1
|
Espinosa-Garcia J, Rangel C. The CN(X 2Σ+) + C2H6 reaction: Dynamics study based on an analytical full-dimensional potential energy surface. J Chem Phys 2023; 159:124307. [PMID: 38127394 DOI: 10.1063/5.0172489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/14/2023] [Indexed: 12/23/2023] Open
Abstract
The hydrogen abstraction reaction of the cyano radical with molecules of ethane presents some interesting points in the chemistry from ultra-cold to combustion environments especially with regard to HCN(v) product vibrational distribution. In order to understand its dynamics, a new analytical full-dimensional potential energy surface was developed, named PES-2023. It uses a combination of valence bond and mechanic molecular terms as the functional form, fitted to high-level ab initio calculations at the explicitly correlated CCSD(T)-F12/aug-cc-pVTZ level on a reduced and selected number of points describing the reactive process. The new surface showed a continuous and smooth behavior, describing reasonably the topology of the reaction: high exothermicity, low barrier, and presence of intermediate complexes in the entrance and exit channels. Using quasi-classical trajectory calculations (QCT) on the new PES-2023, a dynamics study was performed at room temperature with special emphasis on the HCN(v1,v2,v3) product stretching and bending vibrational excitations, and the results were compared with the experimental evidence, which presented discrepancies in the bending excitation. The available energy was mostly deposited as HCN(v) vibrational energy with the vibrational population inverted in the CH stretching mode and not inverted in the CN stretching and bending modes, thus simulating the experimental evidence. Other dynamics properties at room temperature were also analyzed; cold rotational energy distribution was found, associated with a linear and soft transition state, and backward scattering distribution was found, associated with a rebound mechanism.
Collapse
Affiliation(s)
- Joaquin Espinosa-Garcia
- Área de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Cipriano Rangel
- Área de Química Física and Instituto de Computación Científica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
2
|
Li H, Suits AG. Universal crossed beam imaging studies of polyatomic reaction dynamics. Phys Chem Chem Phys 2020; 22:11126-11138. [DOI: 10.1039/d0cp00522c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crossed-beam imaging studies of polyatomic reactions show surprising dynamics not anticipated by extrapolation from smaller model systems.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Chemistry
- University of Missouri
- Columbia
- USA
| | | |
Collapse
|
3
|
Yang T, Dangi BB, Kaiser RI, Bertels LW, Head-Gordon M. A Combined Experimental and Theoretical Study on the Formation of the 2-Methyl-1-silacycloprop-2-enylidene Molecule via the Crossed Beam Reactions of the Silylidyne Radical (SiH; X(2)Π) with Methylacetylene (CH3CCH; X(1)A1) and D4-Methylacetylene (CD3CCD; X(1)A1). J Phys Chem A 2016; 120:4872-83. [PMID: 26837568 DOI: 10.1021/acs.jpca.5b12457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bimolecular gas-phase reactions of the ground-state silylidyne radical (SiH; X(2)Π) with methylacetylene (CH3CCH; X(1)A1) and D4-methylacetylene (CD3CCD; X(1)A1) were explored at collision energies of 30 kJ mol(-1) under single-collision conditions exploiting the crossed molecular beam technique and complemented by electronic structure calculations. These studies reveal that the reactions follow indirect scattering dynamics, have no entrance barriers, and are initiated by the addition of the silylidyne radical to the carbon-carbon triple bond of the methylacetylene molecule either to one carbon atom (C1; [i1]/[i2]) or to both carbon atoms concurrently (C1-C2; [i3]). The collision complexes [i1]/[i2] eventually isomerize via ring-closure to the c-SiC3H5 doublet radical intermediate [i3], which is identified as the decomposing reaction intermediate. The hydrogen atom is emitted almost perpendicularly to the rotational plane of the fragmenting complex resulting in a sideways scattering dynamics with the reaction being overall exoergic by -12 ± 11 kJ mol(-1) (experimental) and -1 ± 3 kJ mol(-1) (computational) to form the cyclic 2-methyl-1-silacycloprop-2-enylidene molecule (c-SiC3H4; p1). In line with computational data, experiments of silylidyne with D4-methylacetylene (CD3CCD; X(1)A1) depict that the hydrogen is emitted solely from the silylidyne moiety but not from methylacetylene. The dynamics are compared to those of the related D1-silylidyne (SiD; X(2)Π)-acetylene (HCCH; X(1)Σg(+)) reaction studied previously in our group, and from there, we discovered that the methyl group acts primarily as a spectator in the title reaction. The formation of 2-methyl-1-silacycloprop-2-enylidene under single-collision conditions via a bimolecular gas-phase reaction augments our knowledge of the hitherto poorly understood silylidyne (SiH; X(2)Π) radical reactions with small hydrocarbon molecules leading to the synthesis of organosilicon molecules in cold molecular clouds and in carbon-rich circumstellar envelopes.
