1
|
Herranz M, Benito J, Foteinopoulou K, Karayiannis NC, Laso M. Polymorph Stability and Free Energy of Crystallization of Freely-Jointed Polymers of Hard Spheres. Polymers (Basel) 2023; 15:polym15061335. [PMID: 36987117 PMCID: PMC10058036 DOI: 10.3390/polym15061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The free energy of crystallization of monomeric hard spheres as well as their thermodynamically stable polymorph have been known for several decades. In this work, we present semianalytical calculations of the free energy of crystallization of freely-jointed polymers of hard spheres as well as of the free energy difference between the hexagonal closed packed (HCP) and face-centered cubic (FCC) polymorphs. The phase transition (crystallization) is driven by an increase in translational entropy that is larger than the loss of conformational entropy of chains in the crystal with respect to chains in the initial amorphous phase. The conformational entropic advantage of the HCP polymer crystal over the FCC one is found to be ΔschHCP-FCC≈0.331×10-5k per monomer (expressed in terms of Boltzmann's constant k). This slight conformational entropic advantage of the HCP crystal of chains is by far insufficient to compensate for the larger translational entropic advantage of the FCC crystal, which is predicted to be the stable one. The calculated overall thermodynamic advantage of the FCC over the HCP polymorph is supported by a recent Monte Carlo (MC) simulation on a very large system of 54 chains of 1000 hard sphere monomers. Semianalytical calculations using results from this MC simulation yield in addition a value of the total crystallization entropy for linear, fully flexible, athermal polymers of Δs≈0.93k per monomer.
Collapse
Affiliation(s)
- Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Javier Benito
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Katerina Foteinopoulou
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
2
|
Herranz M, Foteinopoulou K, Karayiannis NC, Laso M. Polymorphism and Perfection in Crystallization of Hard Sphere Polymers. Polymers (Basel) 2022; 14:polym14204435. [PMID: 36298013 PMCID: PMC9612263 DOI: 10.3390/polym14204435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
We present results on polymorphism and perfection, as observed in the spontaneous crystallization of freely jointed polymers of hard spheres, obtained in an unprecedentedly long Monte Carlo (MC) simulation on a system of 54 chains of 1000 monomers. Starting from a purely amorphous configuration, after an initial dominance of the hexagonal closed packed (HCP) polymorph and a transitory random hexagonal close packed (rHCP) morphology, the system crystallizes in a final, stable, face centered cubic (FCC) crystal of very high perfection. An analysis of chain conformational characteristics, of the spatial distribution of monomers and of the volume accessible to them shows that the phase transition is caused by an increase in translational entropy that is larger than the loss of conformational entropy of the chains in the crystal, compared to the amorphous state. In spite of the significant local re-arrangements, as reflected in the bending and torsion angle distributions, the average chain size remains unaltered during crystallization. Polymers in the crystal adopt ideal random walk statistics as their great length renders local conformational details, imposed by the geometry of the FCC crystal, irrelevant.
Collapse
Affiliation(s)
| | | | - Nikos Ch. Karayiannis
- Correspondence: (N.C.K.); (M.L.); Tel.: +34-910677318 (N.C.K.); +34-910677320 (M.L.)
| | - Manuel Laso
- Correspondence: (N.C.K.); (M.L.); Tel.: +34-910677318 (N.C.K.); +34-910677320 (M.L.)
| |
Collapse
|
3
|
Ramos PM, Herranz M, Martínez-Fernández D, Foteinopoulou K, Laso M, Karayiannis NC. Crystallization of Flexible Chains of Tangent Hard Spheres under Full Confinement. J Phys Chem B 2022; 126:5931-5947. [PMID: 35904560 DOI: 10.1021/acs.jpcb.2c03424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present results from extensive Monte Carlo simulations on the crystallization of athermal polymers under full confinement. Polymers are represented as freely jointed chains of tangent hard spheres of uniform size. Confinement is applied through the presence of flat, parallel, and impenetrable walls in all dimensions. We analyze crystallization as the summation of two contributions: one that occurs in the bulk volume of the system (bulk crystallization), and one on the wall surfaces (surface crystallization). Depending on volume fraction initially amorphous (disordered) hard-sphere chain packings transit to the stable crystal phase. The established ordered morphologies consist primarily of hexagonal close-packed (HCP) crystals in the bulk volume and of triangular (TRI) crystals on the surface. As in the case of athermal packings in the bulk (without confinement), a structural competition is observed between the 5-fold local symmetry and the formation of close-packed crystallites. Effectively, the full confinement inside a cube favors the growth of the HCP crystal, as the FCC one is quite incompatible with the imposed spatial constraints. Consequently, we observe the formation of noncompact ordered motifs which grow from the surface to the inner volume of the simulation cell. We further compare the 2D and 3D crystals formed by monomeric hard spheres under the same simulation conditions. Significant differences are observed at low densities that tend to diminish as concentration increases.
