1
|
Stringer A, Curotto E. An ergodic measure for Diffusion Monte Carlo ground state wavefunctions: Application to a hydrogen cluster with an isotopic impurity. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
2
|
Curotto E, Mella M. Diffusion Monte Carlo simulations of gas phase and adsorbed D 2-(H 2) n clusters. J Chem Phys 2018; 148:102315. [PMID: 29544319 DOI: 10.1063/1.5000372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have computed ground state energies and analyzed radial distributions for several gas phase and adsorbed D2(H2)n and HD(H2)n clusters. An external model potential designed to mimic ionic adsorption sites inside porous materials is used [M. Mella and E. Curotto, J. Phys. Chem. A 121, 5005 (2017)]. The isotopic substitution lowers the ground state energies by the expected amount based on the mass differences when these are compared with the energies of the pure clusters in the gas phase. A similar impact is found for adsorbed aggregates. The dissociation energy of D2 from the adsorbed clusters is always much higher than that of H2 from both pure and doped aggregates. Radial distributions of D2 and H2 are compared for both the gas phase and adsorbed species. For the gas phase clusters, two types of hydrogen-hydrogen interactions are considered: one based on the assumption that rotations and translations are adiabatically decoupled and the other based on nonisotropic four-dimensional potential. In the gas phase clusters of sufficiently large size, we find the heavier isotopomer more likely to be near the center of mass. However, there is a considerable overlap among the radial distributions of the two species. For the adsorbed clusters, we invariably find the heavy isotope located closer to the attractive interaction source than H2, and at the periphery of the aggregate, H2 molecules being substantially excluded from the interaction with the source. This finding rationalizes the dissociation energy results. For D2-(H2)n clusters with n≥12, such preference leads to the desorption of D2 from the aggregate, a phenomenon driven by the minimization of the total energy that can be obtained by reducing the confinement of (H2)12. The same happens for (H2)13, indicating that such an effect may be quite general and impact on the absorption of quantum species inside porous materials.
Collapse
Affiliation(s)
- E Curotto
- Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania 19038-3295, USA
| | - M Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy
| |
Collapse
|
3
|
Christensen HM, Jake LC, Curotto E. Smart darting diffusion Monte Carlo: Applications to lithium ion-Stockmayer clusters. J Chem Phys 2016; 144:174115. [PMID: 27155633 DOI: 10.1063/1.4948562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a recent investigation [K. Roberts et al., J. Chem. Phys. 136, 074104 (2012)], we have shown that, for a sufficiently complex potential, the Diffusion Monte Carlo (DMC) random walk can become quasiergodic, and we have introduced smart darting-like moves to improve the sampling. In this article, we systematically characterize the bias that smart darting moves introduce in the estimate of the ground state energy of a bosonic system. We then test a simple approach to eliminate completely such bias from the results. The approach is applied for the determination of the ground state of lithium ion-n-dipoles clusters in the n = 8-20 range. For these, the smart darting diffusion Monte Carlo simulations find the same ground state energy and mixed-distribution as the traditional approach for n < 14. In larger systems we find that while the ground state energies agree quantitatively with or without smart darting moves, the mixed-distributions can be significantly different. Some evidence is offered to conclude that introducing smart darting-like moves in traditional DMC simulations may produce a more reliable ground state mixed-distribution.
Collapse
Affiliation(s)
- H M Christensen
- Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania 19038-3295, USA
| | - L C Jake
- Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania 19038-3295, USA
| | - E Curotto
- Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania 19038-3295, USA
| |
Collapse
|
4
|
Curotto E, Mella M. On the convergence of diffusion Monte Carlo in non-Euclidean spaces. I. Free diffusion. J Chem Phys 2015; 142:114110. [PMID: 25796234 DOI: 10.1063/1.4914515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop a set of diffusion Monte Carlo algorithms for general compactly supported Riemannian manifolds that converge weakly to second order with respect to the time step. The approaches are designed to work for cases that include non-orthogonal coordinate systems, nonuniform metric tensors, manifold boundaries, and multiply connected spaces. The methods do not require specially designed coordinate charts and can in principle work with atlases of charts. Several numerical tests for free diffusion in compactly supported Riemannian manifolds are carried out for spaces relevant to the chemical physics community. These include the circle, the 2-sphere, and the ellipsoid of inertia mapped with traditional angles. In all cases, we observe second order convergence, and in the case of the sphere, we gain insight into the function of the advection term that is generated by the curved nature of the space.