Collapse
Affiliation(s)
- Tao Yang
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States
| | - Beni B Dangi
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawai'i at Manoa , Honolulu, Hawaii 96822, United States
| | - Luke W Bertels
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
4
|
Preston TJ, Hornung B, Pandit S, Harvey JN, Orr-Ewing AJ. Dynamical Effects and Product Distributions in Simulated CN + Methane Reactions. J Phys Chem A 2016; 120:4672-82. [DOI: 10.1021/acs.jpca.5b09487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas J. Preston
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Balázs Hornung
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Shubhrangshu Pandit
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Jeremy N. Harvey
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Heverlee), Belgium
| | - Andrew J. Orr-Ewing
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| |
Collapse
|
5
|
Dunning GT, Preston TJ, Greaves SJ, Greetham GM, Clark IP, Orr-Ewing AJ. Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution. J Phys Chem A 2015; 119:12090-101. [PMID: 26192334 PMCID: PMC4685429 DOI: 10.1021/acs.jpca.5b05624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transient electronic and vibrational absorption spectroscopy unravel the mechanisms and dynamics of bimolecular reactions of CN radicals with acetone in deuterated chloroform solutions. The CN radicals are produced by ultrafast ultraviolet photolysis of dissolved ICN. Two reactive forms of CN radicals are distinguished by their electronic absorption bands: "free" (uncomplexed) CN radicals, and "solvated" CN radicals that are complexed with solvent molecules. The lifetimes of the free CN radicals are limited to a few picoseconds following their photolytic production because of geminate recombination to ICN and INC, complexation with CDCl3 molecules, and reaction with acetone. The acetone reaction occurs with a rate coefficient of (8.0 ± 0.5) × 10(10) M(-1) s(-1) and transient vibrational spectra in the C═N and C═O stretching regions reveal that both the nascent HCN and 2-oxopropyl (CH3C(O)CH2) radical products are vibrationally excited. The rate coefficient for the reaction of solvated CN with acetone is 40 times slower than for free CN, with a rate coefficient of (2.0 ± 0.9) × 10(9) M(-1) s(-1) obtained from the rise in the HCN product v1(C═N stretch) IR absorption band. Evidence is also presented for CN complexes with acetone that are more strongly bound than the CN-CDCl3 complexes because of CN interactions with the carbonyl group. The rates of reactions of these more strongly associated radicals are slower still.
Collapse
Affiliation(s)
- Greg T Dunning
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Thomas J Preston
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Stuart J Greaves
- School of Engineering and Physical Sciences, Heriot-Watt University , Edinburgh EH14 4AS, U.K
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory , Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory , Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
6
|
Farahani P, Maeda S, Francisco JS, Lundberg M. Mechanisms for the Breakdown of Halomethanes through Reactions with Ground-State Cyano Radicals. Chemphyschem 2014; 16:181-90. [DOI: 10.1002/cphc.201402601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Indexed: 11/07/2022]
|
7
|
Ashfold MNR. Photoinitiated quantum molecular dynamics: Concluding Remarks. Faraday Discuss 2013; 163:545-51. [DOI: 10.1039/c3fd00090g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Albert DR, Davis HF. Studies of bimolecular reaction dynamics using pulsed high-intensity vacuum-ultraviolet lasers for photoionization detection. Phys Chem Chem Phys 2013; 15:14566-80. [DOI: 10.1039/c3cp51930a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Leonori F, Petrucci R, Wang X, Casavecchia P, Balucani N. A crossed beam study of the reaction CN+C2H4 at a high collision energy: The opening of a new reaction channel. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.09.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Estillore AD, Visger-Kiefer LM, Suits AG. Reaction dynamics of Cl + butanol isomers by crossed-beam sliced ion imaging. Faraday Discuss 2012; 157:181-91; discussion 243-84. [DOI: 10.1039/c2fd20059g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Rose RA, Greaves SJ, Oliver TAA, Clark IP, Greetham GM, Parker AW, Towrie M, Orr-Ewing AJ. Vibrationally quantum-state-specific dynamics of the reactions of CN radicals with organic molecules in solution. J Chem Phys 2011; 134:244503. [DOI: 10.1063/1.3603966] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Greaves SJ, Rose RA, Oliver TAA, Glowacki DR, Ashfold MNR, Harvey JN, Clark IP, Greetham GM, Parker AW, Towrie M, Orr-Ewing AJ. Vibrationally Quantum-State–Specific Reaction Dynamics of H Atom Abstraction by CN Radical in Solution. Science 2011; 331:1423-6. [DOI: 10.1126/science.1197796] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Stuart J. Greaves