Collapse
Affiliation(s)
- Pablo Miguel Ramos
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Daniel Martínez-Fernández
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Katerina Foteinopoulou
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
4
|
Parreño O, Ramos PM, Karayiannis NC, Laso M. Self-Avoiding Random Walks as a Model to Study Athermal Linear Polymers under Extreme Plate Confinement. Polymers (Basel) 2020; 12:E799. [PMID: 32260075 PMCID: PMC7240602 DOI: 10.3390/polym12040799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/04/2023] Open
Abstract
Monte Carlo (MC) simulations, built around chain-connectivity-altering moves and a wall-displacement algorithm, allow us to simulate freely-jointed chains of tangent hard spheres of uniform size under extreme confinement. The latter is realized through the presence of two impenetrable, flat, and parallel plates. Extreme conditions correspond to the case where the distance between the plates approaches the monomer size. An analysis of the local structure, based on the characteristic crystallographic element (CCE) norm, detects crystal nucleation and growth at packing densities well below the ones observed in bulk analogs. In a second step, we map the confined polymer chains into self-avoiding random walks (SAWs) on restricted lattices. We study all realizations of the cubic crystal system: simple, body centered, and face centered cubic crystals. For a given chain size (SAW length), lattice type, origin of SAW, and level of confinement, we enumerate all possible SAWs (equivalently all chain conformations) and calculate the size distribution. Results for intermediate SAW lengths are used to predict the behavior of long, fully entangled chains through growth formulas. The SAW analysis will allow us to determine the corresponding configurational entropy, as it is the driving force for the observed phase transition and the determining factor for the thermodynamic stability of the corresponding crystal morphologies.
Collapse
Key Words
- confinement, crystallization, entropy, hard sphere, polymer, random walk, Monte Carlo, phase transition, lattice model, cubic crystal system, direct enumeration
Collapse
Affiliation(s)
| | | | - Nikos Ch. Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politecnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain; (O.P.); (P.M.R.); (M.L.)
| | | |
Collapse
|
5
|
Xiong X, Huang X, Wolf B. A versatile viscometric method for the study of dissolved proteins, exemplified for casein micelles in ammoniacal solutions. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Karayiannis NC, Foteinopoulou K, Laso M. The role of bond tangency and bond gap in hard sphere crystallization of chains. SOFT MATTER 2015; 11:1688-1700. [PMID: 25594158 DOI: 10.1039/c4sm02707h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report results from Monte Carlo simulations on dense packings of linear, freely-jointed chains of hard spheres of uniform size. In contrast to our past studies where bonded spheres along the chain backbone were tangent, in the present work a finite tolerance in the bond is allowed. Bond lengths are allowed to fluctuate in the interval [σ, σ + dl], where σ is the sphere diameter. We find that bond tolerance affects the phase behaviour of hard-sphere chains, especially in the close vicinity of the melting transition. First, a critical dl(crit) exists marking the threshold for crystallization, whose value decreases with increasing volume fraction. Second, bond gaps enhance the onset of phase transition by accelerating crystal nucleation and growth. Finally, bond tolerance has an effect on crystal morphologies: in the tangent limit the majority of structures correspond to stack-faulted random hexagonal close packing (rhcp). However, as bond tolerance increases a wealth of diverse structures can be observed: from single fcc (or hcp) crystallites to random hcp/fcc stackings with multiple directions. By extending the simulations over trillions of MC steps (10(12)) we are able to observe crystal-crystal transitions and perfection even for entangled polymer chains in accordance to the Ostwald's rule of stages in crystal polymorphism. Through simple geometric arguments we explain how the presence of rigid or flexible constraints affects crystallization in general atomic and particulate systems. Based on the present results, it can be concluded that proper tuning of bond gaps and of the connectivity network can be a controlling factor for the phase behaviour of model, polymer-based colloidal and granular systems.
