different shapes and sizes.
Collapse
|
14
|
Nekrasov VM, Polshchitsin AA, Yurkin MA, Yakovleva GE, Maltsev VP, Chernyshev AV. Brownian aggregation rate of colloid particles with several active sites. J Chem Phys 2014; 141:064309. [DOI: 10.1063/1.4892163] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vyacheslav M. Nekrasov
- Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia
- Physics Department, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Alexey A. Polshchitsin
- Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia
- JSC “VECTOR-BEST”, PO BOX 492, Novosibirsk 630117 Russia
| | - Maxim A. Yurkin
- Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia
- Physics Department, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | | | - Valeri P. Maltsev
- Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia
- Physics Department, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
- Department of Preventive Medicine, Novosibirsk State Medical University, Krasny Prospect 52, 630091 Novosibirsk, Russia
| | - Andrei V. Chernyshev
- Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia
- Physics Department, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| |
Collapse
|
15
|
Eun C, Kekenes-Huskey PM, McCammon JA. Influence of neighboring reactive particles on diffusion-limited reactions. J Chem Phys 2014; 139:044117. [PMID: 23901970 DOI: 10.1063/1.4816522] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Competition between reactive species is commonplace in typical chemical reactions. Specifically the primary reaction between a substrate and its target enzyme may be altered when interactions with secondary species in the system are substantial. We explore this competition phenomenon for diffusion-limited reactions in the presence of neighboring particles through numerical solution of the diffusion equation. As a general model for globular proteins and small molecules, we consider spherical representations of the reactants and neighboring particles; these neighbors vary in local density, size, distribution, and relative distance from the primary target reaction, as well as their surface reactivity. Modulations of these model variables permit inquiry into the influence of excluded volume and competition on the primary reaction due to the presence of neighboring particles. We find that the surface reactivity effect is long-ranged and a strong determinant of reaction kinetics, whereas the excluded volume effect is relatively short-ranged and less influential in comparison. As a consequence, the effect of the excluded volume is only modestly dependent on the neighbor distribution and is approximately additive; this additivity permits a linear approximation to the many-body effect on the reaction kinetics. In contrast, the surface reactivity effect is non-additive, and thus it may require higher-order approximations to describe the reaction kinetics. Our model study has broad implications in the general understanding of competition and local crowding on diffusion-limited chemical reactions.
Collapse
Affiliation(s)
- Changsun Eun
- Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
16
|
Berezhkovskii AM, Dagdug L, Vazquez MV, Lizunov VA, Zimmerberg J, Bezrukov SM. Trapping of diffusing particles by clusters of absorbing disks on a reflecting wall with disk centers on sites of a square lattice. J Chem Phys 2013; 138:064105. [PMID: 23425459 DOI: 10.1063/1.4790370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A simple approximate formula is derived for the rate constant that describes steady-state flux of diffusing particles through a cluster of perfectly absorbing disks on the otherwise reflecting flat wall, assuming that the disk centers occupy neighboring sites of a square lattice. A distinctive feature of trapping by a disk cluster is that disks located at the cluster periphery shield the disks in the center of the cluster. This competition of the disks for diffusing particles makes it impossible to find an exact analytical solution for the rate constant in the general case. To derive the approximate formula, we use a recently suggested approach [A. M. Berezhkovskii, L. Dagdug, V. A. Lizunov, J. Zimmerberg, and S. M. Bezrukov, J. Chem. Phys. 136, 211102 (2012)], which is based on the replacement of the disk cluster by an effective uniform partially absorbing spot. The formula shows how the rate constant depends on the size and shape of the cluster. To check the accuracy of the formula, we compare its predictions with the values of the rate constant obtained from Brownian dynamics simulations. The comparison made for 18 clusters of various shapes and sizes shows good agreement between the theoretical predictions and numerical results.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Division for Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
17
|
Saddawi S, Strieder W. Size effects in reactive circular site interactions. J Chem Phys 2012; 136:044518. [PMID: 22299902 DOI: 10.1063/1.3668312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The complete series solution for the reactant diffusion and reaction at two diffusion-controlled chemically reactive surface sites of radii a(1) and a(2), located in an inert plane an arbitrary center-to-center distance d apart, is presented. Rigorous, analytical forms are developed to calculate the site reaction rates in terms of the dimensionless intersite distance σ[=d/(a(1) + a(2))] and the site radius ratio γ(=a(1)∕/a(2)). Numerical simulation and approximate theoretical results from the recent literature are compared to the exact site reaction rates. While general agreement was noted over the ranges of γ and σ, significant errors in the Wilemski-Fixman-Weiss site rates were found at small γ and σ < 3.
Collapse
Affiliation(s)
- Salma Saddawi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 182 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
18
|
Kang A, Kim JH, Lee S, Park H. Diffusion-influenced reactions involving a reactant with two active sites. J Chem Phys 2009; 130:094507. [PMID: 19275409 DOI: 10.1063/1.3082010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We consider the kinetics of diffusion-influenced reactions which involve a reactant species that can be modeled as a sphere with two reactive patches located on its surface at an arbitrary angular distance. An approximate analytic expression for the rate coefficient is derived based on the Wilemski-Fixman-Weiss decoupling approximation and a multivariable Padé approximation. The accuracy of the rate expression is evaluated against computer simulations as well as an exact analytic expression available for a special case. The present theory provides accurate estimates for the magnitude of diffusive interference effects between the two reactive patches. We also present an efficient Brownian dynamics method for calculating the time-dependent rate coefficient, which is applicable when the reactants involve multiple active sites.
Collapse
Affiliation(s)
- Aeri Kang
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|