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Rebecca A. Rose
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Thomas A. A. Oliver
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - David R. Glowacki
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | | | - Jeremy N. Harvey
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Ian P. Clark
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Gregory M. Greetham
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Anthony W. Parker
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0QX, UK
| | - Andrew J. Orr-Ewing
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| |
Collapse
|
13
|
Estillore AD, Visger-Kiefer LM, Ghani TA, Suits AG. Dynamics of H and D abstraction in the reaction of Cl atom with butane-1,1,1,4,4,4-d6. Phys Chem Chem Phys 2011; 13:8433-40. [DOI: 10.1039/c1cp20137a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Estillore AD, Visger LM, Suits AG. Imaging the dynamics of chlorine atom reactions with alkenes. J Chem Phys 2010; 133:074306. [DOI: 10.1063/1.3473049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Greaves SJ, Rose RA, Orr-Ewing AJ. Velocity map imaging of the dynamics of bimolecular chemical reactions. Phys Chem Chem Phys 2010; 12:9129-43. [PMID: 20448868 DOI: 10.1039/c001233e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The experimental technique of velocity map imaging (VMI) enables measurements to be made of the dynamics of chemical reactions that are providing unprecedented insights about reactive scattering. This perspective article illustrates how VMI, in combination with crossed-molecular beam, dual-beam or photo-initiated (Photoloc) methods, can reveal correlated information on the vibrational quantum states populated in the two products of a reaction, and the angular scattering of products (the differential cross section) formed in specific rotational and vibrational levels. Reactions studied by VMI techniques are being extended to those of polyatomic molecules or radicals, and of molecular ions. Subtle quantum-mechanical effects in bimolecular reactions can provide distinct signatures in the velocity map images, and are exemplified here by non-adiabatic dynamics on coupled potential energy surfaces, and by experimental evidence for scattering resonances.
Collapse
Affiliation(s)
- Stuart J Greaves
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | | | | |
Collapse
|
16
|
Estillore AD, Visger LM, Suits AG. Crossed-beam dc slice imaging of chlorine atom reactions with pentane isomers. J Chem Phys 2010; 132:164313. [DOI: 10.1063/1.3414353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Laura M. Visger
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Arthur G. Suits
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| |
Collapse
|
17
|
Leonori F, Hickson KM, Le Picard SD, Wang X, Petrucci R, Foggi P, Balucani N, Casavecchia P. Crossed-beam universal-detection reactive scattering of radical beams characterized by laser-induced-fluorescence: the case of C2and CN. Mol Phys 2010. [DOI: 10.1080/00268971003657110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Silva R, Gichuhi WK, Doyle MB, Winney AH, Suits AG. Photodissociation of heptane isomers and relative ionization efficiencies of butyl and propyl radicals at 157 nm. Phys Chem Chem Phys 2009; 11:4777-81. [PMID: 19492132 DOI: 10.1039/b823505h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an ion imaging and time-of-flight mass spectroscopy study of the photodissociation of a variety of heptane isomers using 157 nm dissociation and ionization. Time-of-flight mass spectra show that C(3)H(7) + C(4)H(9) is the dominant detected product channel following one-color 157 nm dissociation/ionization of heptanes. The results further allow determination of the relative ionization efficiencies of 1- and 2-butyl and propyl radicals at 157 nm. Momentum matching for the two radical products indicates that, for the C3-C4 products, neutral dissociation followed by ionization is the main source of the detected signals. The images show isotropic angular distributions and the translational energy distributions peak at very low energy, with only approximately 0.3 eV or 8% of the available energy appearing in translation. This is consistent with dissociation from the ground state or low-lying triplet states following non-radiative electronic relaxation.