Collapse
Affiliation(s)
- Nikos Ch Karayiannis
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Polytechnic University of Madrid (UPM), Madrid, 28028, Spain.
| | | | | |
Collapse
|
7
|
Foteinopoulou K, Karayiannis NC, Laso M. Monte Carlo simulations of densely-packed athermal polymers in the bulk and under confinement. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
More M, Sunda AP, Venkatnathan A. Polymer chain length, phosphoric acid doping and temperature dependence on structure and dynamics of an ABPBI [poly(2,5-benzimidazole)] polymer electrolyte membrane. RSC Adv 2014. [DOI: 10.1039/c4ra01421a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The random orientations of BI units and the presence of free rotation around the single bond which connects two monomeric BI segments lead to minimal possibility of π–π interactions.
Collapse
Affiliation(s)
- Minal More
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune-411008, India
| | - Anurag Prakash Sunda
- Chemistry and Physics of Materials Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064, India
| | - Arun Venkatnathan
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune-411008, India
| |
Collapse
|
9
|
Jover J, Haslam AJ, Galindo A, Jackson G, Müller EA. Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules. J Chem Phys 2013; 137:144505. [PMID: 23061853 DOI: 10.1063/1.4754275] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for m(c) = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, m(c), approaches a limiting value at reasonably small values, m(c) < 50, as predicted by Wertheim's first order thermodynamic perturbation theory. Simulation results are also presented for highly asymmetric mixtures of pseudo hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.
Collapse
Affiliation(s)
- J Jover
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Karayiannis NC, Foteinopoulou K, Laso M. Spontaneous crystallization in athermal polymer packings. Int J Mol Sci 2012; 14:332-58. [PMID: 23263666 PMCID: PMC3565267 DOI: 10.3390/ijms14010332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/14/2012] [Indexed: 11/17/2022] Open
Abstract
We review recent results from extensive simulations of the crystallization of athermal polymer packings. It is shown that above a certain packing density, and for sufficiently long simulations, all random assemblies of freely-jointed chains of tangent hard spheres of uniform size show a spontaneous transition into a crystalline phase. These polymer crystals adopt predominantly random hexagonal close packed morphologies. An analysis of the local environment around monomers based on the shape and size of the Voronoi polyhedra clearly shows that Voronoi cells become more spherical and more symmetric as the system transits to the ordered state. The change in the local environment leads to an increase in the monomer translational contribution to the entropy of the system, which acts as the driving force for the phase transition. A comparison of the crystallization of hard-sphere polymers and monomers highlights similarities and differences resulting from the constraints imposed by chain connectivity.
Collapse
Affiliation(s)
- Nikos Ch. Karayiannis
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Polytechnic University of Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; E-Mails: (N.Ch.K.); (K.F.)
| | - Katerina Foteinopoulou
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Polytechnic University of Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; E-Mails: (N.Ch.K.); (K.F.)
| | - Manuel Laso
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Polytechnic University of Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; E-Mails: (N.Ch.K.); (K.F.)
| |
Collapse
|
11
|
Karayiannis NC, Malshe R, de Pablo JJ, Laso M. Fivefold symmetry as an inhibitor to hard-sphere crystallization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:061505. [PMID: 21797370 DOI: 10.1103/physreve.83.061505] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/26/2011] [Indexed: 05/31/2023]
Abstract
Through molecular simulations we investigate the dynamics of crystallization of hard spheres of uniform size from dense amorphous states and the role that hidden structures in an otherwise disordered medium might have on it. It is shown that short-range order in the form of sites with fivefold symmetry acts as a powerful inhibitor to crystal growth. Fivefold sites not only retard crystallization, but can self-assemble into organized structures that arrest crystallization at high densities or lead to the formation of defects in a crystal. The latter effect can be understood in terms of a random polyhedral model.