Collapse
Affiliation(s)
- E Curotto
- Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania 19038-3295, USA
| | - Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, via Valleggio 9, Università degli studi dell'Insubria, 22100 Como, Italy
| |
Collapse
|
5
|
Curotto E, Mella M. On the convergence of diffusion Monte Carlo in non-Euclidean spaces. II. Diffusion with sources and sinks. J Chem Phys 2015; 142:114111. [PMID: 25796235 DOI: 10.1063/1.4914516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We test the second order Milstein method adapted to simulate diffusion in general compact Riemann manifolds on a number of systems characterized by nonconfining potential energy surfaces of increasing complexity. For the 2-sphere and more complex spaces derived from it, we compare the Milstein method with a number of other first and second order approaches. In each case tested, we find evidence that demonstrate the versatility and relative ease of implementation of the Milstein method derived in Part I.
Collapse
Affiliation(s)
- E Curotto
- Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania 19038-3295, USA
| | - Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, via Valleggio 9, Università degli studi dell'Insubria, 22100 Como, Italy
| |
Collapse
|
6
|
|
7
|
Jenkins R, Curotto E, Mella M. Replica exchange with Smart Monte Carlo and Hybrid Monte Carlo in manifolds. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.10.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Roberts K, Sebsebie R, Curotto E. A rare event sampling method for diffusion Monte Carlo using smart darting. J Chem Phys 2012; 136:074104. [PMID: 22360233 DOI: 10.1063/1.3685453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We identify a set of multidimensional potential energy surfaces sufficiently complex to cause both the classical parallel tempering and the guided or unguided diffusion Monte Carlo methods to converge too inefficiently for practical applications. The mathematical model is constructed as a linear combination of decoupled Double Wells [(DDW)(n)]. We show that the set (DDW)(n) provides a serious test for new methods aimed at addressing rare event sampling in stochastic simulations. Unlike the typical numerical tests used in these cases, the thermodynamics and the quantum dynamics for (DDW)(n) can be solved deterministically. We use the potential energy set (DDW)(n) to explore and identify methods that can enhance the diffusion Monte Carlo algorithm. We demonstrate that the smart darting method succeeds at reducing quasiergodicity for n ≫ 100 using just 1 × 10(6) moves in classical simulations (DDW)(n). Finally, we prove that smart darting, when incorporated into the regular or the guided diffusion Monte Carlo algorithm, drastically improves its convergence. The new method promises to significantly extend the range of systems computationally tractable by the diffusion Monte Carlo algorithm.
Collapse
Affiliation(s)
- K Roberts
- Department of Chemistry and Physics, Arcadia University, Glenside, Pennsylvania 19038-3295, USA
| | | | | |
Collapse
|
9
|
Affiliation(s)
- Brian M. Austin
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Dmitry Yu. Zubarev
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - William A. Lester
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Mella M. Higher order diffusion Monte Carlo propagators for linear rotors as diffusion on a sphere: development and application to O2@He(n). J Chem Phys 2011; 135:114504. [PMID: 21950868 DOI: 10.1063/1.3639190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exploiting the theoretical treatment of particles diffusing on corrugated surfaces and the isomorphism between the "particle on a sphere" and a linear molecule rotation, a new diffusion kernel is introduced to increase the order of diffusion Monte Carlo (DMC) simulations involving linear rotors. Tests carried out on model systems indicate the superior performances of the new rotational diffusion kernel with respect to the simpler alternatives previously employed. In particular, it is evidenced a second order convergence toward exact results with respect to the time step of dynamical correlation functions, a fact that guarantees an identical order for the diffusion part of the DMC projector. The algorithmic advantages afforded by the latter are discussed, especially with respect to the "a posteriori" and "on the fly" extrapolation schemes. As a first application to the new algorithm, the structure and energetics of O(2)@He(n) (n = 1-40) clusters have been studied. This was done to investigate the possible cause of the quenching of the reaction between O(2) and Mg witnessed upon increasing the size of superfluid He droplets used as a solvent. With the simulations on O(2) indicating a strong localization in the cluster core, the behaviour as a function of n is ascribed to the extremely fluxional comportment of Mg@He(n), which dwells far from the droplet center, albeit being solvated, when n is large.
Collapse
Affiliation(s)
- Massimo Mella
- Dipartimento di Scienze Chimiche ed Ambientali, Università degli Studi dell'Insubria, via Lucini 3, 22100 Como, Italy.
| |
Collapse
|
11
|
Curotto E, Mella M. Quantum Monte Carlo simulations of selected ammonia clusters (n = 2–5): Isotope effects on the ground state of typical hydrogen bonded systems. J Chem Phys 2010; 133:214301. [DOI: 10.1063/1.3506027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
12
|
Asare E, Musah AR, Curotto E, Freeman DL, Doll JD. The thermodynamic and ground state properties of the TIP4P water octamer. J Chem Phys 2009; 131:184508. [DOI: 10.1063/1.3259047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|