Collapse
Affiliation(s)
- Ruchira Silva
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
19
|
Balucani N. Elementary reactions and their role in gas-phase prebiotic chemistry. Int J Mol Sci 2009; 10:2304-2335. [PMID: 19564951 PMCID: PMC2695279 DOI: 10.3390/ijms10052304] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 11/23/2022] Open
Abstract
The formation of complex organic molecules in a reactor filled with gaseous mixtures possibly reproducing the primitive terrestrial atmosphere and ocean demonstrated more than 50 years ago that inorganic synthesis of prebiotic molecules is possible, provided that some form of energy is provided to the system. After that groundbreaking experiment, gas-phase prebiotic molecules have been observed in a wide variety of extraterrestrial objects (including interstellar clouds, comets and planetary atmospheres) where the physical conditions vary widely. A thorough characterization of the chemical evolution of those objects relies on a multi-disciplinary approach: 1) observations allow us to identify the molecules and their number densities as they are nowadays; 2) the chemistry which lies behind their formation starting from atoms and simple molecules is accounted for by complex reaction networks; 3) for a realistic modeling of such networks, a number of experimental parameters are needed and, therefore, the relevant molecular processes should be fully characterized in laboratory experiments. A survey of the available literature reveals, however, that much information is still lacking if it is true that only a small percentage of the elementary reactions considered in the models have been characterized in laboratory experiments. New experimental approaches to characterize the relevant elementary reactions in laboratory are presented and the implications of the results are discussed.
Collapse
Affiliation(s)
- Nadia Balucani
- Dipartimento di Chimica, Università degli Studi di Perugia, 06123 Perugia, Italy; E-Mail:
; Tel. +39-075-585-5513; Fax: +39-075-585-5606
| |
Collapse
|
20
|
Casavecchia P, Leonori F, Balucani N, Petrucci R, Capozza G, Segoloni E. Probing the dynamics of polyatomic multichannel elementary reactions by crossed molecular beam experiments with soft electron-ionization mass spectrometric detection. Phys Chem Chem Phys 2008; 11:46-65. [PMID: 19081908 DOI: 10.1039/b814709d] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this Perspective we highlight developments in the field of chemical reaction dynamics. Focus is on the advances recently made in the investigation of the dynamics of elementary multichannel radical-molecule and radical-radical reactions, as they have become possible using an improved crossed molecular beam scattering apparatus with universal electron-ionization mass spectrometric detection and time-of-flight analysis. These improvements consist in the implementation of (a) soft ionization detection by tunable low-energy electrons which has permitted us to reduce interfering signals originating from dissociative ionization processes, usually representing a major complication, (b) different beam crossing-angle set-ups which have permitted us to extend the range of collision energies over which a reaction can be studied, from very low (a few kJ mol(-1), as of interest in astrochemistry or planetary atmospheric chemistry) to quite high energies (several tens of kJ mol(-1), as of interest in high temperature combustion systems), and (c) continuous supersonic sources for producing a wide variety of atomic and molecular radical reactant beams. Exploiting these new features it has become possible to tackle the dynamics of a variety of polyatomic multichannel reactions, such as those occurring in many environments ranging from combustion and plasmas to terrestrial/planetary atmospheres and interstellar clouds. By measuring product angular and velocity distributions, after having suppressed or mitigated, when needed, the problem of dissociative ionization of interfering species (reactants, products, background gases) by soft ionization detection, essentially all primary reaction products can be identified, the dynamics of each reaction channel characterized, and the branching ratios determined as a function of collision energy. In general this information, besides being of fundamental relevance, is required for a predictive description of the chemistry of these environments via computer models. Examples are taken from recent on-going work (partly published) on the reactions of atomic oxygen with acetylene, ethylene and allyl radical, of great importance in combustion. A reaction of relevance in interstellar chemistry, as that of atomic carbon with acetylene, is also discussed briefly. Comparison with theoretical results is made wherever possible, both at the level of electronic structure calculations of the potential energy surfaces and dynamical computations. Recent complementary CMB work as well as kinetic work exploiting soft photo-ionization with synchrotron radiation are noted. The examples illustrated in this article demonstrate that the type of dynamical results now obtainable on polyatomic multichannel radical-molecule and radical-radical reactions might well complement reaction kinetics experiments and hence contribute to bridging the gap between microscopic reaction dynamics and thermal reaction kinetics, enhancing significantly our basic knowledge of chemical reactivity and understanding of the elementary reactions which occur in real-world environments.
Collapse
|
21
|
Crowther AC, Carrier SL, Preston TJ, Crim FF. Time-Resolved Studies of CN Radical Reactions and the Role of Complexes in Solution. J Phys Chem A 2008; 112:12081-9. [DOI: 10.1021/jp8064079] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew C. Crowther
- Department of Chemistry, University of Wisconsin − Madison, Madison, Wisconsin 53706
| | - Stacey L. Carrier
- Department of Chemistry, University of Wisconsin − Madison, Madison, Wisconsin 53706
| | - Thomas J. Preston
- Department of Chemistry, University of Wisconsin − Madison, Madison, Wisconsin 53706
| | - F. Fleming Crim
- Department of Chemistry, University of Wisconsin − Madison, Madison, Wisconsin 53706
| |
Collapse
|