Collapse
Affiliation(s)
- Nikos Ch Karayiannis
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Universidad Politecnica de Madrid (UPM), Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Wang Q, Keffer DJ, Nicholson DM, Thomas JB. Coarse-Grained Molecular Dynamics Simulation of Polyethylene Terephthalate (PET). Macromolecules 2010. [DOI: 10.1021/ma102084a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qifei Wang
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - David J. Keffer
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Donald M. Nicholson
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830-8026, United States
| | - J. Brock Thomas
- Eastman Chemical Company, Kingsport, Tennessee 37662-5230, United States
| |
Collapse
|
13
|
Wang Q, Keffer DJ, Petrovan S, Thomas JB. Molecular Dynamics Simulation of Poly(ethylene terephthalate) Oligomers. J Phys Chem B 2009; 114:786-95. [DOI: 10.1021/jp909762j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qifei Wang
- Department of Chemical and Biomolecular Engineering, 1512 Middle Drive, University of Tennessee, Knoxville, Tennessee 37996-2200, and Eastman Chemical Company, Kingsport, Tennessee 37662-5230
| | - David J. Keffer
- Department of Chemical and Biomolecular Engineering, 1512 Middle Drive, University of Tennessee, Knoxville, Tennessee 37996-2200, and Eastman Chemical Company, Kingsport, Tennessee 37662-5230
| | - Simioan Petrovan
- Department of Chemical and Biomolecular Engineering, 1512 Middle Drive, University of Tennessee, Knoxville, Tennessee 37996-2200, and Eastman Chemical Company, Kingsport, Tennessee 37662-5230
| | - J. Brock Thomas
- Department of Chemical and Biomolecular Engineering, 1512 Middle Drive, University of Tennessee, Knoxville, Tennessee 37996-2200, and Eastman Chemical Company, Kingsport, Tennessee 37662-5230
| |
Collapse
|
14
|
Karayiannis NC, Kröger M. Combined molecular algorithms for the generation, equilibration and topological analysis of entangled polymers: methodology and performance. Int J Mol Sci 2009; 10:5054-5089. [PMID: 20087477 PMCID: PMC2808023 DOI: 10.3390/ijms10115054] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/17/2009] [Accepted: 11/20/2009] [Indexed: 12/02/2022] Open
Abstract
We review the methodology, algorithmic implementation and performance characteristics of a hierarchical modeling scheme for the generation, equilibration and topological analysis of polymer systems at various levels of molecular description: from atomistic polyethylene samples to random packings of freely-jointed chains of tangent hard spheres of uniform size. Our analysis focuses on hitherto less discussed algorithmic details of the implementation of both, the Monte Carlo (MC) procedure for the system generation and equilibration, and a postprocessing step, where we identify the underlying topological structure of the simulated systems in the form of primitive paths. In order to demonstrate our arguments, we study how molecular length and packing density (volume fraction) affect the performance of the MC scheme built around chain-connectivity altering moves. In parallel, we quantify the effect of finite system size, of polydispersity, and of the definition of the number of entanglements (and related entanglement molecular weight) on the results about the primitive path network. Along these lines we approve main concepts which had been previously proposed in the literature.
Collapse
Affiliation(s)
- Nikos Ch. Karayiannis
- Institute for Optoelectronics and Microsystems (ISOM) and ETSII, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Martin Kröger
- Polymer Physics, Swiss Federal Institute of Technology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8049 Zurich, Switzerland
| |
Collapse
|
15
|
Karayiannis NC, Foteinopoulou K, Laso M. Contact network in nearly jammed disordered packings of hard-sphere chains. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011307. [PMID: 19658698 DOI: 10.1103/physreve.80.011307] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Indexed: 05/28/2023]
Abstract
We present salient results of the analysis of the geometrical structure of a large fully equilibrated ensemble of nearly jammed packings of linear freely jointed chains of tangent hard spheres generated via extensive Monte Carlo simulations. In spite the expected differences due to chain connectivity, both the pair-correlation function and the contact network for chain packings are found to strongly resemble those in packings of monomeric hard spheres at the maximally random jammed (MRJ) state. A remarkable finding of the present work is the tendency of chains to form closed loops at the MRJ state as a consequence of chain collapse. Our simulations on disordered nearly jammed chain packings yield an average coordination number of 6, which fulfills the isostaticity condition and is in excellent agreement with the corresponding simulation [A. Donev, S. Torquato, and F. H. Stillinger, Phys. Rev. E 71, 011105 (2005)] and experimental [T. Aste, M. Saadatfar, and T. J. Senden, Phys. Rev. E 71, 061302 (2005)] findings for jammed packings of monatomic hard spheres. An exact correspondence between the statistical-mechanical ensembles of monomeric spheres and of hard-sphere chains offers insights regarding the structure and topology of the contact network of hard-sphere systems at the MRJ state.
Collapse
Affiliation(s)
- Nikos Ch Karayiannis
- Institute for Optoelectronics and Microsystems (ISOM) and ETSII, Universidad Politécnica de Madrid (UPM), José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | | | | |
Collapse
|
16
|
Karayiannis NC, Foteinopoulou K, Laso M. The characteristic crystallographic element norm: A descriptor of local structure in atomistic and particulate systems. J Chem Phys 2009; 130:074704. [PMID: 19239306 DOI: 10.1063/1.3077294] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce the characteristic crystallographic element (CCE) norm as a powerful descriptor of local structure in atomistic and particulate systems. The CCE-norm is sensitive both to radial and orientational deviations from perfect local order. Unlike other measures of local order, the CCE-norm decreases monotonically with increasing order, is zero for a perfectly ordered environment, and is strictly discriminating among different, competing crystal structures in imperfectly ordered systems. The CCE-norm descriptor can be used as a sensitive, quantitative measure to detect and track changes in local order in atomistic and general particulate systems. In a specific example we show the ability of the CCE-norm to monitor the onset and evolution of order in an initially amorphous, densely packed assembly of hard-sphere chains generated through extensive Monte Carlo simulations [Phys. Rev. Lett. 100, 050602 (2008)].
Collapse
Affiliation(s)
- Nikos Ch Karayiannis
- Institute for Optoelectronics and Microsystems (ISOM), UPM José Gutiérrez Abascal, 2 E-28006 Madrid, Spain
| | | | | |
Collapse
|
17
|
Karayiannis NC, Foteinopoulou K, Laso M. The structure of random packings of freely jointed chains of tangent hard spheres. J Chem Phys 2009; 130:164908. [DOI: 10.1063/1.3117903] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Alemán C, Karayiannis NC, Curcó D, Foteinopoulou K, Laso M. Computer simulations of amorphous polymers: From quantum mechanical calculations to mesoscopic models. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2008.07.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Foteinopoulou K, Karayiannis NC, Laso M, Kröger M, Mansfield ML. Universal scaling, entanglements, and knots of model chain molecules. PHYSICAL REVIEW LETTERS 2008; 101:265702. [PMID: 19437651 DOI: 10.1103/physrevlett.101.265702] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
By identifying the maximally random jammed state of freely jointed chains of tangent hard spheres we are able to determine the distinct scaling regimes characterizing the dependence of chain dimensions and topology on volume fraction. Calculated distributions of (i) the contour length of the primitive paths and (ii) the number of entanglements per chain agree remarkably well with recent theoretical predictions in all scaling regimes. Furthermore, our simulations reveal a hitherto unsuspected connection between purely intramolecular (knots) and intermolecular (entanglements) topological constraints.
Collapse
Affiliation(s)
- Katerina Foteinopoulou
- Institute for Optoelectronics and Microsystems, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Foteinopoulou K, Karayiannis NC, Laso M, Kröger M. Structure, Dimensions, and Entanglement Statistics of Long Linear Polyethylene Chains. J Phys Chem B 2008; 113:442-55. [DOI: 10.1021/jp808287s] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katerina Foteinopoulou
- Institute for Optoelectronics and Microsystems (ISOM) and ETSII, UPM, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Nikos Ch. Karayiannis
- Institute for Optoelectronics and Microsystems (ISOM) and ETSII, UPM, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronics and Microsystems (ISOM) and ETSII, UPM, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| |
Collapse
|